cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 43 results. Next

A030528 Triangle read by rows: a(n,k) = binomial(k,n-k).

Original entry on oeis.org

1, 1, 1, 0, 2, 1, 0, 1, 3, 1, 0, 0, 3, 4, 1, 0, 0, 1, 6, 5, 1, 0, 0, 0, 4, 10, 6, 1, 0, 0, 0, 1, 10, 15, 7, 1, 0, 0, 0, 0, 5, 20, 21, 8, 1, 0, 0, 0, 0, 1, 15, 35, 28, 9, 1, 0, 0, 0, 0, 0, 6, 35, 56, 36, 10, 1, 0, 0, 0, 0, 0, 1, 21, 70, 84, 45, 11, 1, 0, 0, 0, 0, 0, 0, 7, 56, 126, 120, 55, 12, 1
Offset: 1

Views

Author

Keywords

Comments

A convolution triangle of numbers obtained from A019590.
a(n,m) := s1(-1; n,m), a member of a sequence of triangles including s1(0; n,m)= A023531(n,m) (unit matrix) and s1(2; n,m)= A007318(n-1,m-1) (Pascal's triangle).
The signed triangular matrix a(n,m)*(-1)^(n-m) is the inverse matrix of the triangular Catalan convolution matrix A033184(n+1,m+1), n >= m >= 0, with A033184(n,m) := 0 if n
Riordan array (1+x, x(1+x)). The signed triangle is the Riordan array (1-x,x(1-x)), inverse to (c(x),xc(x)) with c(x) g.f. for A000108. - Paul Barry, Feb 02 2005 [with offset 0]
Also, a(n,k)=number of compositions of n into k parts of 1's and 2's. Example: a(6,4)=6 because we have 2211, 2121, 2112, 1221, 1212 and 1122. - Emeric Deutsch, Apr 05 2005 [see MacMahon and Riordan. - Wolfdieter Lang, Jul 27 2023]
Subtriangle of A026729. - Philippe Deléham, Aug 31 2006
a(n,k) is the number of length n-1 binary sequences having no two consecutive 0's with exactly k-1 1's. Example: a(6,4)=6 because we have 01011, 01101, 01110, 10101, 10110, 11010. - Geoffrey Critzer, Jul 22 2013
Mirrored, shifted Fibonacci polynomials of A011973. The polynomials (illustrated below) of this entry have the property that p(n,t) = t * [p(n-1,t) + p(n-2,t)]. The additive properties of Pascal's triangle (A007318) are reflected in those of these polynomials, as can be seen in the Example Section below and also when the o.g.f. G(x,t) below is expanded as the series x*(1+x) + t * [x*(1+x)]^2 + t^2 * [x*(1+x)]^3 + ... . See also A053122 for a relation to Cartan matrices. - Tom Copeland, Nov 04 2014
Rows of this entry appear as columns of an array for an infinitesimal generator presented in the Copeland link. - Tom Copeland, Dec 23 2015
For n >= 2, the n-th row is also the coefficients of the vertex cover polynomial of the (n-1)-path graph P_{n-1}. - Eric W. Weisstein, Apr 10 2017
With an additional initial matrix element a_(0,0) = 1 and column of zeros a_(n,0) = 0 for n > 0, these are antidiagonals read from bottom to top of the numerical coefficients of the Maurer-Cartan form matrix of the Leibniz group L^(n)(1,1) presented on p. 9 of the Olver paper, which is generated as exp[c. * M] with (c.)^n = c_n and M the Lie infinitesimal generator A218272. Cf. A011973. And A169803. - Tom Copeland, Jul 02 2018

Examples

			Triangle starts:
  [ 1]  1
  [ 2]  1   1
  [ 3]  0   2   1
  [ 4]  0   1   3   1
  [ 5]  0   0   3   4   1
  [ 6]  0   0   1   6   5   1
  [ 7]  0   0   0   4  10   6   1
  [ 8]  0   0   0   1  10  15   7   1
  [ 9]  0   0   0   0   5  20  21   8   1
  [10]  0   0   0   0   1  15  35  28   9   1
  [11]  0   0   0   0   0   6  35  56  36  10   1
  [12]  0   0   0   0   0   1  21  70  84  45  11   1
  [13]  0   0   0   0   0   0   7  56 126 120  55  12   1
  ...
From _Tom Copeland_, Nov 04 2014: (Start)
For quick comparison to other polynomials:
  p(1,t) = 1
  p(2,t) = 1 + 1 t
  p(3,t) = 0 + 2 t + 1 t^2
  p(4,t) = 0 + 1 t + 3 t^2 + 1 t^3
  p(5,t) = 0 + 0   + 3 t^2 + 4 t^3 +  1 t^4
  p(6,t) = 0 + 0   + 1 t^2 + 6 t^3 +  5 t^4 +  1 t^5
  p(7,t) = 0 + 0   + 0     + 4 t^3 + 10 t^4 +  6 t^5 + 1 t^6
  p(8,t) = 0 + 0   + 0     + 1 t^3 + 10 t^4 + 15 t^5 + 7 t^6 + 1 t^7
  ...
Reading along columns gives rows for Pascal's triangle. (End)
		

References

  • P. A. MacMahon, Combinatory Analysis, Two volumes (bound as one), Chelsea Publishing Company, New York, 1960, Vol. I, nr. 124, p. 151.
  • John Riordan, An Introduction to Combinatorial Analysis, John Wiley & Sons, London, 1958. eq. (35), p.124, 11. p. 154.

Crossrefs

Row sums A000045(n+1) (Fibonacci). a(n, 1)= A019590(n) (Fermat's last theorem). Cf. A049403.

Programs

  • Magma
    /* As triangle */ [[Binomial(k, n-k): k in [1..n]]: n in [1.. 15]]; // Vincenzo Librandi, Nov 05 2014
  • Maple
    for n from 1 to 12 do seq(binomial(k,n-k),k=1..n) od; # yields sequence in triangular form - Emeric Deutsch, Apr 05 2005
  • Mathematica
    nn=10;CoefficientList[Series[(1+x)/(1-y x - y x^2),{x,0,nn}],{x,y}]//Grid (* Geoffrey Critzer, Jul 22 2013 *)
    Table[Binomial[k, n - k], {n, 13}, {k, n}] // Flatten (* Michael De Vlieger, Dec 23 2015 *)
    CoefficientList[Table[x^(n/2 - 1) Fibonacci[n + 1, Sqrt[x]], {n, 10}],
       x] // Flatten (* Eric W. Weisstein, Apr 10 2017 *)

Formula

a(n, m) = 2*(2*m-n+1)*a(n-1, m)/n + m*a(n-1, m-1)/n, n >= m >= 1; a(n, m) := 0, n
G.f. for m-th column: (x*(1+x))^m.
As a number triangle with offset 0, this is T(n, k) = Sum_{i=0..n} (-1)^(n+i)*binomial(n, i)*binomial(i+k+1, 2k+1). The antidiagonal sums give the Padovan sequence A000931(n+5). Inverse binomial transform of A078812 (product of lower triangular matrices). - Paul Barry, Jun 21 2004
G.f.: (1 + x)/(1 - y*x - y*x^2). - Geoffrey Critzer, Jul 22 2013 [offset 0] [with offset 1: g.f. of row polynomials in y: x*(1+x)*y/(1 - x*(1+x)*y). - Wolfdieter Lang, Jul 27 2023]
From Tom Copeland, Nov 04 2014: (Start)
O.g.f: G(x,t) = x*(1+x) / [1 - t*x*(1+x)] = -P[Cinv(-x),t], where P(x,t)= x / (1 + t*x) and Cinv(x)= x*(1-x) are the compositional inverses in x of Pinv(x,t) = -P(-x,t) = x / (1 - t*x) and C(x) = [1-sqrt(1-4*x)]/2, an o.g.f. for the shifted Catalan numbers A000108.
Therefore, Ginv(x,t) = -C[Pinv(-x,t)] = {-1 + sqrt[1 + 4*x/(1+t*x)]}/2, which is -A124644(-x,t).
This places this array in a family of arrays related by composition of P and C and their inverses and interpolation by t, such as A091867 and A104597, and associated to the Catalan, Motzkin, Fine, and Fibonacci numbers. Cf. A104597 (polynomials shifted in t) A125145, A146559, A057078, A000045, A155020, A125145, A039717, A001792, A057862, A011973, A115139. (End)

Extensions

More terms from Emeric Deutsch, Apr 05 2005

A111125 Triangle read by rows: T(k,s) = ((2*k+1)/(2*s+1))*binomial(k+s,2*s), 0 <= s <= k.

Original entry on oeis.org

1, 3, 1, 5, 5, 1, 7, 14, 7, 1, 9, 30, 27, 9, 1, 11, 55, 77, 44, 11, 1, 13, 91, 182, 156, 65, 13, 1, 15, 140, 378, 450, 275, 90, 15, 1, 17, 204, 714, 1122, 935, 442, 119, 17, 1, 19, 285, 1254, 2508, 2717, 1729, 665, 152, 19, 1, 21, 385, 2079, 5148, 7007, 5733, 2940, 952, 189, 21, 1
Offset: 0

Author

N. J. A. Sloane, Oct 16 2005

Keywords

Comments

Riordan array ((1+x)/(1-x)^2, x/(1-x)^2). Row sums are A002878. Diagonal sums are A003945. Inverse is A113187. An interesting factorization is (1/(1-x), x/(1-x))(1+2*x, x*(1+x)). - Paul Barry, Oct 17 2005
Central coefficients of rows with odd numbers of term are A052227.
From Wolfdieter Lang, Jun 26 2011: (Start)
T(k,s) appears as T_s(k) in the Knuth reference, p. 285.
This triangle is related to triangle A156308(n,m), appearing in this reference as U_m(n) on p. 285, by T(k,s) - T(k-1,s) = A156308(k,s), k>=s>=1 (identity on p. 286). T(k,s) = A156308(k+1,s+1) - A156308(k,s+1), k>=s>=0 (identity on p. 286).
(End)
A111125 is jointly generated with A208513 as an array of coefficients of polynomials v(n,x): initially, u(1,x)= v(1,x)= 1; for n>1, u(n,x)= u(n-1,x) +x*(x+1)*v(n-1) and v(n,x)= u(n-1,x) +x*v(n-1,x) +1. See the Mathematica section. The columns of A111125 are identical to those of A208508. Here, however, the alternating row sums are periodic (with period 1,2,1,-1,-2,-1). - Clark Kimberling, Feb 28 2012
This triangle T(k,s) (with signs and columns scaled with powers of 5) appears in the expansion of Fibonacci numbers F=A000045 with multiples of odd numbers as indices in terms of odd powers of F-numbers. See the Jennings reference, p. 108, Theorem 1. Quoted as Lemma 3 in the Ozeki reference given in A111418. The formula is: F_{(2*k+1)*n} = Sum_{s=0..k} ( T(k,s)*(-1)^((k+s)*n)*5^s*F_{n}^(2*s+1) ), k >= 0, n >= 0. - Wolfdieter Lang, Aug 24 2012
From Wolfdieter Lang, Oct 18 2012: (Start)
This triangle T(k,s) appears in the formula x^(2*k+1) - x^(-(2*k+1)) = Sum_{s=0..k} ( T(k,s)*(x-x^(-1))^(2*s+1) ), k>=0. Prove the inverse formula (due to the Riordan property this will suffice) with the binomial theorem. Motivated to look into this by the quoted paper of Wang and Zhang, eq. (1.4).
Alternating row sums are A057079.
The Z-sequence of this Riordan array is A217477, and the A-sequence is (-1)^n*A115141(n). For the notion of A- and Z-sequences for Riordan triangles see a W. Lang link under A006232. (End)
The signed triangle ((-1)^(k-s))*T(k,s) gives the coefficients of (x^2)^s of the polynomials C(2*k+1,x)/x, with C the monic integer Chebyshev T-polynomials whose coefficients are given in A127672 (C is there called R). See the odd numbered rows there. This signed triangle is the Riordan array ((1-x)/(1+x)^2, x/(1+x)^2). Proof by comparing the o.g.f. of the row polynomials where x is replaced by x^2 with the odd part of the bisection of the o.g.f. for C(n,x)/x. - Wolfdieter Lang, Oct 23 2012
From Wolfdieter Lang, Oct 04 2013: (Start)
The signed triangle S(k,s) := ((-1)^(k-s))*T(k,s) (see the preceding comment) is used to express in a (4*(k+1))-gon the length ratio s(4*(k+1)) = 2*sin(Pi/4*(k+1)) = 2*cos((2*k+1)*Pi/(4*(k+1))) of a side/radius as a polynomial in rho(4*(k+1)) = 2*cos(Pi/4*(k+1)), the length ratio (smallest diagonal)/side:
s(4*(k+1)) = Sum_{s=0..k} ( S(k,s)*rho(4*(k+1))^(2*s+1) ).
This is to be computed modulo C(4*(k+1), rho(4*(k+1)) = 0, the minimal polynomial (see A187360) in order to obtain s(4*(k+1)) as an integer in the algebraic number field Q(rho(4*(k+1))) of degree delta(4*(k+1)) (see A055034). Thanks go to Seppo Mustonen for asking me to look into the problem of the square of the total length in a regular n-gon, where this formula is used in the even n case. See A127677 for the formula in the (4*k+2)-gon. (End)
From Wolfdieter Lang, Aug 14 2014: (Start)
The row polynomials for the signed triangle (see the Oct 23 2012 comment above), call them todd(k,x) = Sum_{s=0..k} ( (-1)^(k-s)*T(k,s)*x^s ) = S(k, x-2) - S(k-1, x-2), k >= 0, with the Chebyshev S-polynomials (see their coefficient triangle (A049310) and S(-1, x) = 0), satisfy the recurrence todd(k, x) = (-1)^(k-1)*((x-4)/2)*todd(k-1, 4-x) + ((x-2)/2)*todd(k-1, x), k >= 1, todd(0, x) = 1. From the Aug 03 2014 comment on A130777.
This leads to a recurrence for the signed triangle, call it S(k,s) as in the Oct 04 2013 comment: S(k,s) = (1/2)*(1 + (-1)^(k-s))*S(k-1,s-1) + (2*(s+1)*(-1)^(k-s) - 1)*S(k-1,s) + (1/2)*(-1)^(k-s)*Sum_{j=0..k-s-2} ( binomial(j+s+2,s)*4^(j+2)* S(k-1, s+1+j) ) for k >= s >= 1, and S(k,s) = 0 if k < s and S(k,0) = (-1)^k*(2*k+1). Note that the recurrence derived from the Riordan A-sequence A115141 is similar but has simpler coefficients: S(k,s) = sum(A115141(j)*S(k-1,s-1+j), j=0..k-s), k >= s >=1.
(End)
From Tom Copeland, Nov 07 2015: (Start)
Rephrasing notes here: Append an initial column of zeros, except for a 1 at the top, to A111125 here. Then the partial sums of the columns of this modified entry are contained in A208513. Append an initial row of zeros to A208513. Then the difference of consecutive pairs of rows of the modified A208513 generates the modified A111125. Cf. A034807 and A127677.
For relations among the characteristic polynomials of Cartan matrices of the Coxeter root groups, Chebyshev polynomials, cyclotomic polynomials, and the polynomials of this entry, see Damianou (p. 20 and 21) and Damianou and Evripidou (p. 7).
As suggested by the equations on p. 7 of Damianou and Evripidou, the signed row polynomials of this entry are given by (p(n,x))^2 = (A(2*n+1, x) + 2)/x = (F(2*n+1, (2-x), 1, 0, 0, ... ) + 2)/x = F(2*n+1, -x, 2*x, -3*x, ..., (-1)^n n*x)/x = -F(2*n+1, x, 2*x, 3*x, ..., n*x)/x, where A(n,x) are the polynomials of A127677 and F(n, ...) are the Faber polynomials of A263196. Cf. A127672 and A127677.
(End)
The row polynomials P(k, x) of the signed triangle S(k, s) = ((-1)^(k-s))*T(k, s) are given from the row polynomials R(2*k+1, x) of triangle A127672 by
P(k, x) = R(2*k+1, sqrt(x))/sqrt(x). - Wolfdieter Lang, May 02 2021

Examples

			Triangle T(k,s) begins:
k\s  0    1     2     3     4     5     6    7    8   9 10
0:   1
1:   3    1
2:   5    5     1
3:   7   14     7     1
4:   9   30    27     9     1
5:  11   55    77    44    11     1
6:  13   91   182   156    65    13     1
7:  15  140   378   450   275    90    15    1
8:  17  204   714  1122   935   442   119   17    1
9:  19  285  1254  2508  2717  1729   665  152   19   1
10: 21  385  2079  5148  7007  5733  2940  952  189  21  1
... Extended and reformatted by _Wolfdieter Lang_, Oct 18 2012
Application for Fibonacci numbers F_{(2*k+1)*n}, row k=3:
F_{7*n} = 7*(-1)^(3*n)*F_n + 14*(-1)^(4*n)*5*F_n^3 + 7*(-1)^(5*n)*5^2*F_n^5 + 1*(-1)^(6*n)*5^3*F_n^7, n>=0. - _Wolfdieter Lang_, Aug 24 2012
Example for the  Z- and A-sequence recurrences  of this Riordan triangle: Z = A217477 = [3,-4,12,-40,...]; T(4,0) = 3*7 -4*14 +12*7 -40*1 = 9. A =  [1, 2, -1, 2, -5, 14, ..]; T(5,2) = 1*30 + 2*27 - 1*9 + 2*1= 77. _Wolfdieter Lang_, Oct 18 2012
Example for the (4*(k+1))-gon length ratio s(4*(k+1))(side/radius) as polynomial in the ratio rho(4*(k+1)) ((smallest diagonal)/side): k=0, s(4) = 1*rho(4) = sqrt(2); k=1, s(8) = -3*rho(8) + rho(8)^3 = sqrt(2-sqrt(2)); k=2, s(12) = 5*rho(12) - 5*rho(12)^3 + rho(12)^5, and C(12,x) = x^4 - 4*x^2 + 1, hence rho(12)^5 = 4*rho(12)^3 - rho(12), and s(12) = 4*rho(12) - rho(12)^3 = sqrt(2 - sqrt(3)). - _Wolfdieter Lang_, Oct 04 2013
Example for the recurrence for the signed triangle S(k,s)= ((-1)^(k-s))*T(k,s) (see the Aug 14 2014 comment above):
S(4,1) = 0 + (-2*2 - 1)*S(3,1) - (1/2)*(3*4^2*S(3,2) + 4*4^3*S(3,3)) = - 5*14 - 3*8*(-7) - 128*1 = -30. The recurrence from the Riordan A-sequence A115141 is S(4,1) = -7 -2*14 -(-7) -2*1 = -30. - _Wolfdieter Lang_, Aug 14 2014
		

Crossrefs

Mirror image of A082985, which see for further references, etc.
Also closely related to triangles in A098599 and A100218.

Programs

  • Magma
    [((2*n+1)/(n+k+1))*Binomial(n+k+1, 2*k+1): k in [0..n], n in [0..12]];  // G. C. Greubel, Feb 01 2022
  • Mathematica
    (* First program *)
    u[1, x_]:=1; v[1, x_]:=1; z=16;
    u[n_, x_]:= u[n-1, x] + x*v[n-1, x];
    v[n_, x_]:= u[n-1, x] + (x+1)*v[n-1, x] + 1;
    Table[Expand[u[n, x]], {n, 1, z/2}]
    Table[Expand[v[n, x]], {n, 1, z/2}]
    cu = Table[CoefficientList[u[n, x], x], {n, 1, z}];
    TableForm[cu]
    Flatten[%]  (* A208513 *)
    Table[Expand[v[n, x]], {n, 1, z}]
    cv = Table[CoefficientList[v[n, x], x], {n, 1, z}];
    TableForm[cv]
    Flatten[%]  (* A111125 *) (* Clark Kimberling, Feb 28 2012 *)
    (* Second program *)
    T[n_, k_]:= ((2*n+1)/(2*k+1))*Binomial[n+k, 2*k];
    Table[T[n, k], {n,0,15}, {k,0,n}]//Flatten (* G. C. Greubel, Feb 01 2022 *)
  • Sage
    @CachedFunction
    def T(n,k):
        if n< 0: return 0
        if n==0: return 1 if k == 0 else 0
        h = 3*T(n-1,k) if n==1 else 2*T(n-1,k)
        return T(n-1,k-1) - T(n-2,k) - h
    A111125 = lambda n,k: (-1)^(n-k)*T(n,k)
    for n in (0..9): [A111125(n,k) for k in (0..n)] # Peter Luschny, Nov 20 2012
    

Formula

T(k,s) = ((2*k+1)/(2*s+1))*binomial(k+s,2*s), 0 <= s <= k.
From Peter Bala, Apr 30 2012: (Start)
T(n,k) = binomial(n+k,2*k) + 2*binomial(n+k,2*k+1).
The row generating polynomials P(n,x) are a generalization of the Morgan-Voyce polynomials b(n,x) and B(n,x). They satisfy the recurrence equation P(n,x) = (x+2)*P(n-1,x) - P(n-2,x) for n >= 2, with initial conditions P(0,x) = 1, P(1,x) = x+r+1 and with r = 2. The cases r = 0 and r = 1 give the Morgan-Voyce polynomials A085478 and A078812 respectively. Andre-Jeannin has considered the case of general r.
P(n,x) = U(n+1,1+x/2) + U(n,1+x/2), where U(n,x) denotes the Chebyshev polynomial of the second kind - see A053117. P(n,x) = (2/x)*(T(2*n+2,u)-T(2*n,u)), where u = sqrt((x+4)/4) and T(n,x) denotes the Chebyshev polynomial of the first kind - see A053120. P(n,x) = Product_{k = 1..n} ( x + 4*(sin(k*Pi/(2*n+1)))^2 ). P(n,x) = 1/x*(b(n+1,x) - b(n-1,x)) and P(n,x) = 1/x*{(b(2*n+2,x)+1)/b(n+1,x) - (b(2*n,x)+1)/b(n,x)}, where b(n,x) := Sum_{k = 0..n} binomial(n+k,2*k)*x^k are the Morgan-Voyce polynomials of A085478. Cf. A211957.
(End)
From Wolfdieter Lang, Oct 18 2012 (Start)
O.g.f. column No. s: ((1+x)/(1-x)^2)*(x/(1-x)^2)^s, s >= 0. (from the Riordan data given in a comment above).
O.g.f. of the row polynomials R(k,x):= Sum_{s=0..k} ( T(k,s)*x^s ), k>=0: (1+z)/(1-(2+x)*z+z^2) (from the Riordan property).
(End)
T(n,k) = 2*T(n-1,k) + T(n-1,k-1) - T(n-2,k), T(0,0) = 1, T(1,0) = 3, T(1,1) = 1, T(n,k) = 0 if k<0 or if k>n. - Philippe Deléham, Nov 12 2013

Extensions

More terms from Paul Barry, Oct 17 2005

A053122 Triangle of coefficients of Chebyshev's S(n,x-2) = U(n,x/2-1) polynomials (exponents of x in increasing order).

Original entry on oeis.org

1, -2, 1, 3, -4, 1, -4, 10, -6, 1, 5, -20, 21, -8, 1, -6, 35, -56, 36, -10, 1, 7, -56, 126, -120, 55, -12, 1, -8, 84, -252, 330, -220, 78, -14, 1, 9, -120, 462, -792, 715, -364, 105, -16, 1, -10, 165, -792, 1716, -2002, 1365, -560, 136, -18, 1, 11, -220, 1287, -3432, 5005, -4368, 2380, -816, 171, -20
Offset: 0

Keywords

Comments

Apart from signs, identical to A078812.
Another version with row-leading 0's and differing signs is given by A285072.
G.f. for row polynomials S(n,x-2) (signed triangle): 1/(1+(2-x)*z+z^2). Unsigned triangle |a(n,m)| has g.f. 1/(1-(2+x)*z+z^2) for row polynomials.
Row sums (signed triangle) A049347(n) (periodic(1,-1,0)). Row sums (unsigned triangle) A001906(n+1)=F(2*(n+1)) (even-indexed Fibonacci).
In the language of Shapiro et al. (see A053121 for the reference) such a lower triangular (ordinary) convolution array, considered as a matrix, belongs to the Bell-subgroup of the Riordan-group.
The (unsigned) column sequences are A000027, A000292, A000389, A000580, A000582, A001288 for m=0..5, resp. For m=6..23 they are A010966..(+2)..A011000 and for m=24..49 they are A017713..(+2)..A017763.
Riordan array (1/(1+x)^2,x/(1+x)^2). Inverse array is A039598. Diagonal sums have g.f. 1/(1+x^2). - Paul Barry, Mar 17 2005. Corrected by Wolfdieter Lang, Nov 13 2012.
Unsigned version is in A078812. - Philippe Deléham, Nov 05 2006
Also row n gives (except for an overall sign) coefficients of characteristic polynomial of the Cartan matrix for the root system A_n. - Roger L. Bagula, May 23 2007
From Wolfdieter Lang, Nov 13 2012: (Start)
The A-sequence for this Riordan triangle is A115141, and the Z-sequence is A115141(n+1), n>=0. For A- and Z-sequences for Riordan matrices see the W. Lang link under A006232 with details and references.
S(n,x^2-2) = sum(r(j,x^2),j=0..n) with Chebyshev's S-polynomials and r(j,x^2) := R(2*j+1,x)/x, where R(n,x) are the monic integer Chebyshv T-polynomials with coefficients given in A127672. Proof from comparing the o.g.f. of the partial sum of the r(j,x^2) polynomials (see a comment on the signed Riordan triangle A111125) with the present Riordan type o.g.f. for the row polynomials with x -> x^2. (End)
S(n,x^2-2) = S(2*n+1,x)/x, n >= 0, from the odd part of the bisection of the o.g.f. - Wolfdieter Lang, Dec 17 2012
For a relation to a generator for the Narayana numbers A001263, see A119900, whose columns are unsigned shifted rows (or antidiagonals) of this array, referring to the tables in the example sections. - Tom Copeland, Oct 29 2014
The unsigned rows of this array are alternating rows of a mirrored A011973 and alternating shifted rows of A030528 for the Fibonacci polynomials. - Tom Copeland, Nov 04 2014
Boas-Buck type recurrence for column k >= 0 (see Aug 10 2017 comment in A046521 with references): a(n, m) = (2*(m + 1)/(n - m))*Sum_{k = m..n-1} (-1)^(n-k)*a(k, m), with input a(n, n) = 1, and a(n,k) = 0 for n < k. - Wolfdieter Lang, Jun 03 2020
Row n gives the characteristic polynomial of the (n X n)-matrix M where M[i,j] = 2 if i = j, -1 if |i-j| = 1 and 0 otherwise. The matrix M is positive definite and has 2-condition number (cot(Pi/(2*n+2)))^2. - Jianing Song, Jun 21 2022
Also the convolution triangle of (-1)^(n+1)*n. - Peter Luschny, Oct 07 2022

Examples

			The triangle a(n,m) begins:
n\m   0    1    2     3     4     5     6    7    8  9
0:    1
1:   -2    1
2:    3   -4    1
3:   -4   10   -6     1
4:    5  -20   21    -8     1
5:   -6   35  -56    36   -10     1
6:    7  -56  126  -120    55   -12     1
7:   -8   84 -252   330  -220    78   -14    1
8:    9 -120  462  -792   715  -364   105  -16    1
9:  -10  165 -792  1716 -2002  1365  -560  136  -18  1
... Reformatted and extended by _Wolfdieter Lang_, Nov 13 2012
E.g., fourth row (n=3) {-4,10,-6,1} corresponds to the polynomial S(3,x-2) = -4+10*x-6*x^2+x^3.
From _Wolfdieter Lang_, Nov 13 2012: (Start)
Recurrence: a(5,1) = 35 = 1*5 + (-2)*(-20) -1*(10).
Recurrence from Z-sequence [-2,-1,-2,-5,...]: a(5,0) = -6 = (-2)*5 + (-1)*(-20) + (-2)*21 + (-5)*(-8) + (-14)*1.
Recurrence from A-sequence [1,-2,-1,-2,-5,...]: a(5,1) = 35 = 1*5  + (-2)*(-20) + (-1)*21 + (-2)*(-8) + (-5)*1.
(End)
E.g., the fourth row (n=3) {-4,10,-6,1} corresponds also to the polynomial S(7,x)/x = -4 + 10*x^2 - 6*x^4 + x^6. - _Wolfdieter Lang_, Dec 17 2012
Boas-Buck type recurrence: -56 = a(5, 2) = 2*(-1*1 + 1*(-6) - 1*21) = -2*28 = -56. - _Wolfdieter Lang_, Jun 03 2020
		

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 795.
  • Theodore J. Rivlin, Chebyshev polynomials: from approximation theory to algebra and number theory, 2. ed., Wiley, New York, 1990.
  • R. N. Cahn, Semi-Simple Lie Algebras and Their Representations, Dover, NY, 2006, ISBN 0-486-44999-8, p. 62.
  • Sigurdur Helgasson, Differential Geometry, Lie Groups and Symmetric Spaces, Graduate Studies in Mathematics, volume 34. A. M. S.: ISBN 0-8218-2848-7, 1978, p. 463.

Crossrefs

Cf. A285072 (version with row-leading 0's and differing signs). - Eric W. Weisstein, Apr 09 2017

Programs

  • Maple
    seq(seq((-1)^(n+m)*binomial(n+m+1,2*m+1),m=0..n),n=0..10); # Robert Israel, Oct 15 2014
    # Uses function PMatrix from A357368. Adds a row above and a column to the left.
    PMatrix(10, n -> -(-1)^n*n); # Peter Luschny, Oct 07 2022
  • Mathematica
    T[n_, m_, d_] := If[ n == m, 2, If[n == m - 1 || n == m + 1, -1, 0]]; M[d_] := Table[T[n, m, d], {n, 1, d}, {m, 1, d}]; a = Join[M[1], Table[CoefficientList[Det[M[d] - x*IdentityMatrix[d]], x], {d, 1, 10}]]; Flatten[a] (* Roger L. Bagula, May 23 2007 *)
    (* Alternative code for the matrices from MathWorld: *)
    sln[n_] := 2IdentityMatrix[n] - PadLeft[PadRight[IdentityMatrix[n - 1], {n, n - 1}], {n, n}] - PadLeft[PadRight[IdentityMatrix[n - 1], {n - 1, n}], {n, n}] (* Roger L. Bagula, May 23 2007 *)
  • Sage
    @CachedFunction
    def A053122(n,k):
        if n< 0: return 0
        if n==0: return 1 if k == 0 else 0
        return A053122(n-1,k-1)-A053122(n-2,k)-2*A053122(n-1,k)
    for n in (0..9): [A053122(n,k) for k in (0..n)] # Peter Luschny, Nov 20 2012

Formula

a(n, m) := 0 if n
a(n, m) = -2*a(n-1, m) + a(n-1, m-1) - a(n-2, m), a(n, -1) := 0 =: a(-1, m), a(0, 0)=1, a(n, m) := 0 if n
O.g.f. for m-th column (signed triangle): ((x/(1+x)^2)^m)/(1+x)^2.
From Jianing Song, Jun 21 2022: (Start)
T(n,k) = [x^k]f_n(x), where f_{-1}(x) = 0, f_0(x) = 1, f_n(x) = (x-2)*f_{n-1}(x) - f_{n-2}(x) for n >= 2.
f_n(x) = (((x-2+sqrt(x^2-4*x))/2)^(n+1) - ((x-2-sqrt(x^2-4*x))/2)^(n+1))/sqrt(x^2-4x).
The roots of f_n(x) are 2 + 2*cos(k*Pi/(n+1)) = 4*(cos(k*Pi/(2*n+2)))^2 for 1 <= k <= n. (End)

A045721 a(n) = binomial(3*n+1,n).

Original entry on oeis.org

1, 4, 21, 120, 715, 4368, 27132, 170544, 1081575, 6906900, 44352165, 286097760, 1852482996, 12033222880, 78378960360, 511738760544, 3348108992991, 21945588357420, 144079707346575, 947309492837400, 6236646703759395, 41107996877935680, 271250494550621040, 1791608261879217600
Offset: 0

Keywords

Comments

Number of leaves in all noncrossing rooted trees on n nodes on a circle.
Number of standard tableaux of shape (n-1,1^(2n-3)). - Emeric Deutsch, May 25 2004
a(n) = number of Dyck (2n-3)-paths with exactly one descent of odd length. For example, a(3) counts all 5 Dyck 3-paths except UDUDUD. - David Callan, Jul 25 2005
a(n+2) gives row sums of A119301. - Paul Barry, May 13 2006
a(n) is the number of paths avoiding UU from (0,0) to (3n,n) and taking steps from {U,H}. - Shanzhen Gao, Apr 15 2010
Central coefficients of triangle A078812. - Vladimir Kruchinin, May 10 2012
Row sums of A252501. - L. Edson Jeffery, Dec 18 2014

Crossrefs

Programs

Formula

a(n) is asymptotic to c/sqrt(n)*(27/4)^n with c=0.73... - Benoit Cloitre, Jan 27 2003
G.f.: gz^2/(1-3zg^2), where g=g(z) is given by g=1+zg^3, g(0)=1, i.e. (in Maple command) g := 2*sin(arcsin(3*sqrt(3*z)/2)/3)/sqrt(3*z). - Emeric Deutsch, May 22 2003
a(n+2) = C(3n+1,n) = Sum_{k=0..n} C(3n-k,n-k). - Paul Barry, May 13 2006
a(n+2) = C(3n+1,2n+1) = A078812(2n,n). - Paul Barry, Nov 09 2006
G.f.: A(x)=(2*cos(asin((3^(3/2)*sqrt(x))/2)/3)* sin(asin((3^(3/2)* sqrt(x))/2)/3))/(sqrt(3)*sqrt(1-(27*x)/4)*sqrt(x)). - Vladimir Kruchinin, Jun 10 2012
From Peter Luschny, Sep 04 2012: (Start)
O.g.f.: hypergeometric2F1([2/3, 4/3], [3/2], x*27/4).
a(n) = (n+1)*hypergeometric2F1([-2*n, -n], [2], 1). (End)
D-finite with recurrence 2*n*(2*n+1)*a(n) - 3*(3*n-1)*(3*n+1)*a(n-1) = 0. - R. J. Mathar, Feb 05 2013
a(n) = Sum_{r=0..n} C(n,r) * C(2*n+1,r). - J. M. Bergot, Mar 18 2014
From Peter Bala, Nov 04 2015: (Start)
a(n) = Sum_{k = 0..n} 1/(2*k + 1)*binomial(3*n - 3*k,n - k)*binomial(3*k, k).
O.g.f. equals f(x)*g(x), where f(x) is the o.g.f. for A005809 and g(x) is the o.g.f. for A001764. More generally, f(x)*g(x)^k is the o.g.f. for the sequence binomial(3*n + k,n). Cf. A025174 (k = 2), A004319 (k = 3), A236194 (k = 4), A013698 (k = 5), A165817 (k = -1), A117671 (k = -2). (End)
a(n) = [x^n] 1/(1 - x)^(2*(n+1)). - Ilya Gutkovskiy, Oct 10 2017
O.g.f.: (i/24)*((4*sqrt(4 - 27*z) + 12*i*sqrt(3)*sqrt(z))^(2/3) - (4*sqrt(4 - 27*z) - 12*i*sqrt(3)*sqrt(z))^(2/3))*sqrt(3)*8^(1/3)*sqrt(4 - 27*z)/(sqrt(z)*(-4 + 27*z)), where i = sqrt(-1). - Karol A. Penson, Dec 13 2023
a(n-1) = (1/(4*n))*binomial(2*n, n)^2 * (1 - 3*((n - 1)/(n + 1))^3 + 5*((n - 1)*(n - 2)/((n + 1)*(n + 2)))^3 - 7*((n - 1)*(n - 2)*(n - 3)/((n + 1)*(n + 2)*(n + 3)))^3 + - ...) for n >= 1. Cf. A112029. - Peter Bala, Aug 08 2024
a(n) = Sum_{k = 0..n} (-1)^(n+k)*binomial(4*n+2, k)*binomial(2*n-k, n-k). - Peter Bala, Sep 04 2025
a(n) ~ 3^(3*n+3/2) / (4^(n+1) * sqrt(Pi*n)). - Amiram Eldar, Sep 05 2025

Extensions

Simpler definition from Ira M. Gessel, May 26 2007. This change means that most of the offsets in the comments will now need to be changed too.

A168561 Riordan array (1/(1-x^2), x/(1-x^2)). Unsigned version of A049310.

Original entry on oeis.org

1, 0, 1, 1, 0, 1, 0, 2, 0, 1, 1, 0, 3, 0, 1, 0, 3, 0, 4, 0, 1, 1, 0, 6, 0, 5, 0, 1, 0, 4, 0, 10, 0, 6, 0, 1, 1, 0, 10, 0, 15, 0, 7, 0, 1, 0, 5, 0, 20, 0, 21, 0, 8, 0, 1, 1, 0, 15, 0, 35, 0, 28, 0, 9, 0, 1, 0, 6, 0, 35, 0, 56, 0, 36, 0, 10, 0, 1, 1, 0, 21, 0, 70, 0, 84, 0, 45, 0, 11, 0, 1
Offset: 0

Author

Philippe Deléham, Nov 29 2009

Keywords

Comments

Row sums: A000045(n+1), Fibonacci numbers.
A168561*A007318 = A037027, as lower triangular matrices. Diagonal sums : A077957. - Philippe Deléham, Dec 02 2009
T(n,k) is the number of compositions of n+1 into k+1 odd parts. Example: T(4,2)=3 because we have 5 = 1+1+3 = 1+3+1 = 3+1+1.
Coefficients of monic Fibonacci polynomials (rising powers of x). Ftilde(n, x) = x*Ftilde(n-1, x) + Ftilde(n-2, x), n >=0, Ftilde(-1,x) = 0, Ftilde(0, x) = 1. G.f.: 1/(1 - x*z - z^2). Compare with Chebyshev S-polynomials (A049310). - Wolfdieter Lang, Jul 29 2014

Examples

			The triangle T(n,k) begins:
n\k 0  1   2   3   4    5    6    7    8    9  10  11  12  13 14 15 ...
0:  1
1:  0  1
2:  1  0   1
3:  0  2   0   1
4:  1  0   3   0   1
5:  0  3   0   4   0    1
6:  1  0   6   0   5    0    1
7:  0  4   0  10   0    6    0    1
8:  1  0  10   0  15    0    7    0    1
9:  0  5   0  20   0   21    0    8    0    1
10: 1  0  15   0  35    0   28    0    9    0   1
11: 0  6   0  35   0   56    0   36    0   10   0   1
12: 1  0  21   0  70    0   84    0   45    0  11   0   1
13: 0  7   0  56   0  126    0  120    0   55   0  12   0   1
14: 1  0  28   0 126    0  210    0  165    0  66   0  13   0  1
15: 0  8   0  84   0  252    0  330    0  220   0  78   0  14  0  1
... reformatted by _Wolfdieter Lang_, Jul 29 2014.
------------------------------------------------------------------------
		

Crossrefs

Cf. A162515 (rows reversed), A112552, A102426 (deflated).

Programs

  • Maple
    A168561:=proc(n,k) if n-k mod 2 = 0 then binomial((n+k)/2,k) else 0 fi end proc:
    seq(seq(A168561(n,k),k=0..n),n=0..12) ; # yields sequence in triangular form
  • Mathematica
    Table[If[EvenQ[n + k], Binomial[(n + k)/2, k], 0], {n, 0, 10}, {k, 0, n}] // Flatten (* G. C. Greubel, Apr 16 2017 *)
  • PARI
    T(n,k) = if ((n+k) % 2, 0, binomial((n+k)/2,k));
    tabl(nn) = for (n=0, nn, for (k=0, n, print1(T(n,k), ", ")); print();); \\ Michel Marcus, Oct 09 2016

Formula

Sum_{k=0..n} T(n,k)*x^k = A059841(n), A000045(n+1), A000129(n+1), A006190(n+1), A001076(n+1), A052918(n), A005668(n+1), A054413(n), A041025(n), A099371(n+1), A041041(n), A049666(n+1), A041061(n), A140455(n+1), A041085(n), A154597(n+1), A041113(n) for x = 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16 respectively. - Philippe Deléham, Dec 02 2009
T(2n,2k) = A085478(n,k). T(2n+1,2k+1) = A078812(n,k). Sum_{k=0..n} T(n,k)*x^(n-k) = A000012(n), A000045(n+1), A006131(n), A015445(n), A168579(n), A122999(n) for x = 0,1,2,3,4,5 respectively. - Philippe Deléham, Dec 02 2009
T(n,k) = binomial((n+k)/2,k) if (n+k) is even; otherwise T(n,k)=0.
G.f.: (1-z^2)/(1-t*z-z^2) if offset is 1.
T(n,k) = T(n-1,k-1) + T(n-2,k), T(0,0) = 1, T(0,1) = 0. - Philippe Deléham, Feb 09 2012
Sum_{k=0..n} T(n,k)^2 = A051286(n). - Philippe Deléham, Feb 09 2012
From R. J. Mathar, Feb 04 2022: (Start)
Sum_{k=0..n} T(n,k)*k = A001629(n+1).
Sum_{k=0..n} T(n,k)*k^2 = 0,1,4,11,... = 2*A055243(n)-A099920(n+1).
Sum_{k=0..n} T(n,k)*k^3 = 0,1,8,29,88,236,... = 12*A055243(n) -6*A001629(n+2) +A001629(n+1)-6*(A001872(n)-2*A001872(n-1)). (End)

Extensions

Typo in name corrected (1(1-x^2) changed to 1/(1-x^2)) by Wolfdieter Lang, Nov 20 2010

A034867 Triangle of odd-numbered terms in rows of Pascal's triangle.

Original entry on oeis.org

1, 2, 3, 1, 4, 4, 5, 10, 1, 6, 20, 6, 7, 35, 21, 1, 8, 56, 56, 8, 9, 84, 126, 36, 1, 10, 120, 252, 120, 10, 11, 165, 462, 330, 55, 1, 12, 220, 792, 792, 220, 12, 13, 286, 1287, 1716, 715, 78, 1, 14, 364, 2002, 3432, 2002, 364, 14, 15, 455, 3003, 6435, 5005, 1365, 105, 1
Offset: 0

Keywords

Comments

Also triangle of numbers of n-sequences of 0,1 with k subsequences of consecutive 01 because this number is C(n+1,2*k+1). - Roger Cuculiere (cuculier(AT)imaginet.fr), Nov 16 2002
From Gary W. Adamson, Oct 17 2008: (Start)
Received from Herb Conn:
Let T = tan x, then
tan x = T
tan 2x = 2T / (1 - T^2)
tan 3x = (3T - T^3) / (1 - 3T^2)
tan 4x = (4T - 4T^3) / (1 - 6T^2 + T^4)
tan 5x = (5T - 10T^3 + T^5) / (1 - 10T^2 + 5T^4)
tan 6x = (6T - 20T^3 + 6T^5) / (1 - 15T^2 + 15T^4 - T^6)
tan 7x = (7T - 35T^3 + 21T^5 - T^7) / (1 - 21T^2 + 35T^4 - 7T^6)
tan 8x = (8T - 56T^3 + 56T^5 - 8T^7) / (1 - 28T^2 + 70T^4 - 28T^6 + T^8)
tan 9x = (9T - 84T^3 + 126T^5 - 36T^7 + T^9) / (1 - 36 T^2 + 126T^4 - 84T^6 + 9T^8)
... To get the next one in the series, (tan 10x), for the numerator add:
9....84....126....36....1 previous numerator +
1....36....126....84....9 previous denominator =
10..120....252...120...10 = new numerator
For the denominator add:
......9.....84...126...36...1 = previous numerator +
1....36....126....84....9.... = previous denominator =
1....45....210...210...45...1 = new denominator
...where numerators = A034867, denominators = A034839
(End)
Column k is the sum of columns 2k and 2k+1 of A007318. - Philippe Deléham, Nov 12 2008
Triangle, with zeros omitted, given by (2, -1/2, 1/2, 0, 0, 0, 0, 0, 0, 0, ...) DELTA (0, 1/2, -1/2, 0, 0, 0, 0, 0, 0, 0, ...) where DELTA is the operator defined in A084938. - Philippe Deléham, Dec 12 2011
The row polynomials N(n,x) = Sum_{k=0..floor((n-1)/2)} T(n-1,k)*x^k, and D(n,x) = Sum_{k=0..floor(n/2)} A034839(n,k)*x^k, n >= 1, satisfy the recurrences N(n,x) = D(n-1,x) + N(n-1,x), D(n,x) = D(n-1,x) + x*N(n-1,x), with inputs N(1,x) = 1 = D(1,x). This is due to the Pascal triangle A007318 recurrence. Q(n,x) := tan(n*x)/tan(x) satisfies the recurrence Q(n,x) = (1 + Q(n-1,x))/(1 - v(x)*Q(n-1,x)) with input Q(1,x) = 1 and v = v(x) := (tan(x))^2. This recurrence is obtained from the addition theorem for tan(n*x) using n = 1 + (n-1). Therefore Q(n,x) = N(n,-v(x))/D(n,-v(x)). This proves the Gary W. Adamson contribution from above. See also A220673. This calculation was motivated by an e-mail of Thomas Olsen. The Oliver/Prodinger and Ma references resort to HAKEM Al Memo 239, Item 16, for the tan(n*x) formula in terms of tan(x). - Wolfdieter Lang, Jan 17 2013
The infinitesimal generator (infinigen) for the Narayana polynomials A090181/A001263 can be formed from the row polynomials P(n,y) of this entry. The resulting matrix is an instance of a matrix representation of the analytic infinigens presented in A145271 for general sets of binomial Sheffer polynomials and in A001263 and A119900 specifically for the Narayana polynomials. Given the column vector of row polynomials V = (1, P(1,x) = 2x, P(2,y) = 3x + x^2, P(3,y) = 4x + 4x^2, ...), form the lower triangular matrix M(n,k) = V(n-k,n-k), i.e., diagonally multiply the matrix with all ones on the diagonal and below by the components of V. Form the matrix MD by multiplying A132440^Transpose = A218272 = D (representing derivation of o.g.f.s) by M, i.e., MD = M*D. The non-vanishing component of the first row of (MD)^n * V / (n+1)! is the n-th Narayana polynomial. - Tom Copeland, Dec 09 2015
The diagonals of this entry are A078812 (also shifted A128908 and unsigned A053122, which are embedded in A030528, A102426, A098925, A109466, A092865). Equivalently, the antidiagonals of A078812 are the rows of A034867. - Tom Copeland, Dec 12 2015
Binomial(n,2k+1) is also the number of permutations avoiding both 132 and 213 with k peaks, i.e., positions with w[i]w[i+2]. - Lara Pudwell, Dec 19 2018
Binomial(n,2k+1) is also the number of permutations avoiding both 123 and 132 with k peaks, i.e., positions with w[i]w[i+2]. - Lara Pudwell, Dec 19 2018
The row polynomial P(n, x) = Sum_{0..floor(n/2)} T(n, k)*x^k appears as numerator polynomial of the diagonal sequence m of triangle A104698 as follows. G(m, x) = P(m, x^2)/(1 - x)^(m+1), for m >= 0. - Wolfdieter Lang, May 14 2025
Number of acyclic orientations of the path graph on n+1 vertices, with k-1 sinks. - Per W. Alexandersson, Aug 15 2025

Examples

			Triangle T starts:
  n\k   0   1   2   3   4  5 ...   ----------------------------------------
0:    1
1:    2
2:    3   1
3:    4   4
4:    5  10   1
5:    6  20   6
6:    7  35  21   1
7:    8  56  56   8
8:    9  84 126  36   1
9:   10 120 252 120  10
 10:   11 165 462 330  55  1
 11:   12 220 792 792 220 12
... ... reformatted and extended by - _Wolfdieter Lang_, May 14 2025
		

References

  • A. T. Benjamin and J. J. Quinn, Proofs that really count: the art of combinatorial proof, M.A.A. 2003, id. 136.

Crossrefs

From Wolfdieter Lang, May 14 2025:(Start)
Row length A008619. Row sums A000079. Alternating row sums A009545(n+1).
Column sequences (with certain offsets): A000027, A000292, A000389, A000580, A000582, A001288, ... (End)

Programs

  • Magma
    /* as a triangle */ [[Binomial(n+1,2*k+1): k in [0..Floor(n/2)]]: n in [0..20]]; // G. C. Greubel, Mar 06 2018
  • Maple
    seq(seq(binomial(n+1,2*k+1), k=0..floor(n/2)), n=0..14); # Emeric Deutsch, Apr 01 2005
  • Mathematica
    u[1, x_] := 1; v[1, x_] := 1; z = 12;
    u[n_, x_] := u[n - 1, x] + x*v[n - 1, x]
    v[n_, x_] := u[n - 1, x] + v[n - 1, x]
    cu = Table[CoefficientList[u[n, x], x], {n, 1, z}];
    TableForm[cu]  (* A034839 as a triangle *)
    cv = Table[CoefficientList[v[n, x], x], {n, 1, z}];
    TableForm[cv]  (* A034867 as a triangle *)
    (* Clark Kimberling, Feb 18 2012 *)
    Table[Binomial[n+1, 2*k+1], {n,0,20}, {k,0,Floor[n/2]}]//Flatten (* G. C. Greubel, Mar 06 2018 *)
  • PARI
    for(n=0,20, for(k=0,floor(n/2), print1(binomial(n+1,2*k+1), ", "))) \\ G. C. Greubel, Mar 06 2018
    

Formula

T(n,k) = C(n+1,2k+1) = Sum_{i=k..n-k} C(i,k) * C(n-i,k).
E.g.f.: 1+(exp(x)*sinh(x*sqrt(y)))/sqrt(y). - Vladeta Jovovic, Mar 20 2005
G.f.: 1/((1-z)^2-t*z^2). - Emeric Deutsch, Apr 01 2005
T(n,k) = Sum_{j = 0..n} A034839(j,k). - Philippe Deléham, May 18 2005
Pell(n+1) = A000129(n+1) = Sum_{k=0..n} T(n,k) * 2^k = (1/n!) Sum_{k=0..n} A131980(n,k) * 2^k. - Tom Copeland, Nov 30 2007
T(n,k) = A007318(n,2k) + A007318(n,2k+1). - Philippe Deléham, Nov 12 2008
O.g.f for column k, k>=0: (1/(1-x)^2)*(x/(1-x))^(2*k). See the G.f. of this array given above by Emeric Deutsch. - Wolfdieter Lang, Jan 18 2013
T(n,k) = (x^(2*k+1))*((1+x)^n-(1-x)^n)/2. - L. Edson Jeffery, Jan 15 2014

Extensions

More terms from Emeric Deutsch, Apr 01 2005

A102426 Triangle read by rows giving coefficients of polynomials defined by F(0,x)=0, F(1,x)=1, F(n,x) = F(n-1,x) + x*F(n-2,x).

Original entry on oeis.org

0, 1, 1, 1, 1, 2, 1, 1, 3, 1, 3, 4, 1, 1, 6, 5, 1, 4, 10, 6, 1, 1, 10, 15, 7, 1, 5, 20, 21, 8, 1, 1, 15, 35, 28, 9, 1, 6, 35, 56, 36, 10, 1, 1, 21, 70, 84, 45, 11, 1, 7, 56, 126, 120, 55, 12, 1, 1, 28, 126, 210, 165, 66, 13, 1, 8, 84, 252, 330, 220, 78, 14, 1, 1, 36, 210, 462, 495, 286, 91, 15, 1
Offset: 0

Author

Russell Walsmith, Jan 08 2005

Keywords

Comments

Essentially the same as A098925: a(0)=0 followed by A098925. - R. J. Mathar, Aug 30 2008
F(n) + 2x * F(n-1) gives Lucas polynomials (cf. A034807). - Maxim Krikun (krikun(AT)iecn.u-nancy.fr), Jun 24 2007
After the initial 0, these are the nonzero coefficients of the Fibonacci polynomials; see the Mathematica section. - Clark Kimberling, Oct 10 2013
Aside from signs and index shift, the coefficients of the characteristic polynomial of the Coxeter adjacency matrix for the Coxeter group A_n related to the Chebyshev polynomial of the second kind (cf. Damianou link p. 19). - Tom Copeland, Oct 11 2014
Aside from the initial zeros, these are the antidiagonals read from bottom to top of the numerical coefficients of the Maurer-Cartan form matrix of the Leibniz group L^(n)(1,1) presented on p. 9 of the Olver paper, which is generated as exp[c. * M] with (c.)^n = c_n and M the Lie infinitesimal generator A218272. Reverse of A011973. - Tom Copeland, Jul 02 2018

Examples

			The first few polynomials are:
  0
  1
  1
  x + 1
  2*x + 1
  x^2 + 3*x + 1
  3*x^2 + 4*x + 1
------------------
From _Tom Copeland_, Jan 19 2016: (Start)
[n]:
0:  0
1:  1
2:  1
3:  1  1
4:  2  1
5:  1  3  1
6:  3  4  1
7:  1  6  5   1
8:  4 10  6   1
9:  1 10 15   7   1
10: 5 20 21   8   1
11: 1 15 35  28   9  1
12: 6 35 56  36  10  1
13: 1 21 70  84  45 11 1
(End)
		

References

  • Dominique Foata and Guo-Niu Han, Multivariable tangent and secant q-derivative polynomials, Manuscript, Mar 21 2012.

Crossrefs

Upward diagonals sums are A062200. Downward rows are A102427. Row sums are A000045. Row terms reversed = A011973. Also A102428, A102429.
All of A011973, A092865, A098925, A102426, A169803 describe essentially the same triangle in different ways.

Programs

  • Magma
    [0] cat [Binomial(Floor(n/2)+k, Floor((n-1)/2-k) ): k in [0..Floor((n-1)/2)], n in [0..17]]; // G. C. Greubel, Oct 13 2019
    
  • Mathematica
    Join[{0}, Table[ Select[ CoefficientList[ Fibonacci[n, x], x], 0 < # &], {n, 0, 17}]//Flatten] (* Clark Kimberling, Oct 10 2013 and slightly modified by Robert G. Wilson v, May 03 2017 *)
  • PARI
    F(n) = if (n==0, 0, if (n==1, 1, F(n-1) + x*F(n-2)));
    tabf(nn) = for (n=0, nn, print(Vec(F(n)))); \\ Michel Marcus, Feb 10 2020

Formula

Alternatively, as n is even or odd: T(n-2, k) + T(n-1, k-1) = T(n, k), T(n-2, k) + T(n-1, k) = T(n, k)
T(n, k) = binomial(floor(n/2)+k, floor((n-1)/2-k) ). - Paul Barry, Jun 22 2005
Beginning with the second polynomial in the example and offset=0, P(n,t)= Sum_{j=0..n}, binomial(n-j,j)*x^j with the convention that 1/k! is zero for k=-1,-2,..., i.e., 1/k! = lim_{c->0} 1/(k+c)!. - Tom Copeland, Oct 11 2014
From Tom Copeland, Jan 19 2016: (Start)
O.g.f.: (x + x^2 - x^3) / (1 - (2+t)*x^2 + x^4) = (x^2 (even part) + x*(1-x^2) (odd)) / (1 - (2+t)*x^2 + x^4).
Recursion relations:
A) p(n,t) = p(n-1,t) + p(n-2,t) for n=2,4,6,8,...
B) p(n,t) = t*p(n-1,t) + p(n-2,t) for n=3,5,7,...
C) a(n,k) = a(n-2,k) + a(n-1,k) for n=4,6,8,...
D) a(n,k) = a(n-2,k) + a(n-1,k-1) for n=3,5,7,...
Relation A generalized to MV(n,t;r) = P(2n+1,t) + r R(2n,t) for n=1,2,3,... (cf. A078812 and A085478) is the generating relation on p. 229 of Andre-Jeannine for the generalized Morgan-Voyce polynomials, e.g., MV(2,t;r) = p(5,t) + r*p(4,t) = (1 + 3t + t^2) + r*(2 + t) = (1 + 2r) + (3 + r)*t + t^2, so P(n,t) = MV(n-4,t;1) for n=4,6,8,... .
The even and odd polynomials are also presented in Trzaska and Ferri.
Dropping the initial 0 and re-indexing with initial m=0 gives the row polynomials Fb(m,t) = p(n+1,t) below with o.g.f. G(t,x)/x, starting with Fb(0,t) = 1, Fb(1,t) = 1, Fb(2,t) = 1 + t, and Fb(3,t) = 2 + t.
The o.g.f. x/G(x,t) = (1 - (2+t)*x^2 + x^4) / (1 + x - x^2) then generates a sequence of polynomials IFb(t) such that the convolution Sum_{k=0..n} IFb(n-k,t) Fb(k,t) vanishes for n>1 and is one for n=0. These linear polynomials have the basic Fibonacci numbers A000045 as an overall factor:
IFb(0,t) = 1
IFb(1,t) = -1
IFb(2,t) = -t
IFb(3,t) = -1 (1-t)
IFb(4,t) = 2 (1-t)
IFb(5,t) = -3 (1-t)
IFb(6,t) = 5 (1-t)
IFb(7,t) = -8 (1-t)
IFb(8,t) = 13 (1-t)
... .
(End)

Extensions

Name corrected by John K. Sikora, Feb 10 2020

A053123 Triangle of coefficients of shifted Chebyshev's S(n,x-2) = U(n,x/2-1) polynomials (exponents of x in decreasing order).

Original entry on oeis.org

1, 1, -2, 1, -4, 3, 1, -6, 10, -4, 1, -8, 21, -20, 5, 1, -10, 36, -56, 35, -6, 1, -12, 55, -120, 126, -56, 7, 1, -14, 78, -220, 330, -252, 84, -8, 1, -16, 105, -364, 715, -792, 462, -120, 9, 1, -18, 136, -560, 1365, -2002, 1716, -792, 165, -10, 1, -20, 171, -816, 2380, -4368, 5005, -3432, 1287, -220, 11, 1
Offset: 0

Keywords

Comments

T(n,m) = A053122(n,n-m).
G.f. for row polynomials and row sums same as in A053122.
Unsigned column sequences are A000012, A005843, A014105, A002492 for m=0..3, resp. and A053126-A053131 for m=4..9.
This is also the coefficient triangle for Chebyshev's U(2*n+1,x) polynomials expanded in decreasing odd powers of (2*x): U(2*n+1,x) = Sum_{m=0..n} T(n,m)*(2*x)^(2*(n-m)+1). See the W. Lang link given in A053125.
Unsigned version is mirror image of A078812. - Philippe Deléham, Dec 02 2008

Examples

			Triangle begins:
  1;
  1,  -2;
  1,  -4,  3;
  1,  -6, 10,   -4;
  1,  -8, 21,  -20,   5;
  1, -10, 36,  -56,  35,  -6;
  1, -12, 55, -120, 126, -56, 7; ...
E.g. fourth row (n=3) {1,-6,10,-4} corresponds to polynomial S(3,x-2) = x^3-6*x^2+10*x-4.
		

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 795
  • Theodore J. Rivlin, Chebyshev polynomials: from approximation theory to algebra and number theory, 2. ed., Wiley, New York, 1990.
  • Stephen Barnett, "Matrices: Methods and Applications", Oxford University Press, 1990, p. 132, 343.

Crossrefs

Programs

  • GAP
    Flat(List([0..10], n-> List([0..n], k-> (-1)^k*Binomial(2*n-k+1,k) ))); # G. C. Greubel, Jul 23 2019
  • Magma
    [(-1)^k*Binomial(2*n-k+1,k): k in [0..n], n in [0..10]]; // G. C. Greubel, Jul 23 2019
    
  • Maple
    A053123 := proc(n,m)
        (-1)^m*binomial(2*n+1-m,m) ;
    end proc: # R. J. Mathar, Sep 08 2013
  • Mathematica
    T[n_, m_]:= (-1)^m*Binomial[2*n+1-m, m]; Table[T[n, m], {n, 0, 11}, {m, 0, n}]//Flatten (* Jean-François Alcover, Mar 05 2014, after R. J. Mathar *)
  • PARI
    for(n=0,10, for(k=0,n, print1((-1)^k*binomial(2*n-k+1,k), ", "))) \\ G. C. Greubel, Jul 23 2019
    
  • Sage
    [[(-1)^k*binomial(2*n-k+1,k) for k in (0..n)] for n in (0..10)] # G. C. Greubel, Jul 23 2019
    

Formula

T(n, m) = 0 if n
T(n, m) = -2*T(n-1, m-1) + T(n-1, m) - T(n-2, m-2), T(n, -2) = 0, T(-2, m) = 0, T(n, -1) = 0 = T(-1, m), T(0, 0) = 1, T(n, m) = 0 if n
G.f. for m-th column (signed triangle): ((-1)^m)*x^m*Po(m+1, x)/(1-x)^(m+1), with Po(k, x) := Sum_{j=0..floor(k/2)} binomial(k, 2*j+1)*x^j.
The n-th degree polynomial is the characteristic equation for an n X n tridiagonal matrix with (diagonal = all 2's, sub and superdiagonals all -1's and the rest 0's), exemplified by the 4X4 matrix M = [2 -1 0 0 / -1 2 -1 0 / 0 -1 2 -1 / 0 0 -1 2]. - Gary W. Adamson, Jan 05 2005
Sum_{m=0..n} T(n,m)*(c(n))^(2*n-2*m) = 1/c(n), where c(n) = 2*cos(Pi/(2*n+3)). - L. Edson Jeffery, Sep 13 2013

A123019 Triangle of coefficients of (1 - x)^n*b(x/(1 - x),n), where b(x,n) is the Morgan-Voyce polynomial related to A085478.

Original entry on oeis.org

1, 1, 1, 1, -1, 1, 3, -4, 1, 1, 6, -9, 3, 1, 10, -15, 3, 3, -1, 1, 15, -20, -6, 18, -8, 1, 1, 21, -21, -35, 60, -30, 5, 1, 28, -14, -98, 145, -70, 5, 5, -1, 1, 36, 6, -210, 279, -100, -45, 45, -12, 1, 1, 45, 45, -384, 441, -21, -280, 210, -63, 7, 1, 55, 110
Offset: 0

Author

Roger L. Bagula and Gary W. Adamson, Sep 24 2006

Keywords

Comments

The n-th row consists of the coefficients in the expansion of Sum_{j=0..n} A085478(n,j)*x^j*(1 - x)^(n - j).

Examples

			Triangle begins:
    1;
    1;
    1,  1,  -1;
    1,  3,  -4,    1;
    1,  6,  -9,    3;
    1, 10, -15,    3,   3,   -1;
    1, 15, -20,   -6,  18,   -8,    1;
    1, 21, -21,  -35,  60,  -30,    5;
    1, 28, -14,  -98, 145,  -70,    5,   5,   -1;
    1, 36,   6, -210, 279, -100,  -45,  45,  -12, 1;
    1, 45,  45, -384, 441,  -21, -280, 210,  -63, 7;
    1, 55, 110, -627, 561,  385, -973, 665, -189, 7, 7, -1;
    ... reformatted and extended. - _Franck Maminirina Ramaharo_, Oct 09 2018
		

Programs

  • Mathematica
    Table[CoefficientList[Sum[Binomial[n+k, n-k]*x^k*(1-x)^(n-k), {k, 0, n}], x], {n, 0, 10}]//Flatten
  • Maxima
    A085478(n, k) := binomial(n + k, 2*k)$
    P(x, n) := expand(sum(A085478(n, j)*x^j*(1 - x)^(n - j),j,0,n))$
    T(n, k) := ratcoef(P(x, n), x, k)$
    tabf(nn) := for n:0 thru nn do print(makelist(T(n, k), k, 0, hipow(P(x, n), x))); /* Franck Maminirina Ramaharo, Oct 09 2018 */
    
  • Sage
    def p(n,x): return sum( binomial(n+j, 2*j)*x^j*(1-x)^(n-j) for j in (0..n) )
    def T(n): return ( p(n,x) ).full_simplify().coefficients(sparse=False)
    flatten([T(n) for n in (0..12)]) # G. C. Greubel, Jul 15 2021

Formula

G.f.: (1 - (1 - x)*y)/(1 + (x - 2)*y + (x - 1)^2*y^2). - Vladeta Jovovic, Dec 14 2009
From Franck Maminirina Ramaharo, Oct 10 2018: (Start)
Row n = coefficients in the expansion of (1/(2*sqrt((4 - 3*x)*x)))*((sqrt((4 - 3*x)*x) + x)*((2 - x + sqrt((4 - 3*x)*x))/2)^n + (sqrt((4 - 3*x)*x) - x)*((2 - x - sqrt((4 - 3*x)*x))/2)^n).
E.g.f.: (1/(2*sqrt((4 - 3*x)*x)))*((sqrt((4 - 3*x)*x) + x)*exp(y*(2 - x + sqrt((4 - 3*x)*x))/2) + (sqrt((4 - 3*x)*x) - x)*exp(y*(2 - x - sqrt((4 - 3*x)*x))/2)).
T(n,1) = A000217(n-1). (End)

Extensions

Edited, new name, and offset corrected by Franck Maminirina Ramaharo, Oct 09 2018

A159764 Riordan array (1/(1+4x+x^2), x/(1+4x+x^2)).

Original entry on oeis.org

1, -4, 1, 15, -8, 1, -56, 46, -12, 1, 209, -232, 93, -16, 1, -780, 1091, -592, 156, -20, 1, 2911, -4912, 3366, -1200, 235, -24, 1, -10864, 21468, -17784, 8010, -2120, 330, -28, 1, 40545, -91824, 89238, -48624, 16255, -3416, 441, -32, 1, -151316, 386373
Offset: 0

Author

Paul Barry, Apr 21 2009

Keywords

Comments

Row sums are (-1)^n*F(2n+2). Diagonal sums are (-1)^n*4^n. Inverse is A052179.
The positive matrix is (1/(1-4x+x^2), x/(1-4x+x^2)) with general term T(n,k) = if(k<=n, Gegenbauer_C(n-k,k+1,2),0).
For another version, see A124029.
Triangle of coefficients of Chebyshev's S(n,x-4) polynomials (exponents of x in increasing order). - Philippe Deléham, Feb 22 2012
Subtriangle of triangle given by (0, -4, 1/4, -1/4, 0, 0, 0, 0, 0, 0, 0, ...) DELTA (1, 0, 0, 0, 0, 0, 0, 0, ...) where DELTA is the operator defined in A084938. - Philippe Deléham, Feb 22 2012

Examples

			Triangle begins
     1;
    -4,     1;
    15,    -8,     1;
   -56,    46,   -12,     1;
   209,  -232,    93,   -16,     1;
  -780,  1091,  -592,   156,   -20,     1;
  2911, -4912,  3366, -1200,   235,   -24,     1;
Triangle (0, -4, 1/4, -1/4, 0, 0, 0, ...) DELTA (1, 0, 0, 0, ...) begins:
  1;
  0,    1;
  0,   -4,    1;
  0,   15,   -8,    1;
  0,  -56,   46,  -12,    1;
  0,  209, -232,   93,  -16,    1;
		

Crossrefs

Cf. Triangle of coefficients of Chebyshev's S(n,x+k) polynomials : A207824, A207823, A125662, A078812, A101950, A049310, A104562, A053122, A207815, A159764, A123967 for k = 5, 4, 3, 2, 1, 0, -1, -2, -3, -4, -5 respectively.

Programs

  • Mathematica
    CoefficientList[CoefficientList[Series[1/(1 + 4*x + x^2 - y*x), {x, 0, 10}, {y, 0, 10}], x], y]//Flatten (* G. C. Greubel, May 21 2018 *)
  • Sage
    @CachedFunction
    def A159764(n,k):
        if n< 0: return 0
        if n==0: return 1 if k == 0 else 0
        return A159764(n-1,k-1)-A159764(n-2,k)-4*A159764(n-1,k)
    for n in (0..9): [A159764(n,k) for k in (0..n)] # Peter Luschny, Nov 20 2012

Formula

Number triangle T(n,k) = if(k<=n, Gegenbauer_C(n-k,k+1,-2),0).
G.f.: 1/(1+4*x+x^2-y*x). - Philippe Deléham, Feb 22 2012
T(n,k) = (-4)*T(n-1,k) + T(n-1,k-1) - T(n-2,k). - Philippe Deléham, Feb 22 2012
Previous Showing 11-20 of 43 results. Next