cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 17 results. Next

A001227 Number of odd divisors of n.

Original entry on oeis.org

1, 1, 2, 1, 2, 2, 2, 1, 3, 2, 2, 2, 2, 2, 4, 1, 2, 3, 2, 2, 4, 2, 2, 2, 3, 2, 4, 2, 2, 4, 2, 1, 4, 2, 4, 3, 2, 2, 4, 2, 2, 4, 2, 2, 6, 2, 2, 2, 3, 3, 4, 2, 2, 4, 4, 2, 4, 2, 2, 4, 2, 2, 6, 1, 4, 4, 2, 2, 4, 4, 2, 3, 2, 2, 6, 2, 4, 4, 2, 2, 5, 2, 2, 4, 4, 2, 4, 2, 2, 6, 4, 2, 4, 2, 4, 2, 2, 3, 6, 3, 2, 4, 2, 2, 8
Offset: 1

Views

Author

Keywords

Comments

Also (1) number of ways to write n as difference of two triangular numbers (A000217), see A136107; (2) number of ways to arrange n identical objects in a trapezoid. - Tom Verhoeff
Also number of partitions of n into consecutive positive integers including the trivial partition of length 1 (e.g., 9 = 2+3+4 or 4+5 or 9 so a(9)=3). (Useful for cribbage players.) See A069283. - Henry Bottomley, Apr 13 2000
This has been described as Sylvester's theorem, but to reduce ambiguity I suggest calling it Sylvester's enumeration. - Gus Wiseman, Oct 04 2022
a(n) is also the number of factors in the factorization of the Chebyshev polynomial of the first kind T_n(x). - Yuval Dekel (dekelyuval(AT)hotmail.com), Aug 28 2003
Number of factors in the factorization of the polynomial x^n+1 over the integers. See also A000005. - T. D. Noe, Apr 16 2003
a(n) = 1 if and only if n is a power of 2 (see A000079). - Lekraj Beedassy, Apr 12 2005
Number of occurrences of n in A049777. - Philippe Deléham, Jun 19 2005
For n odd, n is prime if and only if a(n) = 2. - George J. Schaeffer (gschaeff(AT)andrew.cmu.edu), Sep 10 2005
Also number of partitions of n such that if k is the largest part, then each of the parts 1,2,...,k-1 occurs exactly once. Example: a(9)=3 because we have [3,3,2,1],[2,2,2,2,1] and [1,1,1,1,1,1,1,1,1]. - Emeric Deutsch, Mar 07 2006
Also the number of factors of the n-th Lucas polynomial. - T. D. Noe, Mar 09 2006
Lengths of rows of triangle A182469;
Denoted by Delta_0(n) in Glaisher 1907. - Michael Somos, May 17 2013
Also the number of partitions p of n into distinct parts such that max(p) - min(p) < length(p). - Clark Kimberling, Apr 18 2014
Row sums of triangle A247795. - Reinhard Zumkeller, Sep 28 2014
Row sums of triangle A237048. - Omar E. Pol, Oct 24 2014
A069288(n) <= a(n). - Reinhard Zumkeller, Apr 05 2015
A000203, A000593 and this sequence have the same parity: A053866. - Omar E. Pol, May 14 2016
a(n) is equal to the number of ways to write 2*n-1 as (4*x + 2)*y + 4*x + 1 where x and y are nonnegative integers. Also a(n) is equal to the number of distinct values of k such that k/(2*n-1) + k divides (k/(2*n-1))^(k/(2*n-1)) + k, (k/(2*n-1))^k + k/(2*n-1) and k^(k/(2*n-1)) + k/(2*n-1). - Juri-Stepan Gerasimov, May 23 2016, Jul 15 2016
Also the number of odd divisors of n*2^m for m >= 0. - Juri-Stepan Gerasimov, Jul 15 2016
a(n) is odd if and only if n is a square or twice a square. - Juri-Stepan Gerasimov, Jul 17 2016
a(n) is also the number of subparts in the symmetric representation of sigma(n). For more information see A279387 and A237593. - Omar E. Pol, Nov 05 2016
a(n) is also the number of partitions of n into an odd number of equal parts. - Omar E. Pol, May 14 2017 [This follows from the g.f. Sum_{k >= 1} x^k/(1-x^(2*k)). - N. J. A. Sloane, Dec 03 2020]

Examples

			G.f. = q + q^2 + 2*q^3 + q^4 + 2*q^5 + 2*q^6 + 2*q^7 + q^8 + 3*q^9 + 2*q^10 + ...
From _Omar E. Pol_, Nov 30 2020: (Start)
For n = 9 there are three odd divisors of 9; they are [1, 3, 9]. On the other hand there are three partitions of 9 into consecutive parts: they are [9], [5, 4] and [4, 3, 2], so a(9) = 3.
Illustration of initial terms:
                              Diagram
   n   a(n)                         _
   1     1                        _|1|
   2     1                      _|1 _|
   3     2                    _|1  |1|
   4     1                  _|1   _| |
   5     2                _|1    |1 _|
   6     2              _|1     _| |1|
   7     2            _|1      |1  | |
   8     1          _|1       _|  _| |
   9     3        _|1        |1  |1 _|
  10     2      _|1         _|   | |1|
  11     2    _|1          |1   _| | |
  12     2   |1            |   |1  | |
...
a(n) is the number of horizontal line segments in the n-th level of the diagram. For more information see A286001. (End)
		

References

  • B. C. Berndt, Ramanujan's Notebooks Part V, Springer-Verlag, see p. 487 Entry 47.
  • L. E. Dickson, History of the Theory of Numbers. Carnegie Institute Public. 256, Washington, DC, Vol. 1, 1919; Vol. 2, 1920; Vol. 3, 1923, see vol. 1, p. 306.
  • J. W. L. Glaisher, On the representations of a number as the sum of two, four, six, eight, ten, and twelve squares, Quart. J. Math. 38 (1907), 1-62 (see p. 4).
  • Ronald. L. Graham, Donald E. Knuth, and Oren Patashnik, Concrete Mathematics, 2nd ed. (Addison-Wesley, 1994), see exercise 2.30 on p. 65.
  • P. A. MacMahon, Combinatory Analysis, Cambridge Univ. Press, London and New York, Vol. 1, 1915 and Vol. 2, 1916; see vol. 2, p 28.

Crossrefs

If this sequence counts gapless sets by sum (by Sylvester's enumeration), these sets are ranked by A073485 and A356956. See also A055932, A066311, A073491, A107428, A137921, A333217, A356224, A356841, A356845.
Dirichlet inverse is A327276.

Programs

  • Haskell
    a001227 = sum . a247795_row
    -- Reinhard Zumkeller, Sep 28 2014, May 01 2012, Jul 25 2011
    
  • Magma
    [NumberOfDivisors(n)/Valuation(2*n, 2): n in [1..100]]; // Vincenzo Librandi, Jun 02 2019
    
  • Maple
    for n from 1 by 1 to 100 do s := 0: for d from 1 by 2 to n do if n mod d = 0 then s := s+1: fi: od: print(s); od:
    A001227 := proc(n) local a,d;
        a := 1 ;
        for d in ifactors(n)[2] do
            if op(1,d) > 2 then
                a := a*(op(2,d)+1) ;
            end if;
        end do:
        a ;
    end proc: # R. J. Mathar, Jun 18 2015
  • Mathematica
    f[n_] := Block[{d = Divisors[n]}, Count[ OddQ[d], True]]; Table[ f[n], {n, 105}] (* Robert G. Wilson v, Aug 27 2004 *)
    Table[Total[Mod[Divisors[n], 2]],{n,105}] (* Zak Seidov, Apr 16 2010 *)
    f[n_] := Block[{d = DivisorSigma[0, n]}, If[ OddQ@ n, d, d - DivisorSigma[0, n/2]]]; Array[f, 105] (* Robert G. Wilson v *)
    a[ n_] := Sum[  Mod[ d, 2], { d, Divisors[ n]}]; (* Michael Somos, May 17 2013 *)
    a[ n_] := DivisorSum[ n, Mod[ #, 2] &]; (* Michael Somos, May 17 2013 *)
    Count[Divisors[#],?OddQ]&/@Range[110] (* _Harvey P. Dale, Feb 15 2015 *)
    (* using a262045 from A262045 to compute a(n) = number of subparts in the symmetric representation of sigma(n) *)
    (* cl = current level, cs = current subparts count *)
    a001227[n_] := Module[{cs=0, cl=0, i, wL, k}, wL=a262045[n]; k=Length[wL]; For[i=1, i<=k, i++, If[wL[[i]]>cl, cs++; cl++]; If[wL[[i]]Hartmut F. W. Hoft, Dec 16 2016 *)
    a[n_] := DivisorSigma[0, n / 2^IntegerExponent[n, 2]]; Array[a, 100] (* Amiram Eldar, Jun 12 2022 *)
  • PARI
    {a(n) = sumdiv(n, d, d%2)}; /* Michael Somos, Oct 06 2007 */
    
  • PARI
    {a(n) = direuler( p=2, n, 1 / (1 - X) / (1 - kronecker( 4, p) * X))[n]}; /* Michael Somos, Oct 06 2007 */
    
  • PARI
    a(n)=numdiv(n>>valuation(n,2)) \\ Charles R Greathouse IV, Mar 16 2011
    
  • PARI
    a(n)=sum(k=1,round(solve(x=1,n,x*(x+1)/2-n)),(k^2-k+2*n)%(2*k)==0) \\ Charles R Greathouse IV, May 31 2013
    
  • PARI
    a(n)=sumdivmult(n,d,d%2) \\ Charles R Greathouse IV, Aug 29 2013
    
  • Python
    from functools import reduce
    from operator import mul
    from sympy import factorint
    def A001227(n): return reduce(mul,(q+1 for p, q in factorint(n).items() if p > 2),1) # Chai Wah Wu, Mar 08 2021
  • SageMath
    def A001227(n): return len([1 for d in divisors(n) if is_odd(d)])
    [A001227(n) for n in (1..80)]  # Peter Luschny, Feb 01 2012
    

Formula

Dirichlet g.f.: zeta(s)^2*(1-1/2^s).
Comment from N. J. A. Sloane, Dec 02 2020: (Start)
By counting the odd divisors f n in different ways, we get three different ways of writing the ordinary generating function. It is:
A(x) = x + x^2 + 2*x^3 + x^4 + 2*x^5 + 2*x^6 + 2*x^7 + x^8 + 3*x^9 + 2*x^10 + ...
= Sum_{k >= 1} x^(2*k-1)/(1-x^(2*k-1))
= Sum_{k >= 1} x^k/(1-x^(2*k))
= Sum_{k >= 1} x^(k*(k+1)/2)/(1-x^k) [Ramanujan, 2nd notebook, p. 355.].
(This incorporates comments from Vladeta Jovovic, Oct 16 2002 and Michael Somos, Oct 30 2005.) (End)
G.f.: x/(1-x) + Sum_{n>=1} x^(3*n)/(1-x^(2*n)), also L(x)-L(x^2) where L(x) = Sum_{n>=1} x^n/(1-x^n). - Joerg Arndt, Nov 06 2010
a(n) = A000005(n)/(A007814(n)+1) = A000005(n)/A001511(n).
Multiplicative with a(p^e) = 1 if p = 2; e+1 if p > 2. - David W. Wilson, Aug 01 2001
a(n) = A000005(A000265(n)). - Lekraj Beedassy, Jan 07 2005
Moebius transform is period 2 sequence [1, 0, ...] = A000035, which means a(n) is the Dirichlet convolution of A000035 and A057427.
a(n) = A113414(2*n). - N. J. A. Sloane, Jan 24 2006 (corrected Nov 10 2007)
a(n) = A001826(n) + A001842(n). - Reinhard Zumkeller, Apr 18 2006
Sequence = M*V = A115369 * A000005, where M = an infinite lower triangular matrix and V = A000005, d(n); as a vector: [1, 2, 2, 3, 2, 4, ...]. - Gary W. Adamson, Apr 15 2007
Equals A051731 * [1,0,1,0,1,...]; where A051731 is the inverse Mobius transform. - Gary W. Adamson, Nov 06 2007
a(n) = A000005(n) - A183063(n).
a(n) = d(n) if n is odd, or d(n) - d(n/2) if n is even, where d(n) is the number of divisors of n (A000005). (See the Weisstein page.) - Gary W. Adamson, Mar 15 2011
Dirichlet convolution of A000005 and A154955 (interpreted as a flat sequence). - R. J. Mathar, Jun 28 2011
a(A000079(n)) = 1; a(A057716(n)) > 1; a(A093641(n)) <= 2; a(A038550(n)) = 2; a(A105441(n)) > 2; a(A072502(n)) = 3. - Reinhard Zumkeller, May 01 2012
a(n) = 1 + A069283(n). - R. J. Mathar, Jun 18 2015
a(A002110(n)/2) = n, n >= 1. - Altug Alkan, Sep 29 2015
a(n*2^m) = a(n*2^i), a((2*j+1)^n) = n+1 for m >= 0, i >= 0 and j >= 0. a((2*x+1)^n) = a((2*y+1)^n) for positive x and y. - Juri-Stepan Gerasimov, Jul 17 2016
Conjectures: a(n) = A067742(n) + 2*A131576(n) = A082647(n) + A131576(n). - Omar E. Pol, Feb 15 2017
a(n) = A000005(2n) - A000005(n) = A099777(n)-A000005(n). - Danny Rorabaugh, Oct 03 2017
L.g.f.: -log(Product_{k>=1} (1 - x^(2*k-1))^(1/(2*k-1))) = Sum_{n>=1} a(n)*x^n/n. - Ilya Gutkovskiy, Jul 30 2018
G.f.: (psi_{q^2}(1/2) + log(1-q^2))/log(q), where psi_q(z) is the q-digamma function. - Michael Somos, Jun 01 2019
a(n) = A003056(n) - A238005(n). - Omar E. Pol, Sep 12 2021
Sum_{k=1..n} a(k) ~ n*log(n)/2 + (gamma + log(2)/2 - 1/2)*n, where gamma is Euler's constant (A001620). - Amiram Eldar, Nov 27 2022
Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k)/A000005(k) = log(2) (A002162). - Amiram Eldar, Mar 01 2023
a(n) = Sum_{i=1..n} (-1)^(i+1)*A135539(n,i). - Ridouane Oudra, Apr 13 2023

A038547 Least number with exactly n odd divisors.

Original entry on oeis.org

1, 3, 9, 15, 81, 45, 729, 105, 225, 405, 59049, 315, 531441, 3645, 2025, 945, 43046721, 1575, 387420489, 2835, 18225, 295245, 31381059609, 3465, 50625, 2657205, 11025, 25515, 22876792454961, 14175, 205891132094649, 10395, 1476225, 215233605
Offset: 1

Views

Author

Keywords

Comments

Also least odd number with exactly n divisors. - Lekraj Beedassy, Aug 30 2006
a(2n-1) = {1, 9, 81, 729, 225, 59049, ...} are the squares. A122842(n) = sqrt(a(2n-1)) = {1, 3, 9, 27, 15, 243, 729, 45, 6561, 19683, 135, 177147, 225, 105, 4782969, 14348907, 1215, ...}. - Alexander Adamchuk, Sep 13 2006
Also the least number k such that there are n partitions of k whose elements are consecutive integers. I.e., 1=1, 3=1+2=3, 9=2+3+4=4+5=9, 15=1+2+3+4+5=4+5+6=7+8=15, etc. - Robert G. Wilson v, Jun 02 2007
The politeness of an integer, A069283(n), is defined to be the number of its nontrivial runsum representations, and the sequence 3, 9, 15, 81, 45, 729, 105, ... represents the least integers to have a politeness of 1, 2, 3, 4, ... This is also the sequence of smallest integers with n+1 odd divisors and so apart from the leading 1, is precisely this sequence. - Ant King, Sep 23 2009
a(n) is also the least number k with the property that the symmetric representation of sigma(k) has n subparts. - Omar E. Pol, Dec 31 2016

Examples

			a(2^3) = 105 = 3*5 while a(2^4) = 945 = 3^3 * 5 * 7. There are 5 partition lists for the exponents of numbers with 16 odd divisors; they are {1, 1, 1, 1}, {3, 1, 1}, {3, 3}, {7, 1}, and {15} that result in the 5 numbers 1155, 945, 3375, 10935, and 14348907. Number a(3^8) = a(6561) = 3^2 * 5^2 * ... * 19^2 * 23^2 = 12442607161209225 while a(3^9) = a(19683) = 3^8 * 5^2 * ... * 19^2 * 23^2 = 9070660620521525025. The numbers a(5^52) = 3^4 * 5^4 * 7^4 * ... and a(5^53) = 3^24 * 5^4 * 7^4 * ... have 393 and 402 digits, respectively.  - _Hartmut F. W. Hoft_, Nov 03 2022
		

Crossrefs

A122842 = sqrt( a(2n-1) ).
Row 1 of A266531. - Omar E. Pol, Dec 31 2016

Programs

  • Haskell
    import Data.List  (find)
    import Data.Maybe (fromJust)
    a038547 n = fromJust $ find ((== n) . length . divisors) [1,3..]
       where divisors m = filter ((== 0) . mod m) [1..m]
    -- Reinhard Zumkeller, Feb 24 2011
    
  • Mathematica
    Table[Select[Range[1,532000,2],DivisorSigma[0,#]==k+1 &,1],{k,0,15}]//Flatten (* Ant King, Nov 28 2010 *)
    2#-1&/@With[{ds=DivisorSigma[0,Range[1,600000,2]]},Table[Position[ds,n,1,1],{n,16}]]//Flatten (* The program is not suitable for generating terms beyond a(16) *) (* Harvey P. Dale, Jun 06 2017 *)
    (* direct computation of A038547(n) *)
    (* Function by _Vaclav Kotesovec_in A005179, Apr 04 2021, modified for odd divisors *)
    mp[1, m_] := {{}}; mp[n_, 1] := {{}}; mp[n_?PrimeQ, m_] := If[mHartmut F. W. Hoft, Mar 05 2023 *)
  • PARI
    for(nd=1,15,forstep(k=1,10^66,2,if(nd==numdiv(k),print1(k,", ");break())))
    
  • Python
    from math import prod
    from sympy import isprime, divisors, prime
    def A038547(n):
        def mult_factors(n):
            if isprime(n):
                return [(n,)]
            c = []
            for d in divisors(n,generator=True):
                if 1Chai Wah Wu, Aug 17 2024

Formula

a(p) = 3^(p-1) for primes p. - Zak Seidov, Apr 18 2006
a(n) = A119265(n,n). - Reinhard Zumkeller, May 11 2006
It was suggested by Alexander Adamchuk that for all n >= 1, we have a(3^(n-1)) = (p(n)#/2)^2 = (A002110(n)/2)^2 = A070826(n)^2. But this is false! E.g., (p(n)#/2)^2 = 3^2 * 5^2 * 7^2 * ... * 23^2 * 29^2 does indeed have 3^9 odd factors, but it is greater than 3^8 * 5^2 * 7^2 * ... * 23^2 which has 9*3*3*3*3*3*3*3 = 9*3^7 = 3^9 odd factors. - Richard Sabey, Oct 06 2007
a(A053640(m)) = a(A000005(A053624(m))) = A053624(m). - Rick L. Shepherd, Apr 20 2008
a(p^k) = Product_{i=1..k} prime(i+1)^(p-1), p prime and k >= 0, only when p_(k+1) < 3^p. - Hartmut F. W. Hoft, Nov 03 2022

Extensions

Corrected by Ron Knott, Feb 22 2001
a(30) from Zak Seidov, Apr 18 2006
a(32)-a(34) from Lekraj Beedassy, Aug 30 2006

A231345 Triangle read by rows: T(n,k), n>=1, k>=1, in which column k lists the odd numbers interleaved with k-1 zeros but T(n,1) = -1 and the first element of column k is in row k(k+1)/2.

Original entry on oeis.org

-1, -1, -1, 1, -1, 0, -1, 3, -1, 0, 1, -1, 5, 0, -1, 0, 0, -1, 7, 3, -1, 0, 0, 1, -1, 9, 0, 0, -1, 0, 5, 0, -1, 11, 0, 0, -1, 0, 0, 3, -1, 13, 7, 0, 1, -1, 0, 0, 0, 0, -1, 15, 0, 0, 0, -1, 0, 9, 5, 0, -1, 17, 0, 0, 0, -1, 0, 0, 0, 3, -1, 19, 11, 0, 0, 1
Offset: 1

Views

Author

Omar E. Pol, Dec 26 2013

Keywords

Comments

Gives an identity for the abundance of n. Alternating sum of row n equals the abundance of n, i.e., Sum_{k=1..A003056(n)} (-1)^(k-1)*T(n,k) = A033880(n).
Row n has length A003056(n) hence the first element of column k is in row A000217(k).

Examples

			Triangle begins:
  -1;
  -1;
  -1,  1;
  -1,  0;
  -1,  3;
  -1,  0,  1;
  -1,  5,  0;
  -1,  0,  0;
  -1,  7,  3;
  -1,  0,  0,  1;
  -1,  9,  0,  0;
  -1,  0,  5,  0;
  -1, 11,  0,  0;
  -1,  0,  0,  3;
  -1, 13,  7,  0,  1;
  -1,  0,  0,  0,  0;
  -1, 15,  0,  0,  0;
  -1,  0,  9,  5,  0;
  -1, 17,  0,  0,  0;
  -1,  0,  0,  0,  3;
  -1, 19, 11,  0,  0,  1;
  -1,  0,  0,  7,  0,  0;
  -1, 21,  0,  0,  0,  0;
  -1,  0, 13,  0,  0,  0;
  ...
For n = 15 the divisors of 15 are 1, 3, 5, 15 hence the abundance of 15 is 1 + 3 + 5 + 15 - 2*15 = 1 + 3 + 5 - 15 = -6. On the other hand the 15th row of triangle is -1, 13, 7, 0, 1, hence the alternating row sum is -1 - 13 + 7 - 0 + 1 = -6, equalling the abundance of 15.
If n is even then the alternating sum of the n-th row of triangle is simpler than the sum of divisors of n minus 2*n. Example: the sum of divisors of 24 minus 2*24 is 1 + 2 + 3 + 4 + 6 + 8 + 12 + 24 - 2*24 = 60 - 48 = 12, and the alternating sum of the 24th row of triangle is -1 - 0 + 13 - 0 + 0 - 0 = 12.
		

Crossrefs

Formula

T(n,1) = -1; T(n,k) = A196020(n,k), for k >= 2.

A300647 Number of same-trees of weight n in which all outdegrees are odd.

Original entry on oeis.org

1, 1, 2, 1, 2, 2, 2, 1, 10, 2, 2, 2, 2, 2, 42, 1, 2, 10, 2, 2, 138, 2, 2, 2, 34, 2, 1514, 2, 2, 42, 2, 1, 2058, 2, 162, 10, 2, 2, 8202, 2, 2, 138, 2, 2, 207370, 2, 2, 2, 130, 34, 131082, 2, 2, 1514, 2082, 2, 524298, 2, 2, 42, 2, 2, 14725738, 1, 8226, 2058, 2
Offset: 1

Views

Author

Gus Wiseman, Mar 10 2018

Keywords

Comments

A same-tree of weight n > 0 is either a single node of weight n, or a finite sequence of two or more same-trees whose weights are all equal and sum to n.

Examples

			The a(9) = 10 odd same-trees:
9,
(333),
(33(111)), (3(111)3), ((111)33)
(3(111)(111)), ((111)3(111)), ((111)(111)3),
((111)(111)(111)), (111111111).
		

Crossrefs

Programs

  • Mathematica
    a[n_]:=1+Sum[a[n/d]^d,{d,Select[Rest[Divisors[n]],OddQ]}];
    Array[a,80]
  • PARI
    a(n) = if (n==1, 1, 1+sumdiv(n, d, if ((d > 1) && (d % 2), a(n/d)^d))); \\ Michel Marcus, Mar 10 2018

Formula

a(n) = 1 + Sum_d a(n/d)^d where the sum is over odd divisors of n greater than 1.

A326987 Number of nonpowers of 2 dividing n.

Original entry on oeis.org

0, 0, 1, 0, 1, 2, 1, 0, 2, 2, 1, 3, 1, 2, 3, 0, 1, 4, 1, 3, 3, 2, 1, 4, 2, 2, 3, 3, 1, 6, 1, 0, 3, 2, 3, 6, 1, 2, 3, 4, 1, 6, 1, 3, 5, 2, 1, 5, 2, 4, 3, 3, 1, 6, 3, 4, 3, 2, 1, 9, 1, 2, 5, 0, 3, 6, 1, 3, 3, 6, 1, 8, 1, 2, 5, 3, 3, 6, 1, 5, 4, 2, 1, 9, 3, 2, 3, 4, 1, 10, 3, 3, 3, 2, 3, 6, 1, 4, 5, 6
Offset: 1

Views

Author

Omar E. Pol, Aug 18 2019

Keywords

Comments

In other words: a(n) is the number of divisors of n that are not powers of 2.
a(n) is also the number of odd divisors > 1 of n, multiplied by the number of divisors of n that are powers of 2.
a(n) = 0 iff n is a power of 2.
a(n) = 1 iff n is an odd prime.
From Bernard Schott, Sep 12 2019: (Start)
a(n) = 2 iff n is an even semiprime >= 6 or n is a square of prime >= 9 (Aug 26 2019).
a(n) = 3 iff n is an odd squarefree semiprime, or n is an odd prime multiplied by 4, or n is a cube of odd prime (End).

Examples

			For n = 18 the divisors of 18 are [1, 2, 3, 6, 9, 18]. There are four divisors of 18 that are not powers of 2, they are [3, 6, 9, 18], so a(18) = 4. On the other hand, there are two odd divisors > 1 of 18, they are [3, 9], and there are two divisors of 18 that are powers of 2, they are [1, 2], then we have that 2*2 = 4, so a(18) = 4.
		

Crossrefs

Programs

  • Magma
    sol:=[];  m:=1;  for n in [1..100] do v:=Set(Divisors(n)) diff {2^k:k in [0..Floor(Log(2,n))]};  sol[m]:=#v; m:=m+1; end for; sol; // Marius A. Burtea, Aug 24 2019
    
  • Maple
    a:= n-> numtheory[tau](n)-padic[ordp](2*n, 2):
    seq(a(n), n=1..100);  # Alois P. Heinz, Aug 24 2019
  • Mathematica
    a[n_] := DivisorSigma[0, n] - IntegerExponent[n, 2] - 1; Array[a, 100] (* Amiram Eldar, Aug 31 2019 *)
  • PARI
    ispp2(n) = (n==1) || (isprimepower(n, &p) && (p==2));
    a(n) = sumdiv(n, d, ispp2(d) == 0); \\ Michel Marcus, Aug 26 2019
    
  • Python
    from sympy import divisor_count
    def A326987(n): return divisor_count(n)-(n&-n).bit_length() # Chai Wah Wu, Jul 13 2022

Formula

a(n) = A000005(n) - A001511(n).
a(n) = (A001227(n) - 1)*A001511(n).
a(n) = A069283(n)*A001511(n).
Sum_{k=1..n} a(k) ~ n * (log(n) + 2*gamma - 3), where gamma is Euler's constant (A001620). - Amiram Eldar, Jan 18 2024

A069930 Number of integers of the form (n+k)/(n-k) with 1 <= k <= n-1.

Original entry on oeis.org

0, 1, 2, 2, 2, 4, 2, 3, 4, 4, 2, 6, 2, 4, 6, 4, 2, 7, 2, 6, 6, 4, 2, 8, 4, 4, 6, 6, 2, 10, 2, 5, 6, 4, 6, 10, 2, 4, 6, 8, 2, 10, 2, 6, 10, 4, 2, 10, 4, 7, 6, 6, 2, 10, 6, 8, 6, 4, 2, 14, 2, 4, 10, 6, 6, 10, 2, 6, 6, 10, 2, 13, 2, 4, 10, 6, 6, 10, 2, 10, 8, 4, 2, 14, 6, 4, 6, 8, 2, 16, 6, 6, 6, 4, 6
Offset: 1

Views

Author

Benoit Cloitre, May 05 2002

Keywords

Comments

Number of r X s integer-sided rectangles such that r < s, r + s = 2n and r | s. - Wesley Ivan Hurt, Apr 24 2020

Crossrefs

Programs

Formula

a(n) = A032741(n) + A069283(n) = A000005(n) - 1 + A001227(n) - 1 = tau(n) + A001227(n) - 2. - Antonio G. Astudillo (afg_astudillo(AT)hotmail.com), Jul 13 2002
Asymptotic formula: since sum(k=1, n, a(k)) = sum(k=1, n, tau(k)) + sum(k=1, n, A001227(k)) - 2*n = A006218(n) + A060831(n) - 2*n = 2*A006218(n) - A006218(floor(n/2)) - 2*n with A006218(0) = 0, A006218(n) = sum(k=1, n, tau(k)) and now, by Dirichlet's asymptotic expression A006218(n) = n*log(n) + n*(2*gamma-1) + O(n^theta) (gamma = 0.57721..; 1/4 <= theta < 1/2), we have sum(k=1, n, a(k)) = 2*n*log(n) - (n/2)*log(n) + o(n*log(n)) = 1.5*n*log(n) + o(n*log(n)) - Antonio G. Astudillo (afg_astudillo(AT)hotmail.com), Jul 13 2002
a(n) = tau(2*n) - 2. - Michael Somos, Aug 30 2012
Sum_{k=1..n} a(k) ~ n/2 * (3*log(n) + log(2) + 6*gamma - 7), where gamma is the Euler-Mascheroni constant A001620. - Vaclav Kotesovec, Feb 13 2019

A111775 Number of ways n can be written as a sum of at least three consecutive integers.

Original entry on oeis.org

0, 0, 0, 0, 0, 1, 0, 0, 1, 1, 0, 1, 0, 1, 2, 0, 0, 2, 0, 1, 2, 1, 0, 1, 1, 1, 2, 1, 0, 3, 0, 0, 2, 1, 2, 2, 0, 1, 2, 1, 0, 3, 0, 1, 4, 1, 0, 1, 1, 2, 2, 1, 0, 3, 2, 1, 2, 1, 0, 3, 0, 1, 4, 0, 2, 3, 0, 1, 2, 3, 0, 2, 0, 1, 4, 1, 2, 3, 0, 1, 3, 1, 0, 3, 2, 1, 2, 1, 0, 5, 2, 1, 2, 1, 2, 1, 0, 2, 4, 2, 0, 3, 0, 1
Offset: 1

Views

Author

Jaap Spies, Aug 16 2005

Keywords

Comments

Powers of 2 and (odd) primes cannot be written as a sum of at least three consecutive integers. a(n) strongly depends on the number of odd divisors of n (A001227): Suppose n is to be written as sum of k consecutive integers starting with m, then 2n = k(2m + k - 1). Only one of the factors is odd. For each odd divisor of n there is a unique corresponding k, k=1 and k=2 must be excluded.
When the initial 0 term is a(1), a(n) is the number of times n occurs after the second column in the square array of A049777. - Bob Selcoe, Feb 14 2014
For nonnegative integers x,y where x-y>=3: a(n) equals the number of ways n can be expressed as a function of (x*(x+1)-y*(y+1))/2 when the initial 0 term is a(1). - Bob Selcoe, Feb 14 2014

Examples

			a(15) = 2 because 15 = 4+5+6 and 15 = 1+2+3+4+5. The number of odd divisors of 15 is 4.
G.f. = x^6 + x^9 + x^10 + x^12 + x^14 + 2*x^15 + 2*x^18 + x^20 + 2*x^21 + x^22 + ...
a(30) = 3 because there are 3 ways to satisfy (x*(x+1)-y*(y+1))/2 = 30 when x-y>=3: x=8, y=3; x=9, y=5; and x=11, y=8. - _Bob Selcoe_, Feb 14 2014
		

References

  • Nieuw Archief voor Wiskunde 5/6 nr. 2 Problems/UWC Problem C part 4, Jun 2005, p. 181-182

Crossrefs

Cf. A111774, A001227 (number of odd divisors), A069283.

Programs

  • Maple
    A001227:= proc(n) local d, s; s := 0: for d from 1 by 2 to n do if n mod d = 0 then s:=s+1 fi: end do: return(s); end proc; A111775:= proc(n) local k; if n=1 then return(0) fi: k := A001227(n): if type(n,even) then k:=k-1 else k:=k-2 fi: return k; end proc; seq(A111775(i), i=1..150);
  • Mathematica
    a[n_] := If[n == 1, 0, Total[Mod[Divisors[n], 2]] - Mod[n, 2] - 1];
    a /@ Range[1, 100] (* Jean-François Alcover, Oct 14 2019 *)
  • PARI
    {a(n) = local(m); if( n<1, 0, sum( i=0, n, m=0; if( issquare( 1 + 8*(n + i * (i + 1)/2), &m), m\2 > i+2)))}; /* Michael Somos, Aug 27 2012 */

Formula

If n is even then a(n) = A001227(n)-1 = A069283(n) otherwise a(n) = A001227(n)-2, for n > 1.
G.f.: Sum_{n >= 2} x^(3*n)/(1 - x^(2*n)). - Peter Bala, Jan 12 2021

A300648 Number of orderless same-trees of weight n in which all outdegrees are odd.

Original entry on oeis.org

1, 1, 2, 1, 2, 2, 2, 1, 6, 2, 2, 2, 2, 2, 12, 1, 2, 6, 2, 2, 14, 2, 2, 2, 8, 2, 68, 2, 2, 12, 2, 1, 18, 2, 16, 6, 2, 2, 20, 2, 2, 14, 2, 2, 644, 2, 2, 2, 10, 8, 24, 2, 2, 68, 20, 2, 26, 2, 2, 12, 2, 2, 1386, 1, 22, 18, 2, 2, 30, 16, 2, 6, 2, 2, 4532, 2, 22, 20
Offset: 1

Views

Author

Gus Wiseman, Mar 10 2018

Keywords

Comments

An orderless same-tree of weight n > 0 is either a single node of weight n, or a finite multiset of two or more orderless same-trees whose weights are all equal and sum to n.

Examples

			The a(9) = 6 odd orderless same-trees: 9, (333), (33(111)), (3(111)(111)), ((111)(111)(111)), (111111111).
		

Crossrefs

Programs

  • Mathematica
    a[n_]:=1+Sum[Binomial[a[n/d]+d-1,d],{d,Select[Rest[Divisors[n]],OddQ]}];
    Array[a,80]
  • PARI
    a(n) = if (n==1, 1, 1 + sumdiv(n, d, if ((d > 1) && (d % 2), binomial(a(n/d) + d - 1, d)))); \\ Michel Marcus, Mar 10 2018

Formula

a(n) = 1 + Sum_d binomial(a(n/d) + d - 1, d) where the sum is over odd divisors of n greater than 1.

A220400 Number of ways to write n as sum of at least 2 consecutive odd positive integers.

Original entry on oeis.org

0, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 2, 0, 0, 0, 1, 1, 0, 0, 2, 1, 0, 1, 1, 0, 0, 0, 2, 1, 0, 1, 2, 0, 0, 1, 2, 0, 0, 0, 1, 2, 0, 0, 3, 1, 0, 1, 1, 0, 0, 1, 2, 1, 0, 0, 2, 0, 0, 2, 3, 1, 0, 0, 1, 1, 0, 0, 3, 0, 0, 2, 1, 1, 0, 0, 3, 2, 0, 0, 2, 1, 0, 1, 2, 0, 0, 1, 1, 1, 0, 1, 4, 0, 0, 2, 2, 0, 0, 0, 2, 3
Offset: 0

Views

Author

Carl Najafi, Dec 13 2012

Keywords

Comments

Records occur at 0, 4, 16, 48, 96, 144, 240, 480, 720, 960, 1440, ..., (A297160). - Antti Karttunen, Dec 27 2017
Also number of ways to express n in the form k + (k + 2) + ... + (k + 2*m - 2) = m * (k + m - 1) where k > 0 is odd and m > 0 and m * (m + 1) < n. - David A. Corneth, Dec 27 2017

Examples

			For n=16 we can write 1+3+5+7 and 7+9, thus a(16) = 2.
For n = 24, we look for sums of consecutive numbers of m terms of the form m * (k + m - 1) for odd k and m * (m + 1) < 24, i.e., m < 5. We can factorize 24 as such in two positive factors as 1 * 24 = 2 * 12 = 3 * 8 = 4 * 6 giving m = 1, 2, 3 and 4 respectively. Solving for k gives k = 24, k = 11, k = 6 and k = 3 respectively. Of these values, two are odd so a(24) = 2. Superfluously, the corresponding sums are 11 + 13 = 3 + 5 + 7 + 9. - _David A. Corneth_, Dec 28 2017
		

Crossrefs

Cf. A069283 (even numbers lead to this sequence).
Cf. A297160 (positions of records).

Programs

  • Mathematica
    nn = 100; t = Table[0, {nn}]; Do[s = odd = 2*n - 1; While[odd = odd + 2; s = s + odd; s <= nn, t[[s]]++], {n, nn/2}]; Join[{0}, t] (* T. D. Noe, Dec 18 2012 *)
  • PARI
    a(n) = if(n==0, return(0)); my(d = divisors(n)); (#d + 1) \ 2 - sum(i = 2, (#d + 1) \ 2, (n / d[i] - d[i]) % 2) - 1 \\ David A. Corneth, Dec 27 2017
  • Scheme
    (define (A220400 n) (let loop ((s 0) (begin 1) (end 1) (sum 1)) (cond ((> begin (/ n 2)) s) ((< sum n) (loop s begin (+ end 2) (+ sum end 2))) ((> sum n) (loop s (+ begin 2) end (- sum begin))) (else (loop (+ 1 s) (+ begin 2) end (- sum begin)))))) ;; Antti Karttunen, Dec 27 2017
    

Extensions

More terms from Antti Karttunen, Dec 27 2017

A300649 Number of same-trees of weight 2n + 1 in which all outdegrees are odd and all leaves greater than 1.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 3, 1, 1, 3, 1, 2, 10, 1, 1, 3, 3, 1, 3, 1, 1, 62, 1, 2, 3, 1, 3, 3, 1, 1, 158, 3, 1, 3, 1, 1, 254, 3, 1, 1514, 1, 3, 3, 1, 3, 3, 3, 1, 2078, 1, 1, 2461, 1, 1, 3, 1, 3, 8222, 3, 2, 3, 34, 1, 3, 1, 3, 390782, 1, 1, 3, 3, 3, 2198, 1, 1
Offset: 0

Views

Author

Gus Wiseman, Mar 10 2018

Keywords

Comments

A same-tree of weight n > 0 is either a single node of weight n, or a finite sequence of two or more same-trees whose weights are all equal and sum to n.

Examples

			The a(13) = 10 odd same-trees with all leaves greater than 1:
27,
(999),
(99(333)), (9(333)9), ((333)99),
(9(333)(333)), ((333)9(333)), ((333)(333)9),
((333)(333)(333)), (333333333).
		

Crossrefs

Programs

  • Mathematica
    a[n_]:=If[n===1,1,Sum[a[n/d]^d,{d,Select[Rest[Divisors[n]],OddQ]}]];
    Table[a[n],{n,1,100,2}]
  • PARI
    f(n) = if (n==1, 1, sumdiv(n, d, if ((d > 1) && (d % 2), f(n/d)^d)));
    a(n) = f(2*n+1); \\ Michel Marcus, Mar 10 2018

Formula

a(1) = 1; a(n > 1) = Sum_d a(n/d)^d where the sum is over odd divisors of n greater than 1.
Showing 1-10 of 17 results. Next