cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 53 results. Next

A139250 Toothpick sequence (see Comments lines for definition).

Original entry on oeis.org

0, 1, 3, 7, 11, 15, 23, 35, 43, 47, 55, 67, 79, 95, 123, 155, 171, 175, 183, 195, 207, 223, 251, 283, 303, 319, 347, 383, 423, 483, 571, 651, 683, 687, 695, 707, 719, 735, 763, 795, 815, 831, 859, 895, 935, 995, 1083, 1163, 1199, 1215, 1243, 1279, 1319, 1379
Offset: 0

Views

Author

Omar E. Pol, Apr 24 2008

Keywords

Comments

A toothpick is a copy of the closed interval [-1,1]. (In the paper, we take it to be a copy of the unit interval [-1/2, 1/2].)
We start at stage 0 with no toothpicks.
At stage 1 we place a toothpick in the vertical direction, anywhere in the plane.
In general, given a configuration of toothpicks in the plane, at the next stage we add as many toothpicks as possible, subject to certain conditions:
- Each new toothpick must lie in the horizontal or vertical directions.
- Two toothpicks may never cross.
- Each new toothpick must have its midpoint touching the endpoint of exactly one existing toothpick.
The sequence gives the number of toothpicks after n stages. A139251 (the first differences) gives the number added at the n-th stage.
Call the endpoint of a toothpick "exposed" if it does not touch any other toothpick. The growth rule may be expressed as follows: at each stage, new toothpicks are placed so their midpoints touch every exposed endpoint.
This is equivalent to a two-dimensional cellular automaton. The animations show the fractal-like behavior.
After 2^k - 1 steps, there are 2^k exposed endpoints, all located on two lines perpendicular to the initial toothpick. At the next step, 2^k toothpicks are placed on these lines, leaving only 4 exposed endpoints, located at the corners of a square with side length 2^(k-1) times the length of a toothpick. - M. F. Hasler, Apr 14 2009 and others. For proof, see the Applegate-Pol-Sloane paper.
If the third condition in the definition is changed to "- Each new toothpick must have at exactly one of its endpoints touching the midpoint of an existing toothpick" then the same sequence is obtained. The configurations of toothpicks are of course different from those in the present sequence. But if we start with the configurations of the present sequence, rotate each toothpick a quarter-turn, and then rotate the whole configuration a quarter-turn, we obtain the other configuration.
If the third condition in the definition is changed to "- Each new toothpick must have at least one of its endpoints touching the midpoint of an existing toothpick" then the sequence n^2 - n + 1 is obtained, because there are no holes left in the grid.
A "toothpick" of length 2 can be regarded as a polyedge with 2 components, both on the same line. At stage n, the toothpick structure is a polyedge with 2*a(n) components.
Conjecture: Consider the rectangles in the sieve (including the squares). The area of each rectangle (A = b*c) and the edges (b and c) are powers of 2, but at least one of the edges (b or c) is <= 2.
In the toothpick structure, if n >> 1, we can see some patterns that look like "canals" and "diffraction patterns". For example, see the Applegate link "A139250: the movie version", then enter n=1008 and click "Update". See also "T-square (fractal)" in the Links section. - Omar E. Pol, May 19 2009, Oct 01 2011
From Benoit Jubin, May 20 2009: The web page "Gallery" of Chris Moore (see link) has some nice pictures that are somewhat similar to the pictures of the present sequence. What sequences do they correspond to?
For a connection to Sierpiński triangle and Gould's sequence A001316, see the leftist toothpick triangle A151566.
Eric Rowland comments on Mar 15 2010 that this toothpick structure can be represented as a 5-state CA on the square grid. On Mar 18 2010, David Applegate showed that three states are enough. See links.
Equals row sums of triangle A160570 starting with offset 1; equivalent to convolving A160552: (1, 1, 3, 1, 3, 5, 7, ...) with (1, 2, 2, 2, ...). Equals A160762: (1, 0, 2, -2, 2, 2, 2, -6, ...) convolved with 2*n - 1: (1, 3, 5, 7, ...). Starting with offset 1 equals A151548: [1, 3, 5, 7, 5, 11, 17, 15, ...] convolved with A078008 signed (A151575): [1, 0, 2, -2, 6, -10, 22, -42, 86, -170, 342, ...]. - Gary W. Adamson, May 19 2009, May 25 2009
For a three-dimensional version of the toothpick structure, see A160160. - Omar E. Pol, Dec 06 2009
From Omar E. Pol, May 20 2010: (Start)
Observation about the arrangement of rectangles:
It appears there is a nice pattern formed by distinct modular substructures: a central cross surrounded by asymmetrical crosses (or "hidden crosses") of distinct sizes and also by "nuclei" of crosses.
Conjectures: after 2^k stages, for k >= 2, and for m = 1 to k - 1, there are 4^(m-1) substructures of size s = k - m, where every substructure has 4*s rectangles. The total number of substructures is equal to (4^(k-1)-1)/3 = A002450(k-1). For example: If k = 5 (after 32 stages) we can see that:
a) There is a central cross, of size 4, with 16 rectangles.
b) There are four hidden crosses, of size 3, where every cross has 12 rectangles.
c) There are 16 hidden crosses, of size 2, where every cross has 8 rectangles.
d) There are 64 nuclei of crosses, of size 1, where every nucleus has 4 rectangles.
Hence the total number of substructures after 32 stages is equal to 85. Note that in every arm of every substructure, in the potential growth direction, the length of the rectangles are the powers of 2. (See illustrations in the links. See also A160124.) (End)
It appears that the number of grid points that are covered after n-th stage of the toothpick structure, assuming the toothpicks have length 2*k, is equal to (2*k-2)*a(n) + A147614(n), k > 0. See the formulas of A160420 and A160422. - Omar E. Pol, Nov 13 2010
Version "Gullwing": on the semi-infinite square grid, at stage 1, we place a horizontal "gull" with its vertices at [(-1, 2), (0, 1), (1, 2)]. At stage 2, we place two vertical gulls. At stage 3, we place four horizontal gulls. a(n) is also the number of gulls after n-th stage. For more information about the growth of gulls see A187220. - Omar E. Pol, Mar 10 2011
From Omar E. Pol, Mar 12 2011: (Start)
Version "I-toothpick": we define an "I-toothpick" to consist of two connected toothpicks, as a bar of length 2. An I-toothpick with length 2 is formed by two toothpicks with length 1. The midpoint of an I-toothpick is touched by its two toothpicks. a(n) is also the number of I-toothpicks after n-th stage in the I-toothpick structure. The I-toothpick structure is essentially the original toothpick structure in which every toothpick is replaced by an I-toothpick. Note that in the physical model of the original toothpick structure the midpoint of a wooden toothpick of the new generation is superimposed on the endpoint of a wooden toothpick of the old generation. However, in the physical model of the I-toothpick structure the wooden toothpicks are not overlapping because all wooden toothpicks are connected by their endpoints. For the number of toothpicks in the I-toothpick structure see A160164 which also gives the number of gullwing in a gullwing structure because the gullwing structure of A160164 is equivalent to the I-toothpick structure. It also appears that the gullwing sequence A187220 is a supersequence of the original toothpick sequence A139250 (this sequence).
For the connection with the Ulam-Warburton cellular automaton see the Applegate-Pol-Sloane paper and see also A160164 and A187220.
(End)
A version in which the toothpicks are connected by their endpoints: on the semi-infinite square grid, at stage 1, we place a vertical toothpick of length 1 from (0, 0). At stage 2, we place two horizontal toothpicks from (0,1), and so on. The arrangement looks like half of the I-toothpick structure. a(n) is also the number of toothpicks after the n-th. - Omar E. Pol, Mar 13 2011
Version "Quarter-circle" (or Q-toothpick): a(n) is also the number of Q-toothpicks after the n-th stage in a Q-toothpick structure in the first quadrant. We start from (0,1) with the first Q-toothpick centered at (1, 1). The structure is asymmetric. For a similar structure but starting from (0, 0) see A187212. See A187210 and A187220 for more information. - Omar E. Pol, Mar 22 2011
Version "Tree": It appears that a(n) is also the number of toothpicks after the n-th stage in a toothpick structure constructed following a special rule: the toothpicks of the new generation have length 4 when they are placed on the infinite square grid (note that every toothpick has four components of length 1), but after every stage, one (or two) of the four components of every toothpick of the new generation is removed, if such component contains an endpoint of the toothpick and if such endpoint is touching the midpoint or the endpoint of another toothpick. The truncated endpoints of the toothpicks remain exposed forever. Note that there are three sizes of toothpicks in the structure: toothpicks of lengths 4, 3 and 2. A159795 gives the total number of components in the structure after the n-th stage. A153006 (the corner sequence of the original version) gives 1/4 of the total of components in the structure after the n-th stage. - Omar E. Pol, Oct 24 2011
From Omar E. Pol, Sep 16 2012: (Start)
It appears that a(n)/A147614(n) converges to 3/4.
It appears that a(n)/A160124(n) converges to 3/2.
It appears that a(n)/A139252(n) converges to 3.
Also:
It appears that A147614(n)/A160124(n) converges to 2.
It appears that A160124(n)/A139252(n) converges to 2.
It appears that A147614(n)/A139252(n) converges to 4.
(End)
It appears that a(n) is also the total number of ON cells after n-th stage in a quadrant of the structure of the cellular automaton described in A169707 plus the total number of ON cells after n+1 stages in a quadrant of the mentioned structure, without its central cell. See the illustration of the NW-NE-SE-SW version in A169707. See also the connection between A160164 and A169707. - Omar E. Pol, Jul 26 2015
On the infinite Cairo pentagonal tiling consider the symmetric figure formed by two non-adjacent pentagons connected by a line segment joining two trivalent nodes. At stage 1 we start with one of these figures turned ON. The rule for the next stages is that the concave part of the figures of the new generation must be adjacent to the complementary convex part of the figures of the old generation. a(n) gives the number of figures that are ON in the structure after n-th stage. A160164(n) gives the number of ON cells in the structure after n-th stage. - Omar E. Pol, Mar 29 2018
From Omar E. Pol, Mar 06 2019: (Start)
The "word" of this sequence is "ab". For further information about the word of cellular automata see A296612.
Version "triangular grid": a(n) is also the total number of toothpicks of length 2 after n-th stage in the toothpick structure on the infinite triangular grid, if we use only two of the three axes. Otherwise, if we use the three axes, so we have the sequence A296510 which has word "abc".
The normal toothpick structure can be considered a superstructure of the Ulam-Warburton celular automaton since A147562(n) equals here the total number of "hidden crosses" after 4*n stages, including the central cross (beginning to count the crosses when their "nuclei" are totally formed with 4 quadrilaterals). Note that every quadrilateral in the structure belongs to a "hidden cross".
Also, the number of "hidden crosses" after n stages equals the total number of "flowers with six petals" after n-th stage in the structure of A323650, which appears to be a "missing link" between this sequence and A147562.
Note that the location of the "nuclei of the hidden crosses" is very similar (essentially the same) to the location of the "flowers with six petals" in the structure of A323650 and to the location of the "ON" cells in the version "one-step bishop" of the Ulam-Warburton cellular automaton of A147562. (End)
From Omar E. Pol, Nov 27 2020: (Start)
The simplest substructures are the arms of the hidden crosses. Each closed region (square or rectangle) of the structure belongs to one of these arms. The narrow arms have regions of area 1, 2, 4, 8, ... The broad arms have regions of area 2, 4, 8, 16 , ... Note that after 2^k stages, with k >= 3, the narrow arms of the main hidden crosses in each quadrant frame the size of the toothpick structure after 2^(k-1) stages.
Another kind of substructure could be called "bar chart" or "bar graph". This substructure is formed by the rectangles and squares of width 2 that are adjacent to any of the four sides of the toothpick structure after 2^k stages, with k >= 2. The height of these successive regions gives the first 2^(k-1) - 1 terms from A006519. For example: if k = 5 the respective heights after 32 stages are [1, 2, 1, 4, 1, 2, 1, 8, 1, 2, 1, 4, 1, 2, 1]. The area of these successive regions gives the first 2^(k-1) - 1 terms of A171977. For example: if k = 5 the respective areas are [2, 4, 2, 8, 2, 4, 2, 16, 2, 4, 2, 8, 2, 4, 2].
For a connection to Mersenne primes (A000668) and perfect numbers (A000396) see A153006.
For a representation of the Wagstaff primes (A000979) using the toothpick structure see A194810.
For a connection to stained glass windows and a hidden curve see A336532. (End)
It appears that the graph of a(n) bears a striking resemblance to the cumulative distribution function F(x) for X the random variable taking values in [0,1], where the binary expansion of X is given by a sequence of independent coin tosses with probability 3/4 of being 1 at each bit. It appears that F(n/2^k)*(2^(2k+1)+1)/3 approaches a(n) for k large. - James Coe, Jan 10 2022

Examples

			a(10^10) = 52010594272060810683. - _David A. Corneth_, Mar 26 2015
		

References

  • D. Applegate, Omar E. Pol and N. J. A. Sloane, The Toothpick Sequence and Other Sequences from Cellular Automata, Congressus Numerantium, Vol. 206 (2010), 157-191
  • L. D. Pryor, The Inheritance of Inflorescence Characters in Eucalyptus, Proceedings of the Linnean Society of New South Wales, V. 79, (1954), p. 81, 83.
  • Richard P. Stanley, Enumerative Combinatorics, volume 1, second edition, chapter 1, exercise 95, figure 1.28, Cambridge University Press (2012), p. 120, 166.

Crossrefs

Programs

  • Maple
    G := (x/((1-x)*(1+2*x))) * (1 + 2*x*mul(1+x^(2^k-1)+2*x^(2^k),k=0..20)); # N. J. A. Sloane, May 20 2009, Jun 05 2009
    # From N. J. A. Sloane, Dec 25 2009: A139250 is T, A139251 is a.
    a:=[0,1,2,4]; T:=[0,1,3,7]; M:=10;
    for k from 1 to M do
    a:=[op(a),2^(k+1)];
    T:=[op(T),T[nops(T)]+a[nops(a)]];
    for j from 1 to 2^(k+1)-1 do
    a:=[op(a), 2*a[j+1]+a[j+2]];
    T:=[op(T),T[nops(T)]+a[nops(a)]];
    od: od: a; T;
  • Mathematica
    CoefficientList[ Series[ (x/((1 - x)*(1 + 2x))) (1 + 2x*Product[1 + x^(2^k - 1) + 2*x^(2^k), {k, 0, 20}]), {x, 0, 53}], x] (* Robert G. Wilson v, Dec 06 2010 *)
    a[0] = 0; a[n_] := a[n] = Module[{m, k}, m = 2^(Length[IntegerDigits[n, 2]] - 1); k = (2m^2+1)/3; If[n == m, k, k + 2 a[n - m] + a[n - m + 1] - 1]]; Table[a[n], {n, 0, 100}] (* Jean-François Alcover, Oct 06 2018, after David A. Corneth *)
  • PARI
    A139250(n,print_all=0)={my(p=[], /* set of "used" points. Points are written as complex numbers, c=x+iy. Toothpicks are of length 2 */
    ee=[[0,1]], /* list of (exposed) endpoints. Exposed endpoints are listed as [c,d] where c=x+iy is the position of the endpoint, and d (unimodular) is the direction */
    c,d,ne, cnt=1); print_all && print1("0,1"); n<2 && return(n);
    for(i=2,n, p=setunion(p, Set(Mat(ee~)[,1])); /* add endpoints (discard directions) from last move to "used" points */
    ne=[]; /* new (exposed) endpoints */
    for( k=1, #ee, /* add endpoints of new toothpicks if not among the used points */
    setsearch(p, c=ee[k][1]+d=ee[k][2]*I) || ne=setunion(ne,Set([[c,d]]));
    setsearch(p, c-2*d) || ne=setunion(ne,Set([[c-2*d,-d]]));
    ); /* using Set() we have the points sorted, so it's easy to remove those which finally are not exposed because they touch a new toothpick */
    forstep( k=#ee=eval(ne), 2, -1, ee[k][1]==ee[k-1][1] && k-- && ee=vecextract(ee,Str("^"k"..",k+1)));
    cnt+=#ee; /* each exposed endpoint will give a new toothpick */
    print_all && print1(","cnt));cnt} \\ M. F. Hasler, Apr 14 2009
    
  • PARI
    \\works for n > 0
    a(n) = {my(k = (2*msb(n)^2 + 1) / 3); if(n==msb(n),k , k + 2*a(n-msb(n)) + a(n - msb(n) + 1) - 1)}
    msb(n)=my(t=0);while(n>>t>0,t++);2^(t-1)\\ David A. Corneth, Mar 26 2015
    
  • Python
    def msb(n):
        t = 0
        while n>>t > 0:
            t += 1
        return 2**(t - 1)
    def a(n):
        k = (2 * msb(n)**2 + 1) / 3
        return 0 if n == 0 else k if n == msb(n) else k + 2*a(n - msb(n)) + a(n - msb(n) + 1) - 1
    [a(n) for n in range(101)]  # Indranil Ghosh, Jul 01 2017, after David A. Corneth's PARI script

Formula

a(2^k) = A007583(k), if k >= 0.
a(2^k-1) = A006095(k+1), if k >= 1.
a(A000225(k)) - a((A000225(k)-1)/2) = A006516(k), if k >= 1.
a(A000668(k)) - a((A000668(k)-1)/2) = A000396(k), if k >= 1.
G.f.: (x/((1-x)*(1+2*x))) * (1 + 2*x*Product_{k>=0} (1 + x^(2^k-1) + 2*x^(2^k))). - N. J. A. Sloane, May 20 2009, Jun 05 2009
One can show that lim sup a(n)/n^2 = 2/3, and it appears that lim inf a(n)/n^2 is 0.451... - Benoit Jubin, Apr 15 2009 and Jan 29 2010, N. J. A. Sloane, Jan 29 2010
Observation: a(n) == 3 (mod 4) for n >= 2. - Jaume Oliver Lafont, Feb 05 2009
a(2^k-1) = A000969(2^k-2), if k >= 1. - Omar E. Pol, Feb 13 2010
It appears that a(n) = (A187220(n+1) - 1)/2. - Omar E. Pol, Mar 08 2011
a(n) = 4*A153000(n-2) + 3, if n >= 2. - Omar E. Pol, Oct 01 2011
It appears that a(n) = A160552(n) + (A169707(n) - 1)/2, n >= 1. - Omar E. Pol, Feb 15 2015
It appears that a(n) = A255747(n) + A255747(n-1), n >= 1. - Omar E. Pol, Mar 16 2015
Let n = msb(n) + j where msb(n) = A053644(n) and let a(0) = 0. Then a(n) = (2 * msb(n)^2 + 1)/3 + 2 * a(j) + a(j+1) - 1. - David A. Corneth, Mar 26 2015
It appears that a(n) = (A169707(n) - 1)/4 + (A169707(n+1) - 1)/4, n >= 1. - Omar E. Pol, Jul 24 2015

Extensions

Verified and extended, a(49)-a(53), using the given PARI code by M. F. Hasler, Apr 14 2009
Further edited by N. J. A. Sloane, Jan 28 2010

A139251 First differences of toothpicks numbers A139250.

Original entry on oeis.org

0, 1, 2, 4, 4, 4, 8, 12, 8, 4, 8, 12, 12, 16, 28, 32, 16, 4, 8, 12, 12, 16, 28, 32, 20, 16, 28, 36, 40, 60, 88, 80, 32, 4, 8, 12, 12, 16, 28, 32, 20, 16, 28, 36, 40, 60, 88, 80, 36, 16, 28, 36, 40, 60, 88, 84, 56, 60, 92, 112, 140, 208, 256, 192, 64, 4, 8, 12, 12, 16, 28, 32, 20, 16, 28
Offset: 0

Views

Author

Omar E. Pol, Apr 24 2008

Keywords

Comments

Number of toothpicks added to the toothpick structure at the n-th step (see A139250).
It appears that if n is equal to 1 plus a power of 2 with positive exponent then a(n) = 4. (For proof see the second Applegate link.)
It appears that there is a relation between this sequence, even superperfect numbers, Mersenne primes and even perfect numbers. Conjecture: The sum of the toothpicks added to the toothpick structure between the stage A061652(k) and the stage A000668(k) is equal to the k-th even perfect number, for k >= 1. For example: A000396(1) = 2+4 = 6. A000396(2) = 4+4+8+12 = 28. A000396(3) = 16+4+8+12+12+16+28+32+20+16+28+36+40+60+88+80 = 496. - Omar E. Pol, May 04 2009
Concerning this conjecture, see David Applegate's comments on the conjectures in A153006. - N. J. A. Sloane, May 14 2009
In the triangle (See example lines), the sum of row k is equal to A006516(k), for k >= 1. - Omar E. Pol, May 15 2009
Equals (1, 2, 2, 2, ...) convolved with A160762: (1, 0, 2, -2, 2, 2, 2, -6, ...). - Gary W. Adamson, May 25 2009
Convolved with the Jacobsthal sequence A001045 = A160704: (1, 3, 9, 19, 41, ...). - Gary W. Adamson, May 24 2009
It appears that the sums of two successive terms of A160552 give the positive terms of this sequence. - Omar E. Pol, Feb 19 2015
From Omar E. Pol, Feb 28 2019: (Start)
The study of the toothpick automaton on triangular grid (A296510), and other C.A. of the same family, reveals that some cellular automata that have recurrent periods can be represented in general by irregular triangles (of first differences) whose row lengths are the terms of A011782 multiplied by k, where k >= 1, is the length of an internal cycle. This internal cycle is called "word" of a cellular automaton. For example: A160121 has word "a", so k = 1. This sequence has word "ab", so k = 2. A296511 has word "abc", so k = 3. A299477 has word "abcb" so k = 4. A299479 has word "abcbc", so k = 5.
The structure of this triangle (with word "ab" and k = 2) for the nonzero terms is as follows:
a,b;
a,b;
a,b,a,b;
a,b,a,b,a,b,a,b;
a,b,a,b,a,b,a,b,a,b,a,b,a,b,a,b;
...
The row lengths are the terms of A011782 multiplied by 2, equaling the column 2 of the square array A296612: 2, 2, 4, 8, 16, ...
This arrangement has the property that the odd-indexed columns (a) contain numbers of the toothpicks that are parallel to initial toothpick, and the even-indexed columns (b) contain numbers of the toothpicks that are orthogonal to the initial toothpick (see the third triangle in the Example section).
An associated sound to the animation could be (tick, tock), (tick, tock), ..., the same as the ticking clock sound.
For further information about the "word" of a cellular automaton see A296612. (End)

Examples

			From _Omar E. Pol_, Dec 16 2008: (Start)
Triangle begins:
1;
2;
4,4;
4,8,12,8;
4,8,12,12,16,28,32,16;
4,8,12,12,16,28,32,20,16,28,36,40,60,88,20,32;
(End)
From _David Applegate_, Apr 29 2009: (Start)
The layout of the triangle was adjusted to reveal that the columns become constant as shown below:
. 0;
. 1;
. 2,4;
. 4,4,8,12;
. 8,4,8,12,12,16,28,32;
.16,4,8,12,12,16,28,32,20,16,28,36,40,60,88,80;
.32,4,8,12,12,16,28,32,20,16,28,36,40,60,88,80,36,16,28,36,40,60,88,84,56,...
...
The row sums give A006516.
(End)
From _Omar E. Pol_, Feb 28 2018: (Start)
Also the nonzero terms can write as an irregular triangle in which the row lengths are the terms of A011782 multiplied by 2 as shown below:
1,2;
4,4;
4,8,12,8;
4,8,12,12,16,28,32,16;
4,8,12,12,16,28,32,20,16,28,36,40,60,88,20,32;
...
(End)
		

Crossrefs

Equals 2*A152968 and 4*A152978 (if we ignore the first couple of terms).
See A147646 for the limiting behavior of the rows. See also A006516.
Row lengths in A011782.
Cf. A160121 (word "a"), A296511 (word "abc"), A299477 (word "abcb"), A299479 (word "abcbc").

Programs

  • Maple
    G := (x/(1+2*x)) * (1 + 2*x*mul(1+x^(2^k-1)+2*x^(2^k),k=0..20)); # N. J. A. Sloane, May 20 2009, Jun 05 2009
    # A139250 is T, A139251 is a.
    a:=[0,1,2,4]; T:=[0,1,3,7]; M:=10;
    for k from 1 to M do
    a:=[op(a),2^(k+1)];
    T:=[op(T),T[nops(T)]+a[nops(a)]];
    for j from 1 to 2^(k+1)-1 do
    a:=[op(a), 2*a[j+1]+a[j+2]];
    T:=[op(T),T[nops(T)]+a[nops(a)]];
    od: od: a; T;
    # N. J. A. Sloane, Dec 25 2009
  • Mathematica
    CoefficientList[Series[((x - x^2)/((1 - x) (1 + 2 x))) (1 + 2 x Product[1 + x^(2^k - 1) + 2 x^(2^k), {k, 0, 20}]), {x, 0, 60}], x] (* Vincenzo Librandi, Aug 22 2014 *)

Formula

Recurrence from N. J. A. Sloane, Jul 20 2009: a(0) = 0; a(2^i)=2^i for all i; otherwise write n=2^i+j, 0 < j < 2^i, then a(n) = 2a(j)+a(j+1). Proof: This is a simplification of the following recurrence of David Applegate. QED
Recurrence from David Applegate, Apr 29 2009: (Start)
Write n=2^(i+1)+j, where 0 <= j < 2^(i+1). Then, for n > 3:
for j=0, a(n) = 2*a(n-2^i) (= n = 2^(i+1))
for 1 <= j <= 2^i - 1, a(n) = a(n-2^i)
for j=2^i, a(n) = a(n-2^i)+4 (= 2^(i+1)+4)
for 2^i+1 <= j <= 2^(i+1)-2, a(n) = 2*a(n-2^i) + a(n-2^i+1)
for j=2^(i+1)-1, a(n) = 2*a(n-2^i) + a(n-2^i+1)-4
and a(n) = 2^(n-1) for n=1,2,3. (End)
G.f.: (x/(1+2*x)) * (1 + 2*x*Product_{k>=0} (1 + x^(2^k-1) + 2*x^(2^k))). - N. J. A. Sloane, May 20 2009, Jun 05 2009
With offset 0 (which would be more natural, but offset 1 is now entrenched): a(0) = 1, a(1) = 2; for i >= 1, a(2^i) = 4; otherwise write n = 2^i +j, 0 < j < 2^i, then a(n) = 2 * Sum_{ k >= 0 } 2^(wt(j+k)-k)*binomial(wt(j+k),k). - N. J. A. Sloane, Jun 03 2009
It appears that a(n) = A187221(n+1)/2. - Omar E. Pol, Mar 08 2011
It appears that a(n) = A160552(n-1) + A160552(n), n >= 1. - Omar E. Pol, Feb 18 2015

Extensions

Partially edited by Omar E. Pol, Feb 28 2019

A078008 Expansion of (1 - x)/((1 + x)*(1 - 2*x)).

Original entry on oeis.org

1, 0, 2, 2, 6, 10, 22, 42, 86, 170, 342, 682, 1366, 2730, 5462, 10922, 21846, 43690, 87382, 174762, 349526, 699050, 1398102, 2796202, 5592406, 11184810, 22369622, 44739242, 89478486, 178956970, 357913942, 715827882, 1431655766, 2863311530, 5726623062
Offset: 0

Views

Author

N. J. A. Sloane, Nov 17 2002

Keywords

Comments

Conjecture: a(n) = the number of fractions in the infinite Farey row of 2^n terms with even denominators. Compare the Salamin & Gosper item in the Beeler et al. link. - Gary W. Adamson, Oct 27 2003
Counts closed walks starting and ending at the same vertex of a triangle. 3*a(n) = P(C_n, 3) chromatic polynomial for 3 colors on cyclic graph C_n. A078008(n) + 2*A001045(n) = 2^n provides decomposition of Pascal's triangle. - Paul Barry, Nov 17 2003
Permutations with one fixed point avoiding 123 and 132.
General form: iterate k -> 2^n - k. See also A001045. - Vladimir Joseph Stephan Orlovsky, Dec 11 2008
The inverse g.f. generates sequence 1, 0, -2, -2, -2, -2, ...
a(n) gives the number of oriented (i.e., unreduced for symmetry) meanders on an (n+2) X 3 rectangular grid; see A201145. - Jon Wild, Nov 22 2011
Pisano period lengths: 1, 1, 6, 1, 4, 6, 6, 2, 18, 4, 10, 6, 12, 6, 12, 2, 8, 18, 18, 4, ... - R. J. Mathar, Aug 10 2012
a(n) is the number of length n binary words that end in an odd length run of 0's if we do not include the first letter of the word in our run length count. a(4) =6 because we have 0000, 0010, 0110, 1000, 1010, 1110. - Geoffrey Critzer, Dec 16 2013
a(n) is the top left entry of the n-th power of any of the six 3 X 3 matrices [0, 1, 1; 1, 1, 1; 1, 0, 0], [0, 1, 1; 1, 1, 0; 1, 1, 0], [0, 1, 1; 1, 0, 1; 1, 1, 0], [0, 1, 1; 1, 1, 0; 1, 0, 1], [0, 1, 1; 1, 0, 1; 1, 0, 1] or [0, 1, 1; 1, 0, 0; 1, 1, 1]. - R. J. Mathar, Feb 04 2014
a(n) is the number of compositions of n into parts of two kinds without part 1. - Gregory L. Simay, Jun 04 2018
a(n) is the number of words of length n over a binary alphabet whose position in the lexicographic order is a multiple of three. a(3) = 2: aba, bab. - Alois P. Heinz, Apr 13 2022
a(n) is the number of words of length n over a ternary alphabet starting with a fixed letter (say, 'a') and ending in a different letter, such that no two adjacent letters are the same. a(4) = 6: abab, abac, abcb, acab, acac, acbc. - Ignat Soroko, Jul 19 2023

Examples

			G.f. = 1 + 2*x^2 + 2*x^3 + 6*x^4 + 10*x^5 + 22*x^6 + ... - _Michael Somos_, Mar 18 2022
		

References

  • Kenneth Edwards and Michael A. Allen, A new combinatorial interpretation of the Fibonacci numbers squared, Part II, Fib. Q., 58:2 (2020), 169-177.
  • I. P. Goulden and D. M. Jackson, Combinatorial Enumeration, John Wiley and Sons, N.Y., 1983, ex. 1.1.10a.

Crossrefs

First differences of A001045.
See A151575 for a signed version.
Bisections: A047849, A020988.

Programs

Formula

Euler expands(1-x)/(1 - x - 2*x^2) into an infinite series and finds that the coefficient of the n-th term is (2^n + (-1)^n 2)/3. Section 226 shows that Euler could have easily found the recursion relation: a(n) = a(n-1) + 2a(n-2) with a(0) = 1 and a(1) = 0. - V. Frederick Rickey (fred-rickey(AT)usma.edu), Feb 10 2006. [Typos corrected by Jaume Oliver Lafont, Jun 01 2009]
a(n) = Sum_{k=0..floor(n/3)} binomial(n, f(n)+3*k) where f(n) = (0, 2, 1, 0, 2, 1, ...) = A080424(n). - Paul Barry, Feb 20 2003
E.g.f. (exp(2*x) + 2*exp(-x))/3. - Paul Barry, Apr 20 2003
a(n) = A001045(n) + (-1)^n = A000079(n) - 2*A001045(n). - Paul Barry, Feb 20 2003
a(n) = (2^n + 2*(-1)^n)/3. - Mario Catalani (mario.catalani(AT)unito.it), Aug 29 2003
a(n) = T(n, i/(2*sqrt(2)))*(-i*sqrt(2))^n - U(n-1, i/(2*sqrt(2)))*(-i*sqrt(2))^(n-1)/2. - Paul Barry, Nov 17 2003
From Paul Barry, Jul 30 2004: (Start)
a(n) = 2*a(n-1) + 2*(-1)^n for n > 0, with a(0)=1.
a(n) = Sum_{k=0..n} (-1)^k*(2^(n-k-1) + 0^(n-k)/2). (End)
a(n) = A014113(n-1) for n > 0; a(n) = A052953(n-1) - 2*(n mod 2) = sum of n-th row of the triangle in A108561. - Reinhard Zumkeller, Jun 10 2005
A137208(n+1) - 2*A137208(n) = a(n) signed. - Paul Curtz, Aug 03 2008
a(n) = A001045(n+1) - A001045(n) - Paul Curtz, Feb 09 2009
If p[1] =0, and p[i]=2, (i>1), and if A is Hessenberg matrix of order n defined by: A[i,j]=p[j-i+1], (i<=j), A[i,j]=-1, (i=j+1), and A[i,j]=0 otherwise. Then, for n>=1, a(n)=det A. - Milan Janjic, Apr 29 2010
a(n) = 2*(a(n-2) + a(n-3) + a(n-4) ... + a(0)), that is, twice the sum of all the previous terms except the last; with a(0) = 1 and a(1) = 0. - Benoit Jubin, Nov 21 2011
a(n+1) = 2*A001045(n). - Benoit Jubin, Nov 22 2011
G.f.: 1 - x + x*Q(0), where Q(k) = 1 + 2*x^2 + (2*k+3)*x - x*(2*k+1 + 2*x)/Q(k+1); (continued fraction). - Sergei N. Gladkovskii, Oct 05 2013
G.f.: 1+ x^2*Q(0), where Q(k) = 1 + 1/(1 - x*(4*k+1+2*x)/(x*(4*k+3+2*x) + 1/Q(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Jan 01 2014
a(n) = 3*a(n-2) + 2*a(n-3). - David Neil McGrath, Sep 10 2014
a(n) = (-1)^n * A151575(n). - G. C. Greubel, Jun 28 2019
a(n)+a(n+1) = 2^n. - R. J. Mathar, Feb 24 2021
a(n) = -a(2-n) * (-2)^(n-1) = (3/2)*(a(n-1) + a(n-2)) - a(n-3) for all n in Z. - Michael Somos, Mar 18 2022

A006516 a(n) = 2^(n-1)*(2^n - 1), n >= 0.

Original entry on oeis.org

0, 1, 6, 28, 120, 496, 2016, 8128, 32640, 130816, 523776, 2096128, 8386560, 33550336, 134209536, 536854528, 2147450880, 8589869056, 34359607296, 137438691328, 549755289600, 2199022206976, 8796090925056, 35184367894528, 140737479966720, 562949936644096
Offset: 0

Views

Author

Keywords

Comments

a(n) is also the number of different lines determined by pair of vertices in an n-dimensional hypercube. The number of these lines modulo being parallel is in A003462. - Ola Veshta (olaveshta(AT)my-deja.com), Feb 15 2001
Let G_n be the elementary Abelian group G_n = (C_2)^n for n >= 1: A006516 is the number of times the number -1 appears in the character table of G_n and A007582 is the number of times the number 1. Together the two sequences cover all the values in the table, i.e., A006516(n) + A007582(n) = 2^(2n). - Ahmed Fares (ahmedfares(AT)my-deja.com), Jun 01 2001
a(n) is the number of n-letter words formed using four distinct letters, one of which appears an odd number of times. - Lekraj Beedassy, Jul 22 2003 [See, e.g., the Balakrishnan reference, problems 2.67 and 2.68, p. 69. - Wolfdieter Lang, Jul 16 2017]
Number of 0's making up the central triangle in a Pascal's triangle mod 2 gasket. - Lekraj Beedassy, May 14 2004
m-th triangular number, where m is the n-th Mersenne number, i.e., a(n)=A000217(A000225(n)). - Lekraj Beedassy, May 25 2004
Number of walks of length 2n+1 between two nodes at distance 3 in the cycle graph C_8. - Herbert Kociemba, Jul 02 2004
The sequence of fractions a(n+1)/(n+1) is the 3rd binomial transform of (1, 0, 1/3, 0, 1/5, 0, 1/7, ...). - Paul Barry, Aug 05 2005
Number of monic irreducible polynomials of degree 2 in GF(2^n)[x]. - Max Alekseyev, Jan 23 2006
(A007582(n))^2 + a(n)^2 = A007582(2n). E.g., A007582(3) = 36, a(3) = 28; A007582(6) = 2080. 36^2 + 28^2 = 2080. - Gary W. Adamson, Jun 17 2006
The sequence 6*a(n), n>=1, gives the number of edges of the Hanoi graph H_4^{n} with 4 pegs and n>=1 discs. - Daniele Parisse, Jul 28 2006
8*a(n) is the total border length of the 4*n masks used when making an order n regular DNA chip, using the bidimensional Gray code suggested by Pevzner in the book "Computational Molecular Biology." - Bruno Petazzoni (bruno(AT)enix.org), Apr 05 2007
If we start with 1 in binary and at each step we prepend 1 and append 0, we construct this sequence: 1 110 11100 1111000 etc.; see A109241(n-1). - Artur Jasinski, Nov 26 2007
Let P(A) be the power set of an n-element set A. Then a(n) = the number of pairs of elements {x,y} of P(A) for which x does not equal y. - Ross La Haye, Jan 02 2008
Wieder calls these "conjoint usual 2-combinations." The set of "conjoint strict k-combinations" is the subset of conjoint usual k-combinations where the empty set and the set itself are excluded from possible selection. These numbers C(2^n - 2,k), which for k = 2 (i.e., {x,y} of the power set of a set) give {1, 0, 1, 15, 91, 435, 1891, 7875, 32131, 129795, 521731, ...}. - Ross La Haye, Jan 15 2008
If n is a member of A000043 then a(n) is also a perfect number (A000396). - Omar E. Pol, Aug 30 2008
a(n) is also the number whose binary representation is A109241(n-1), for n>0. - Omar E. Pol, Aug 31 2008
From Daniel Forgues, Nov 10 2009: (Start)
If we define a spoof-perfect number as:
A spoof-perfect number is a number that would be perfect if some (one or more) of its odd composite factors were wrongly assumed to be prime, i.e., taken as a spoof prime.
And if we define a "strong" spoof-perfect number as:
A "strong" spoof-perfect number is a spoof-perfect number where sigma(n) does not reveal the compositeness of the odd composite factors of n which are wrongly assumed to be prime, i.e., taken as a spoof prime.
The odd composite factors of n which are wrongly assumed to be prime then have to be obtained additively in sigma(n) and not multiplicatively.
Then:
If 2^n-1 is odd composite but taken as a spoof prime then 2^(n-1)*(2^n - 1) is an even spoof perfect number (and moreover "strong" spoof-perfect).
For example:
a(8) = 2^(8-1)*(2^8 - 1) = 128*255 = 32640 (where 255 (with factors 3*5*17) is taken as a spoof prime);
sigma(a(8)) = (2^8 - 1)*(255 + 1) = 255*256 = 2*(128*255) = 2*32640 = 2n is spoof-perfect (and also "strong" spoof-perfect since 255 is obtained additively);
a(11) = 2^(11-1)*(2^11 - 1) = 1024*2047 = 2096128 (where 2047 (with factors 23*89) is taken as a spoof prime);
sigma(a(11)) = (2^11 - 1)*(2047 + 1) = 2047*2048 = 2*(1024*2047) = 2*2096128 = 2n is spoof-perfect (and also "strong" spoof-perfect since 2047 is obtained additively).
I did a Google search and didn't find anything about the distinction between "strong" versus "weak" spoof-perfect numbers. Maybe some other terminology is used.
An example of an even "weak" spoof-perfect number would be:
n = 90 = 2*5*9 (where 9 (with factors 3^2) is taken as a spoof prime);
sigma(n) = (1+2)*(1+5)*(1+9) = 3*(2*3)*(2*5) = 2*(2*5*(3^2)) = 2*90 = 2n is spoof-perfect (but is not "strong" spoof-perfect since 9 is obtained multiplicatively as 3^2 and is thus revealed composite).
Euler proved:
If 2^k - 1 is a prime number, then 2^(k-1)*(2^k - 1) is a perfect number and every even perfect number has this form.
The following seems to be true (is there a proof?):
If 2^k - 1 is an odd composite number taken as a spoof prime, then 2^(k-1)*(2^k - 1) is a "strong" spoof-perfect number and every even "strong" spoof-perfect number has this form?
There is only one known odd spoof-perfect number (found by Rene Descartes) but it is a "weak" spoof-perfect number (cf. 'Descartes numbers' and 'Unsolved problems in number theory' links below). (End)
a(n+1) = A173787(2*n+1,n); cf. A020522, A059153. - Reinhard Zumkeller, Feb 28 2010
Also, row sums of triangle A139251. - Omar E. Pol, May 25 2010
Starting with "1" = (1, 1, 2, 4, 8, ...) convolved with A002450: (1, 5, 21, 85, 341, ...); and (1, 3, 7, 15, 31, ...) convolved with A002001: (1, 3, 12, 48, 192, ...). - Gary W. Adamson, Oct 26 2010
a(n) is also the number of toothpicks in the corner toothpick structure of A153006 after 2^n - 1 stages. - Omar E. Pol, Nov 20 2010
The number of n-dimensional odd theta functions of half-integral characteristic. (Gunning, p.22) - Michael Somos, Jan 03 2014
a(n) = A000217((2^n)-1) = 2^(2n-1) - 2^(n-1) is the nearest triangular number below 2^(2n-1); cf. A007582, A233327. - Antti Karttunen, Feb 26 2014
a(n) is the sum of all the remainders when all the odd numbers < 2^n are divided by each of the powers 2,4,8,...,2^n. - J. M. Bergot, May 07 2014
Let b(m,k) = number of ways to form a sequence of m selections, without replacement, from a circular array of m labeled cells, such that the first selection of a cell whose adjacent cells have already been selected (a "first connect") occurs on the k-th selection. b(m,k) is defined for m >=3, and for 3 <= k <= m. Then b(m,k)/2m ignores rotations and reflection. Let m=n+2, then a(n) = b(m,m-1)/2m. Reiterated, a(n) is the (m-1)th column of the triangle b(m,k)/2m, whose initial rows are (1), (1 2), (2 6 4), (6 18 28 8), (24 72 128 120 16), (120 360 672 840 496 32), (720 2160 4128 5760 5312 2016 64); see A249796. Note also that b(m,3)/2m = n!, and b(m,m)/2m = 2^n. Proofs are easy. - Tony Bartoletti, Oct 30 2014
Beginning at a(1) = 1, this sequence is the sum of the first 2^(n-1) numbers of the form 4*k + 1 = A016813(k). For example, a(4) = 120 = 1 + 5 + 9 + 13 + 17 + 21 + 25 + 29. - J. M. Bergot, Dec 07 2014
a(n) is the number of edges in the (2^n - 1)-dimensional simplex. - Dimitri Boscainos, Oct 05 2015
a(n) is the number of linear elements in a complete plane graph in 2^n points. - Dimitri Boscainos, Oct 05 2015
a(n) is the number of linear elements in a complete parallelotope graph in n dimensions. - Dimitri Boscainos, Oct 05 2015
a(n) is the number of lattices L in Z^n such that the quotient group Z^n / L is C_4. - Álvar Ibeas, Nov 26 2015
a(n) gives the quadratic coefficient of the polynomial ((x + 1)^(2^n) + (x - 1)^(2^n))/2, cf. A201461. - Martin Renner, Jan 14 2017
Let f(x)=x+2*sqrt(x) and g(x)=x-2*sqrt(x). Then f(4^n*x)=b(n)*f(x)+a(n)*g(x) and g(4^n*x)=a(n)*f(x)+b(n)*g(x), where b is A007582. - Luc Rousseau, Dec 06 2018
For n>=1, a(n) is the covering radius of the first order Reed-Muller code RM(1,2n). - Christof Beierle, Dec 22 2021
a(n) =

Examples

			G.f. = x + 6*x^2 + 28*x^3 + 120*x^4 + 496*x^5 + 2016*x^6 + 8128*x^7 + 32640*x^8 + ...
		

References

  • V. K. Balakrishnan, Theory and problems of Combinatorics, "Schaum's Outline Series", McGraw-Hill, 1995, p. 69.
  • Martin Gardner, Mathematical Carnival, "Pascal's Triangle", p. 201, Alfred A. Knopf NY, 1975.
  • Richard K. Guy, Unsolved problems in number theory, (p. 72).
  • Ross Honsberger, Mathematical Gems, M.A.A., 1973, p. 113.
  • Clifford A. Pickover, Wonders of Numbers, Chap. 55, Oxford Univ. Press NY 2000.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Equals A006095(n+1) - A006095(n). In other words, A006095 gives the partial sums.
Cf. A000043, A000396. - Omar E. Pol, Aug 30 2008
Cf. A109241, A139251, A153006. - Omar E. Pol, Aug 31 2008, May 25 2010, Nov 20 2010
Cf. A002450, A002001. - Gary W. Adamson, Oct 26 2010
Cf. A049072, A000384, A201461, A005059 (binomial transform, and special 5-letter words), A065442, A211705.
Cf. A171476.

Programs

  • GAP
    List([0..25],n->2^(n-1)*(2^n-1)); # Muniru A Asiru, Dec 06 2018
  • Haskell
    a006516 n = a006516_list !! n
    a006516_list = 0 : 1 :
        zipWith (-) (map (* 6) $ tail a006516_list) (map (* 8) a006516_list)
    -- Reinhard Zumkeller, Oct 25 2013
    
  • Magma
    [2^(n-1)*(2^n - 1): n in [0..30]]; // Vincenzo Librandi, Oct 31 2014
    
  • Maple
    GBC := proc(n,k,q) local i; mul( (q^(n-i)-1)/(q^(k-i)-1),i=0..k-1); end; # define q-ary Gaussian binomial coefficient [ n,k ]_q
    [ seq(GBC(n+1,2,2)-GBC(n,2,2), n=0..30) ]; # produces A006516
    A006516:=1/(4*z-1)/(2*z-1); # Simon Plouffe in his 1992 dissertation
    seq(binomial(2^n, 2), n=0..19); # Zerinvary Lajos, Feb 22 2008
  • Mathematica
    Table[2^(n - 1)(2^n - 1), {n, 0, 30}] (* or *) LinearRecurrence[{6, -8}, {0, 1}, 30] (* Harvey P. Dale, Jul 15 2011 *)
  • Maxima
    A006516(n):=2^(n-1)*(2^n - 1)$ makelist(A006516(n),n,0,30); /* Martin Ettl, Nov 15 2012 */
    
  • PARI
    a(n)=(1<Charles R Greathouse IV, Jun 10 2011
    
  • PARI
    vector(100, n, n--; 2^(n-1)*(2^n-1)) \\ Altug Alkan, Oct 06 2015
    
  • Python
    for n in range(0, 30): print(2**(n-1)*(2**n - 1), end=', ') # Stefano Spezia, Dec 06 2018
    
  • Sage
    [lucas_number1(n,6,8) for n in range(24)]  # Zerinvary Lajos, Apr 22 2009
    
  • Sage
    [(4**n - 2**n) / 2 for n in range(24)]  # Zerinvary Lajos, Jun 05 2009
    

Formula

G.f.: x/((1 - 2*x)*(1 - 4*x)).
E.g.f. for a(n+1), n>=0: 2*exp(4*x) - exp(2*x).
a(n) = 2^(n-1)*Stirling2(n+1,2), n>=0, with Stirling2(n,m)=A008277(n,m).
Second column of triangle A075497.
a(n) = Stirling2(2^n,2^n-1) = binomial(2^n,2). - Ross La Haye, Jan 12 2008
a(n+1) = 4*a(n) + 2^n. - Philippe Deléham, Feb 20 2004
Convolution of 4^n and 2^n. - Ross La Haye, Oct 29 2004
a(n+1) = Sum_{k=0..n} Sum_{j=0..n} 4^(n-j)*binomial(j,k). - Paul Barry, Aug 05 2005
a(n+2) = 6*a(n+1) - 8*a(n), a(1) = 1, a(2) = 6. - Daniele Parisse, Jul 28 2006 [Typo corrected by Yosu Yurramendi, Aug 06 2008]
Row sums of triangle A134346. Also, binomial transform of A048473: (1, 5, 17, 53, 161, ...); double bt of A151821: (1, 4, 8, 16, 32, 64, ...) and triple bt of A010684: (1, 3, 1, 3, 1, 3, ...). - Gary W. Adamson, Oct 21 2007
a(n) = 3*Stirling2(n+1,4) + Stirling2(n+2,3). - Ross La Haye, Jun 01 2008
a(n) = (4^n - 2^n)/2.
a(n) = A153006(2^n-1). - Omar E. Pol, Nov 20 2010
Sum_{n>=1} 1/a(n) = 2 * (A065442 - 1) = A211705 - 2. - Amiram Eldar, Dec 24 2020
a(n) = binomial(2*n+2, n+1) - Catalan(n+2). - N. J. A. Sloane, Apr 01 2021
a(n) = A171476(n-1), for n >= 1, and a(0) = 0. - Wolfdieter Lang, Jul 27 2022

A160120 Y-toothpick sequence (see Comments lines for definition).

Original entry on oeis.org

0, 1, 4, 7, 16, 19, 28, 37, 58, 67, 76, 85, 106, 121, 142, 169, 220, 247, 256, 265, 286, 301, 322, 349, 400, 433, 454, 481, 532, 583, 640, 709, 826, 907, 928, 937, 958, 973, 994, 1021, 1072, 1105, 1126, 1153, 1204, 1255, 1312, 1381, 1498, 1585, 1618, 1645
Offset: 0

Views

Author

Omar E. Pol, May 02 2009

Keywords

Comments

A Y-toothpick (or Y-shaped toothpick) is formed from three toothpicks of length 1, like a star with three endpoints and only one middle-point.
On the infinite triangular grid, we start at round 0 with no Y-toothpicks.
At round 1 we place a Y-toothpick anywhere in the plane.
At round 2 we add three more Y-toothpicks. After round 2, in the structure there are three rhombuses and a hexagon.
At round 3 we add three more Y-toothpicks.
And so on ... (see illustrations).
The sequence gives the number of Y-toothpicks after n rounds. A160121 (the first differences) gives the number added at the n-th round.
The Y-toothpick pattern has a recursive, fractal (or fractal-like) structure.
Note that, on the infinite triangular grid, a Y-toothpick can be represented as a polyedge with three components. In this case, at the n-th round, the structure is a polyedge with 3*a(n) components.
This structure is more complex than the toothpick structure of A139250. For example, at some rounds we can see inward growth.
The structure contains distinct polygons which have side length equal to 1.
Observation: It appears that the region of the structure where all grid points are covered is formed only by three distinct polygons:
- Triangles
- Rhombuses
- Concave-convex hexagons
Holes in the structure: Also, we can see distinct concave-convex polygons which contains a region where there are no grid points that are covered, for example:
- Decagons (with 1 non-covered grid point)
- Dodecagons (with 4 non-covered grid points)
- 18-gons (with 7 non-covered grid points)
- 30-gons (with 26 non-covered grid points)
- ...
Observation: It appears that the number of distinct polygons that contain non-covered grid points is infinite.
This sequence appears to be related to powers of 2. For example:
Conjecture: It appears that if n = 2^k, k>0, then, between the other polygons, there appears a new centered hexagon formed by three rhombuses with side length = 2^k/2 = n/2.
Conjecture: Consider the perimeter of the structure. It appears that if n = 2^k, k>0, then the structure is a triangle-shaped polygon with A000225(k)*6 sides and a half toothpick in each vertice of the "triangle".
Conjecture: It appears that if n = 2^k, k>0, then the ratio of areas between the Y-toothpick structure and the unitary triangle is equal to A006516(k)*6.
See the entry A139250 for more information about the growth of "standard" toothpicks.
See also A160715 for another version of this structure but without internal growth of Y-toothpicks. [Omar E. Pol, May 31 2010]
For an alternative visualization replace every single toothpick with a rhombus, or in other words, replace every Y-toothpick with the "three-diamond" symbol, so we have a cellular automaton in which a(n) gives the total number of "three-diamond" symbols after n-th stage and A160167(n) counts the total number of "ON" diamonds in the structure after n-th stage. See also A253770. - Omar E. Pol, Dec 24 2015
The behavior is similar to A153006 (see the graph). - Omar E. Pol, Apr 03 2018

Crossrefs

Programs

  • Mathematica
    YTPFunc[lis_, step_] := With[{out = Extract[lis, {{1, 2}, {2, 1}, {-1, -1}}], in = lis[[2, 2]]}, Which[in == 0 && Count[out, 2] >= 2, 1, in == 0 && Count[out, 2] == 1, 2, True, in]]; A160120[0] = 0; A160120[n_] := With[{m = n - 1}, Count[CellularAutomaton[{YTPFunc, {}, {1, 1}}, {{{2}}, 0}, {{{m}}}], 2, 2]] (* JungHwan Min, Jan 28 2016 *)
    A160120[0] = 0; A160120[n_] := With[{m = n - 1}, Count[CellularAutomaton[{435225738745686506433286166261571728070, 3, {{-1, 0}, {0, -1}, {0, 0}, {1, 1}}}, {{{2}}, 0}, {{{m}}}], 2, 2]] (* JungHwan Min, Jan 28 2016 *)

Extensions

More terms from David Applegate, Jun 14 2009, Jun 18 2009

A160406 Toothpick sequence starting at the vertex of an infinite 90-degree wedge.

Original entry on oeis.org

0, 1, 2, 4, 6, 8, 10, 14, 18, 20, 22, 26, 30, 34, 40, 50, 58, 60, 62, 66, 70, 74, 80, 90, 98, 102, 108, 118, 128, 140, 160, 186, 202, 204, 206, 210, 214, 218, 224, 234, 242, 246, 252, 262, 272, 284, 304, 330, 346, 350, 356, 366, 376, 388, 408, 434, 452, 464, 484, 512, 542, 584
Offset: 0

Views

Author

Omar E. Pol, May 23 2009

Keywords

Comments

Consider the wedge of the plane defined by points (x,y) with y >= |x|, with the initial toothpick extending from (0,0) to (0,2); then extend by the same rule as for A139250, always staying inside the wedge.
Number of toothpick in the structure after n rounds.
The toothpick sequence A139250 is the main entry for this sequence. See also A153000. First differences: A160407.

Crossrefs

Programs

  • Maple
    G := (x + 2*x^2 + 4*x^2*(1+x)*(mul(1+x^(2^k-1)+2*x^(2^k),k=1..20)-1)/(1+2*x))/(1-x); P:=(G + 2 + x*(5-x)/(1-x)^2)*x/(2*(1+x)); series(P,x,200); seriestolist(%); # N. J. A. Sloane, May 25 2009
  • Mathematica
    terms = 62;
    G = (x + 2x^2 + 4x^2 (1+x)(Product[1+x^(2^k-1) + 2x^(2^k), {k, 1, Ceiling[ Log[2, terms]]}]-1)/(1+2x))/(1-x);
    P = (G + 2 + x(5-x)/(1-x)^2) x/(2(1+x));
    CoefficientList[P + O[x]^terms, x] (* Jean-François Alcover, Nov 03 2018, from Maple *)

Formula

A139250(n) = 2a(n) + 2a(n+1) - 4n - 1 for n > 0. - N. J. A. Sloane, May 25 2009
Let G = (x + 2*x^2 + 4*x^2*(1+x)*((Product_{k>=1} (1 + x^(2^k-1) + 2*x^(2^k))) - 1)/(1+2*x))/(1-x) (= g.f. for A139250); then the g.f. for the present sequence is (G + 2 + x*(5-x)/(1-x)^2)*x/(2*(1+x)). - N. J. A. Sloane, May 25 2009

Extensions

More terms from N. J. A. Sloane, May 25 2009
Definition revised by N. J. A. Sloane, Jan 02 2010

A153000 Toothpick sequence in the first quadrant.

Original entry on oeis.org

0, 1, 2, 3, 5, 8, 10, 11, 13, 16, 19, 23, 30, 38, 42, 43, 45, 48, 51, 55, 62, 70, 75, 79, 86, 95, 105, 120, 142, 162, 170, 171, 173, 176, 179, 183, 190, 198, 203, 207, 214, 223, 233, 248, 270, 290, 299, 303, 310, 319, 329, 344, 366, 387
Offset: 0

Views

Author

Omar E. Pol, Dec 16 2008, Dec 20 2008, Jan 02 2009

Keywords

Comments

From Omar E. Pol, Nov 29 2009: (Start)
At stage 0, we start from a horizontal half toothpick at [(0,1),(1,1)]. This half toothpick represents one of the two components of the second toothpick placed in the toothpick structure of A139250. Consider only the toothpicks of length 2, so a(0) = 0.
At stage 1 we place an orthogonal toothpick of length 2 centered at the end, so a(1) = 1.
In each subsequent stage, for every exposed toothpick end, place an orthogonal toothpick centered at that end.
The sequence gives the number of toothpicks after n stages. Note that this sequence contains even numbers and odd numbers, the same as A152978 (the first differences) which gives the number of toothpicks added at n-th stage. For more information see A139250. (End)
A079559 gives the parity of this sequence, if n >= 1. - Omar E. Pol, Aug 13 2013

References

  • D. Applegate, Omar E. Pol and N. J. A. Sloane, The Toothpick Sequence and Other Sequences from Cellular Automata, Congressus Numerantium, Vol. 206 (2010), 157-191

Crossrefs

Programs

  • Maple
    G := (1+x)*(mul(1+x^(2^k-1)+2*x^(2^k),k=1..20)-1)/((1-x)*(1+2*x)); # N. J. A. Sloane, May 20 2009
  • Python
    def msb(n):
        t=0
        while n>>t>0: t+=1
        return 2**(t - 1)
    def a139250(n):
        k=(2*msb(n)**2 + 1)//3
        return 0 if n==0 else k if n==msb(n) else k + 2*a139250(n - msb(n)) + a139250(n - msb(n) + 1) - 1
    def a(n): return 0 if n==0 else (a139250(n + 2) - 3)//4
    print([a(n) for n in range(101)]) # Indranil Ghosh, Jul 01 2017

Formula

a(n) = (A139250(n+2)-3)/4 = (A152998(n+1)-1)/2.
G.f.: (1+x)*(Product_{k>=1} (1+x^(2^k-1)+2*x^(2^k))-1)/((1-x)*(1+2*x)). - N. J. A. Sloane, May 20 2009
Contribution from Omar E. Pol, Oct 01 2011: (Start)
a(n) = A152998(n+1) + A153003(n+1) - A139250(n+2) + 1.
a(n) = A139250(n+2) - A153003(n+1) - 2.
a(n) = A153003(n+1) - A152998(n+1).
(End)
a(n) = (A187220(n+3) - 7)/8. - Omar E. Pol, Feb 16 2013

A152978 a(n) = A139251(n+2)/4 = A152968(n+1)/2.

Original entry on oeis.org

1, 1, 1, 2, 3, 2, 1, 2, 3, 3, 4, 7, 8, 4, 1, 2, 3, 3, 4, 7, 8, 5, 4, 7, 9, 10, 15, 22, 20, 8, 1, 2, 3, 3, 4, 7, 8, 5, 4, 7, 9, 10, 15, 22, 20, 9, 4, 7, 9, 10, 15, 22, 21, 14, 15, 23, 28, 35, 52, 64, 48, 16, 1, 2, 3, 3, 4, 7, 8, 5, 4, 7, 9, 10, 15, 22, 20, 9, 4, 7, 9, 10, 15, 22, 21, 14, 15, 23
Offset: 1

Views

Author

Omar E. Pol, Dec 16 2008, Dec 20 2008

Keywords

Comments

Also, first differences of toothpick numbers A153000.

Examples

			If written as a triangle, begins:
.1,1;
.1,2,3,2;
.1,2,3,3,4,7,8,4;
.1,2,3,3,4,7,8,5,4,7,9,10,15,22,20,8;
....
Rows converge to A152980.
It appears that row sums give A004171. [From _Omar E. Pol_, May 25 2010]
		

Crossrefs

Cf. toothpick sequence A139250.
Cf. A004171. [From Omar E. Pol, May 25 2010]

Formula

G.f.: (1+x)*(Prod(1+x^(2^k-1)+2*x^(2^k),k=1..oo)-1)/(1+2*x). - N. J. A. Sloane, May 20 2009

Extensions

More terms from Omar E. Pol, Jul 26 2009

A187220 Gullwing sequence (see Comments lines for precise definition).

Original entry on oeis.org

0, 1, 3, 7, 15, 23, 31, 47, 71, 87, 95, 111, 135, 159, 191, 247, 311, 343, 351, 367, 391, 415, 447, 503, 567, 607, 639, 695, 767, 847, 967, 1143, 1303, 1367, 1375, 1391, 1415, 1439, 1471, 1527, 1591, 1631, 1663, 1719, 1791, 1871, 1991, 2167, 2327, 2399, 2431
Offset: 0

Views

Author

Omar E. Pol, Mar 07 2011

Keywords

Comments

The Gullwing (or G-toothpick) sequence is a special type of toothpick sequence. It appears that this is a superstructure of A139250.
We define a "G-toothpick" to consist of two arcs of length Pi/2 forming a "gullwing" whose total length is equal to Pi = 3.141592...
A gullwing-shaped toothpick or G-toothpick or simply "gull" is formed by two Q-toothpicks (see A187210).
A G-toothpick has a midpoint and two endpoints. An endpoint is said to be "exposed" if it is not the midpoint or endpoint of any other G-toothpick.
The sequence gives the number of G-toothpicks in the structure after n stages. A187221 (the first differences) gives the number of G-toothpicks added at n-th stage.
a(n) is also the diameter of a circle whose circumference equals the total length of all gulls in the gullwing structure after n stages.
It appears that the gullwing pattern has a recursive, fractal-like structure. The animation shows the fractal-like behavior.
Note that the structure contains many different types of geometrical figures, for example: circles, hearts, etc. All figures are formed by arcs.
It appears that there are infinitely many types of circular shapes, which are related to the rectangles of the toothpick structure of A139250.
It also appears that the structure contains a nice pattern formed by distinct modular substructures: one central cross surrounded by several asymmetrical crosses (or "hidden crosses") of distinct sizes, and also several "nuclei" of crosses. This pattern is essentially similar to the crosses of A139250 but here the structure is harder to see. For example, consider the nucleus of a cross; in the toothpick structure a nucleus is formed by two squares and two rectangles but here a nucleus is formed by two circles and two hearts.
It appears furthermore that this structure has connections with the square-cross fractal and with the T-square fractal, just as in the case of the toothpick structure of A139250.
For more information see A139250 and A187210.
It appears this is also the connection between A147562 (the Ulam-Warburton cellular automaton) and the toothpick sequence A139250. The behavior of the function is similar to A147562 but here the structure is more complex. (see Plot 2 button: A147562 vs A187220). - Omar E. Pol, Mar 11 2011, Mar 13 2011
From Omar E. Pol, Mar 25 2011: (Start)
If we remove the first gull of the structure so we can see that there is a correspondence between the gullwing structure and the I-toothpick structure of A139250, for example: a pair of opposite gulls in horizontal position in the gullwing structure is equivalent to a vertical I-toothpick with length 4 in the I-toothpick structure, such that the midpoint of each horizontal gull coincides with the midpoint of each vertical toothpick of the I-toothpick. See A160164.
Also, B-toothpick sequence. We define a "B-toothpick" to consist of four arcs of length Pi/2 forming a "bell" similar to the Gauss function. A Bell-shaped toothpick or B-toothpick or simply "bell" is formed by four Q-toothpicks (see A187210). A B-toothpick has length 2*Pi. The sequence gives the number of B-toothpicks in the structure after n stages.
Also, if we remove the first bell of the structure, we can find a correspondence between this structure and the I-toothpick structure of A139250. In this case, for example, a pair of opposite bells in horizontal position is equivalent to a vertical I-toothpick with length 8 in the I-toothpick structure, such that the midpoint of each horizontal bell coincides with the midpoint of each vertical toothpick of the I-toothpick. See A160164.
Also, for this sequence there is a third structure formed by isosceles right triangles since gulls or bells can be replaced by these triangles.
Note that the size of the gulls, bells and triangles can be adjusted such that two or three of these structures can be overlaid.
(End)
Also, it appears that if we let k=floor(log_2(n)), then for n >= 1, a(2^k) = (4^(k+1) + 5)/3 - 2^(k+1). Otherwise, a(n)=(4^(k+1) + 5)/3 + 8*A153006(n-1-2^k). - Christopher Hohl, Dec 19 2018

Examples

			On the infinite square grid we start at stage 0 with no G-toothpicks, so a(0) = 0.
At stage 1 we place a G-toothpick:
Midpoint : (0,-1)
Endpoints: (-1,0) and (1,0)
So a(1) = 1. There are two exposed endpoints.
At stage 2 we place two G-toothpicks:
Midpoint of the left G-toothpick : (-1,0)
Endpoints of the left G-toothpick: (-2,1) and (-2,-1)
Midpoint of the right G-toothpick : (1,0)
Endpoints of the right G-toothpick: (2,1) and (2,-1)
So a(2) = 1+2 = 3. There are four exposed endpoints.
And so on...
		

Crossrefs

Programs

  • Mathematica
    Join[{0, 1}, Rest[CoefficientList[Series[(2 x / ((1 - x) (1 + 2 x))) (1+2 x Product[1 + x^(2^k - 1) + 2 x^(2^k), {k, 0, 20}]), {x, 0, 53}], x] + 1 ]] (* Vincenzo Librandi, Jul 02 2017 *)
  • PARI
    A139250(n) = my(msb(m) = 2^(#binary(m)-1), k = (2*msb(n)^2 + 1) / 3); if(n==msb(n), k , k + 2*A139250(n-msb(n)) + A139250(n - msb(n) + 1) - 1)
    a(n) = if(n<2, n, 1 + 2*A139250(n-1)) \\ Iain Fox, Dec 10 2018
  • Python
    def msb(n):
        t=0
        while n>>t>0: t+=1
        return 2**(t - 1)
    def a139250(n):
        k=(2*msb(n)**2 + 1)//3
        return 0 if n==0 else k if n==msb(n) else k + 2*a139250(n - msb(n)) + a139250(n - msb(n) + 1) - 1
    def a(n): return 0 if n==0 else 1 + 2*a139250(n - 1)
    print([a(n) for n in range(101)]) # Indranil Ghosh, Jul 01 2017
    

Formula

a(n) = 1 + 2*A139250(n-1), for n >= 1.
a(n) = 1 + A160164(n-1), for n >= 1. - [Suggested by Omar E. Pol, Mar 13 2011, proved by Nathaniel Johnston, Mar 22 2011]
The formula involving A160164 can be seen by identifying a Gullwing in the n-th generation (n >= 2) with midpoint at (x,y) and endpoints at (x-1,y+1) and (x+1,y+1) with a toothpick in the (n-1)st generation with endpoints at (x,y-1) and (x,y+1) -- this toothpick from (x,y-1) to (x,y+1) should be considered as having length ONE (i.e., it is HALF of an I-toothpick). The formula involving A139250 follows as a result of the relationship between A139250 and A160164.
a(n) = A147614(n-1) + A160124(n-1), n >= 2. - Omar E. Pol, Feb 15 2013
a(n) = 7 + 8*A153000(n-3), n >= 3. - Omar E. Pol, Feb 16 2013

A160407 First differences of toothpick numbers A160406.

Original entry on oeis.org

1, 1, 2, 2, 2, 2, 4, 4, 2, 2, 4, 4, 4, 6, 10, 8, 2, 2, 4, 4, 4, 6, 10, 8, 4, 6, 10, 10, 12, 20, 26, 16, 2, 2, 4, 4, 4, 6, 10, 8, 4, 6, 10, 10, 12, 20, 26, 16, 4, 6, 10, 10, 12, 20, 26, 18, 12, 20, 28, 30, 42
Offset: 1

Views

Author

Omar E. Pol, May 23 2009

Keywords

Comments

Number of toothpicks added at n-th stage in the toothpick structure of A160406.
From Omar E. Pol, Mar 15 2020: (Start)
The cellular automaton described in A160406 has word "ab", so the structure of this triangle is as follows:
a,b;
a,b;
a,b,a,b;
a,b,a,b,a,b,a,b;
a,b,a,b,a,b,a,b,a,b,a,b,a,b,a,b;
...
The row lengths are the terms of A011782 multiplied by 2, equaling the column 2 of the square array A296612: 2, 2, 4, 8, 16, ...
This arrangement has the property that the odd-indexed columns (a) contain numbers of the toothpicks that are parallel to initial toothpick, and the even-indexed columns (b) contain numbers of the toothpicks that are orthogonal to the initial toothpick.
For further information about the "word" of a cellular automaton see A296612. (End)

Examples

			From _Omar E. Pol_, Jul 18 2009, Mar 15 2020: (Start)
If written as a triangle:
1,1;
2,2;
2,2,4,4;
2,2,4,4,4,6,10,8;
2,2,4,4,4,6,10,8,4,6,10,10,12,20,26,16;
2,2,4,4,4,6,10,8,4,6,10,10,12,20,26,16,4,6,10,10,12,20,26,18,12,20,28,30,42;...
(End)
		

Crossrefs

Extensions

More terms from N. J. A. Sloane, Jul 17 2009
Previous Showing 11-20 of 53 results. Next