cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 438 results. Next

A007562 Number of planted trees where non-root, non-leaf nodes an even distance from root are of degree 2.

Original entry on oeis.org

1, 1, 1, 2, 3, 6, 10, 20, 36, 72, 137, 275, 541, 1098, 2208, 4521, 9240, 19084, 39451, 82113, 171240, 358794, 753460, 1587740, 3353192, 7100909, 15067924, 32044456, 68272854, 145730675, 311575140, 667221030, 1430892924, 3072925944, 6607832422, 14226665499
Offset: 1

Views

Author

Keywords

Comments

There is no planted tree on one node by definition.
Column k=2 of A144018. - Alois P. Heinz, Oct 17 2012
It appears that a(n) is also the number of locally non-intersecting unlabeled rooted trees with n nodes, where a tree is locally non-intersecting if the branches directly under of any non-leaf node have empty intersection. - Gus Wiseman, Aug 22 2018

Examples

			G.f. = x + x^2 + x^3 + 2*x^4 + 3*x^5 + 6*x^6 + 10*x^7 + 20*x^8 + 36*x^9 + ...
From _Joerg Arndt_, Jun 23 2014: (Start)
The a(8) = 20 such trees have the following level sequences:
01:  [ 0 1 2 3 4 3 2 1 ]
02:  [ 0 1 2 3 3 3 2 1 ]
03:  [ 0 1 2 3 3 2 2 1 ]
04:  [ 0 1 2 3 3 2 1 1 ]
05:  [ 0 1 2 3 2 3 2 1 ]
06:  [ 0 1 2 3 2 2 2 1 ]
07:  [ 0 1 2 3 2 2 1 1 ]
08:  [ 0 1 2 3 2 1 2 1 ]
09:  [ 0 1 2 3 2 1 1 1 ]
10:  [ 0 1 2 2 2 2 2 1 ]
11:  [ 0 1 2 2 2 2 1 1 ]
12:  [ 0 1 2 2 2 1 2 1 ]
13:  [ 0 1 2 2 2 1 1 1 ]
14:  [ 0 1 2 2 1 2 2 1 ]
15:  [ 0 1 2 2 1 2 1 1 ]
16:  [ 0 1 2 2 1 1 1 1 ]
17:  [ 0 1 2 1 2 1 2 1 ]
18:  [ 0 1 2 1 2 1 1 1 ]
19:  [ 0 1 2 1 1 1 1 1 ]
20:  [ 0 1 1 1 1 1 1 1 ]
Successive levels change by at most 1 and the last level is 1, compare to the example in A000081.
(End)
From _Gus Wiseman_, Aug 22 2018: (Start)
The a(7) = 10 locally non-intersecting trees:
  (o(o(oo)))
  (o(oo(o)))
  (o(oooo))
  (oo(o(o)))
  (oo(ooo))
  (o(o)(oo))
  (ooo(oo))
  (oo(o)(o))
  (oooo(o))
  (oooooo)
(End)
		

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Maple
    with(numtheory): etr:= proc(p) local b; b:= proc(n) option remember; if n=0 then 1 else (add(d*p(d), d=divisors(n)) +add(add(d*p(d), d= divisors(j)) *b(n-j), j=1..n-1))/n fi end end: b:= etr(a): a:= n-> `if`(n<=1, n, b(n-2)): seq(a(n), n=1..40);  # Alois P. Heinz, Sep 06 2008
  • Mathematica
    etr[p_] := Module[{b}, b[n_] := b[n] = If[n == 0, 1, (Sum[ Sum[ d*p[d], {d, Divisors[j]}]*b[n-j], {j, 1, n-1}] + Sum[ d*p[d], {d, Divisors[n]}])/n]; b]; b = etr[a]; a[n_] := If[n <= 1, n, b[n-2]]; Table[a[n], {n, 1, 36}] (* Jean-François Alcover, Aug 01 2013, after Alois P. Heinz *)
    purt[n_]:=If[n==1,{{}},Join@@Table[Select[Union[Sort/@Tuples[purt/@ptn]],Intersection@@#=={}&],{ptn,IntegerPartitions[n-1]}]];
    Table[Length[purt[n]],{n,10}] (* Gus Wiseman, Aug 22 2018 *)
  • PARI
    {a(n) = local(A); if( n<2, n>0, A = x / (1 - x) + O(x^n); for(k=2, n-2, A /= (1 - x^k + O(x^n))^polcoeff(A, k-1)); polcoeff(A, n-1))}; /* Michael Somos, Oct 06 2003 */

Formula

Shifts left 2 places under Euler transform.
G.f.: x + x^2 / (Product_{k>0} (1 - x^k)^a(k)). - Michael Somos, Oct 06 2003
a(n) ~ c * d^n / n^(3/2), where d = 2.246066877341161662499621547921... and c = 0.68490297576105466417608032... . - Vaclav Kotesovec, Jun 23 2014
G.f. A(x) satisfies: A(x) = x + x^2 * exp(A(x) + A(x^2)/2 + A(x^3)/3 + A(x^4)/4 + ...). - Ilya Gutkovskiy, Jun 11 2021

Extensions

Better description from Christian G. Bower, May 15 1998

A007476 Shifts 2 places left under binomial transform.

Original entry on oeis.org

1, 1, 1, 2, 4, 9, 23, 65, 199, 654, 2296, 8569, 33825, 140581, 612933, 2795182, 13298464, 65852873, 338694479, 1805812309, 9963840219, 56807228074, 334192384460, 2026044619017, 12642938684817, 81118550133657, 534598577947465, 3615474317688778, 25070063421597484
Offset: 0

Views

Author

Keywords

Comments

Starting (1, 2, 4, 9, 23, ...) = row sums of triangle A153859. - Gary W. Adamson, Jan 02 2009
Binomial transform of the sequence starting (1, 1, 2, 4, 9, ...) = first differences of (1, 2, 4, 9, 23, ...); that is, (1, 2, 5, 14, 42, 134, 455, 1642, ...). - Gary W. Adamson, May 20 2013
Row sums of triangle A256161. - Margaret A. Readdy, Mar 16 2015
RG-words corresponding to set partitions of {1, ..., n} with every even entry appearing exactly once. - Margaret A. Readdy, Mar 16 2015
a(n) is the number of partitions of [n] whose blocks can be written such that the smallest elements form an increasing sequence and the largest elements form a decreasing sequence. a(5) = 9: 12345, 1235|4, 1245|3, 125|34, 1345|2, 135|24, 145|23, 15|234, 15|24|3. - Alois P. Heinz, Apr 24 2023

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Row sums of A246118.

Programs

  • Maple
    a:= proc(n) option remember; `if`(n<2, 1,
          add(a(j)*binomial(n-2, j), j=0..n-2))
        end:
    seq(a(n), n=0..31);  # Alois P. Heinz, Jul 29 2019
  • Mathematica
    a[0] = a[1] = 1; a[n_] := a[n] = Sum[Binomial[n-2, k] a[k], {k, 0, n-2}]; Table[a[n], {n, 0, 24}] (* Jean-François Alcover, Aug 08 2012, after Ralf Stephan *)
  • PARI
    a(n)=if(n<2, 1, sum(k=0, n-2, binomial(n-2, k)*a(k))) /* Ralf Stephan; corrected by Manuel Blum, May 22 2010 */

Formula

G.f.: Sum_{k>=0} x^(2k)/(Product_{m=0..k-1} (1-mx) * Product_{m=0..k+1} (1-mx)).
G.f. A(x) satisfies A(x) = 1 + x + (x^2/(1-x))*A(x/(1-x)). - Vladimir Kruchinin, Nov 28 2011
a(n) = A000994(n) + A000995(n). - Peter Bala, Jan 27 2015

Extensions

Spelling correction by Jason G. Wurtzel, Aug 22 2010

A007564 Shifts left when INVERT transform applied thrice.

Original entry on oeis.org

1, 1, 4, 19, 100, 562, 3304, 20071, 124996, 793774, 5120632, 33463102, 221060008, 1473830308, 9904186192, 67015401391, 456192667396, 3122028222934, 21467769499864, 148246598341018, 1027656663676600, 7148588698592956, 49884553176689584
Offset: 0

Views

Author

Keywords

Comments

More generally, coefficients of (1+m*x-sqrt(m^2*x^2-(2*m+2)*x+1))/(2*m*x) are given by a(n) = Sum_{k=0..n} (m+1)^k*N(n,k) where N(n,k) = (1/n)*binomial(n,k)*binomial(n,k+1) are the Narayana numbers (A001263). - Benoit Cloitre, May 24 2003
If y = x*A(x) then 3*y^2 - (1+2*x)*y + x = 0 and x = y*(1-3*y)/(1-2*y). - Michael Somos, Sep 28 2003
The sequence 0,1,4,19,... with g.f. (1-4*x-sqrt(1-8*x+4*x^2))/(6*x) and has a(n) = Sum_{k=0..floor((n-1)/2)} binomial(n-1,2k)*C(k)*4^(n-1-2*k)*3^k. a(n+1) = Sum_{k=0..floor(n/2)} binomial(n,2*k)*C(k)*4^(n-2*k)*3^k counts Motzkin paths of length n in which the level steps have 4 colors and the up steps have 3. It is the binomial transform of A107264 and corresponds to the series reversion of x/(1+4*x+3*x^2). - Paul Barry, May 18 2005
The Hankel transform of this sequence is 3^binomial(n+1,2). - Philippe Deléham, Oct 29 2007
a(n) is the number of Schroder paths of semilength n in which there are no (2,0)-steps at level 0 and at a higher level they come in 2 colors. Example: a(2)=4 because we have UDUD, UUDD, UBD, and URD, where U=(1,1), D=(1,-1), while B (R) is a blue (red) (2,0)-step. - Emeric Deutsch, May 02 2011
a(n) is the number of Schroder paths of semilength n-1 in which the (2,0)-steps at level 0 come in 3 colors and those at a higher level come in 2 colors. Example: a(3)=19 because, denoting U=(1,1), H=(1,0), and D=(1,-1), we have 3^2 = 9 paths of shape HH, 3 paths of shape HUD, 3 paths of shape UDH, 2 paths of shape UHD, and 1 path of each of the shapes UDUD and UUDD. - Emeric Deutsch, May 02 2011
From David Callan, Jun 21 2013: (Start)
a(n) = number of (left) planted binary trees with n edges in which each vertex has a designated favorite neighbor. Planted binary trees are counted by the Catalan numbers A000108.
Example: for n=2, there are 2 planted binary trees: edges LL and LR from the root (L=left, R=right). Each has just one vertex with 2 neighbors, and so a(2)=4.
Proof outline: each vertex has 1,2 or 3 neighbors. Let X (resp. Y) denote the number of vertices with 2 (resp. 3) neighbors. Then X + 2Y = n - 1 (split the non-root edges into pairs with a common parent vertex and singletons). Thus the number of choices for designating favorite neighbors is 2^X * 3^Y = 2^(n-1)(3/4)^Y. The distribution for Y is known because, under the rotation correspondence, a.k.a. the deBruijn-Morselt bijection, vertices with 2 children in an n-edge planted binary tree correspond to DDUs in a Dyck path, and DDUs have the Touchard distribution (A091894) with gf F(x,y) = (1-2x+2xy - sqrt(1-4x+4x^2-4x^2 y))/(2xy). The desired g.f., Sum_{n>=1} a(n)*x^n, is therefore 1/2*(F(2x,3/4)-1). (End)

Examples

			G.f. = 1 + x + 4*x^2 + 19*x^3 + 100*x^4 + 562*x^5 + 3304*x^6 + 20071*x^7 + 124996*x^8 + ...
		

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Maple
    A007564_list := proc(n) local j, a, w; a := array(0..n); a[0] := 1;
    for w from 1 to n do a[w] := a[w-1]+3*add(a[j]*a[w-j-1],j=1..w-1) od;
    convert(a, list) end: A007564_list(21); # Peter Luschny, May 19 2011
  • Mathematica
    a[0]=1; a[1]=1; a[n_]/;n>=2 := a[n] = a[n-1] + 3 Sum[a[k-1]a[n-k],{k,n-1}] ; Table[a[n],{n,0,10}] (* David Callan, Aug 25 2009 *)
    Table[Hypergeometric2F1[-n, 1 - n, 2, 3], {n, 0, 22}] (* Arkadiusz Wesolowski, Aug 13 2012 *)
    Table[(2^n (LegendreP[n+1, 2] - LegendreP[n-1, 2]) + 2 KroneckerDelta[n])/(6n+3), {n, 0, 20}] (* Vladimir Reshetnikov, Nov 01 2015 *)
    CoefficientList[Series[(1+2x-Sqrt[1-8x+4x^2])/(6x),{x,0,30}],x] (* Harvey P. Dale, Feb 07 2016 *)
  • PARI
    {a(n) = if( n<1, n==0, sum( k=0, n, 3^k * binomial( n, k) * binomial( n, k+1)) / n)} /* Michael Somos, Sep 28 2003 */
    
  • PARI
    {a(n) = if( n<0, 0, n++; polcoeff( serreverse( x * (1 - 3*x) / (1 - 2*x) + x * O(x^n)), n))} /* Michael Somos, Sep 28 2003 */
    
  • PARI
    a(n) = (2^n*(pollegendre(n+1,2)-pollegendre(n-1,2)) + 2*(n==0))/(6*n+3); \\ Michel Marcus, Nov 02 2015
    
  • PARI
    x='x+O('x^100); Vec((1+2*x-sqrt(1-8*x+4*x^2))/(6*x)) \\ Altug Alkan, Nov 02 2015

Formula

G.f.: (1+2*x-sqrt(1-8*x+4*x^2))/(6*x). - Emeric Deutsch, Nov 03 2001
a(0)=1; for n>=1, a(n) = Sum_{k=0..n} 3^k*N(n,k) where N(n,k) = (1/n)*binomial(n, k)*binomial(n, k+1) are the Narayana numbers (A001263). - Benoit Cloitre, May 24 2003
a(n) = Sum_{k=0..n} A088617(n, k)*3^k*(-2)^(n-k). - Philippe Deléham, Jan 21 2004
With offset 1: a(1) = 1, a(n) = -2*a(n-1) + 3*Sum_{i=1..n-1} a(i)*a(n-i). - Benoit Cloitre, Mar 16 2004
D-finite with recurrence a(n) = (4*(2n-1)*a(n-1) - 4*(n-2)*a(n-2)) / (n+1) for n>=2, a(0) = a(1) = 1. - Philippe Deléham, Aug 19 2005
From Paul Barry, Dec 15 2008: (Start)
G.f.: 1/(1-x/(1-3x/(1-x/(1-3x/(1-x/(1-3x/(1-x/(1-3x........ (continued fraction).
The g.f. of a(n+1) is 1/(1-4x-3x^2/(1-4x-3x^2/(1-4x-3x^2/(1-4x-3x^2.... (continued fraction). (End)
a(0) = 1, for n>=1, 3a(n) = A047891(n). - Aoife Hennessy (aoife.hennessy(AT)gmail.com), Dec 02 2009
a(n) = upper left term in M^n, M = the production matrix:
1, 1
3, 3, 3
1, 1, 1, 1
3, 3, 3, 3, 3
1, 1, 1, 1, 1, 1
...
- Gary W. Adamson, Jul 08 2011
G.f.: A(x)= (1+2*x-sqrt(1-8*x+4*x^2))/(6*x)= 1/G(0); G(k)= 1 + 2*x - 3*x/G(k+1); (continued fraction, 1-step ). - Sergei N. Gladkovskii, Jan 05 2012
a(n) ~ sqrt(6+4*sqrt(3))*(4+2*sqrt(3))^n/(6*sqrt(Pi)*n^(3/2)). - Vaclav Kotesovec, Oct 07 2012
a(n) = 2^n/sqrt(3)*LegendreP(n,-1,2) for n >= 1, where LegendreP is the associated Legendre function of the first kind, in Maple's notation. - Robert Israel, Mar 24 2015

A004212 Shifts one place left under 3rd-order binomial transform.

Original entry on oeis.org

1, 1, 4, 19, 109, 742, 5815, 51193, 498118, 5296321, 60987817, 754940848, 9983845261, 140329768789, 2087182244308, 32725315072135, 539118388883449, 9304591246975030, 167804098493079547, 3155000165773280893
Offset: 0

Views

Author

Keywords

Comments

Equals the eigensequence of triangle A027465, the cube of Pascal's triangle. - Gary W. Adamson, Apr 10 2009
Length-n restricted growth strings (RGS) [s(0),s(1),...,s(n-1)] where s(k)<=F(k)+3 where F(0)=0 and F(k+1)=s(k+1) if s(k+1)-s(k)=3, otherwise F(k+1)=F(k); see example and Fxtbook link. - Joerg Arndt, Apr 30 2011

Examples

			Restricted growth strings: a(0)=1 corresponds to the empty string, a(1)=1 to [0],
a(2)=3 to [00], [01], [02], and [03], a(3) = 19 to
        RGS           F
01:  [ 0 0 0 ]    [ 0 0 0 ]
02:  [ 0 0 1 ]    [ 0 0 0 ]
03:  [ 0 0 2 ]    [ 0 0 0 ]
04:  [ 0 0 3 ]    [ 0 0 3 ]
05:  [ 0 1 0 ]    [ 0 0 0 ]
06:  [ 0 1 1 ]    [ 0 0 0 ]
07:  [ 0 1 2 ]    [ 0 0 0 ]
08:  [ 0 1 3 ]    [ 0 0 3 ]
09:  [ 0 2 0 ]    [ 0 0 0 ]
10:  [ 0 2 1 ]    [ 0 0 0 ]
11:  [ 0 2 2 ]    [ 0 0 0 ]
12:  [ 0 2 3 ]    [ 0 0 3 ]
13:  [ 0 3 0 ]    [ 0 3 3 ]
14:  [ 0 3 1 ]    [ 0 3 3 ]
15:  [ 0 3 2 ]    [ 0 3 3 ]
16:  [ 0 3 3 ]    [ 0 3 3 ]
17:  [ 0 3 4 ]    [ 0 3 3 ]
18:  [ 0 3 5 ]    [ 0 3 3 ]
19:  [ 0 3 6 ]    [ 0 3 6 ]
- _Joerg Arndt_, Apr 30 2011
		

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A075498 (row sums).
Cf. A027465. - Gary W. Adamson, Apr 10 2009
Cf. A004211 (RGS where s(k)<=F(k)+2), A004213 (s(k)<=F(k)+4), A005011 (s(k)<=F(k)+5), A000110 (s(k)<=F(k)+1). - Joerg Arndt, Apr 30 2011
Cf. A009235.

Programs

  • Mathematica
    Table[Sum[StirlingS2[n,k] 3^(-k+n),{k,n}],{n,20}] (* Vincenzo Librandi, May 21 2012 *)
    Table[3^n BellB[n, 1/3], {n, 0, 20}] (* Vladimir Reshetnikov, Oct 20 2015 *)
  • Maxima
    a(n):=if n=0 then 1 else sum(3^(n-k)*binomial(n-1,k-1)*a(k-1),k,1,n); /* Vladimir Kruchinin, Nov 28 2011 */
  • PARI
    x='x+O('x^66); /* that many terms */
    egf=exp(intformal(exp(3*x))); /* =  1 + x + 2*x^2 + 19/6*x^3 + 109/24*x^4 + ... */
    /* egf=exp(1/3*(exp(3*x)-1)) */ /* alternative computation */
    Vec(serlaplace(egf)) /* show terms */ /* Joerg Arndt, Apr 30 2011 */
    

Formula

a_n = Sum_{k=0..n} 3^(n-k)*Stirling2(n, k). - Emeric Deutsch, Feb 11 2002
E.g.f.: exp((exp(3*x)-1)/3).
O.g.f. A(x) satisfies A'(x)/A(x) = e^(3*x).
E.g.f.: exp(Integral_{t = 0..x} exp(3*t)). - Joerg Arndt, Apr 30 2011
O.g.f.: Sum_{k>=0} x^k/Product_{j=1..k} (1-3*j*x). - Joerg Arndt, Apr 30 2011
Hankel transform is A000178(n)*3^C(n+1,2). - Paul Barry, Mar 31 2008
Define f_1(x), f_2(x), ... such that f_1(x)=e^x, f_{n+1}(x) = (d/dx)(x*f_n(x)), for n=2,3,.... Then a(n) = e^(-1/2)*3^{n-1}*f_n(1/3). - Milan Janjic, May 30 2008
a(n) = the upper left term in M^n, M = the following infinite square production matrix:
1, 3, 0, 0, 0, ...
1, 1, 3, 0, 0, ...
1, 2, 1, 3, 0, ...
1, 3, 3, 1, 3, ...
... (in which a diagonal of (3,3,3,...) is appended to the right of Pascal's triangle). - Gary W. Adamson, Jul 29 2011
G.f. satisfies A(x) = 1+x/(1-3*x)*A(x/(1-3*x)). a(n) = Sum_{k=1..n} 3^(n-k)*binomial(n-1,k-1)*a(k-1), n > 0, a(0)=1. - Vladimir Kruchinin, Nov 28 2011 [corrected by Ilya Gutkovskiy, May 02 2019]
From Peter Bala, May 16 2012: (Start)
Recurrence equation: a(n+1) = Sum_{k = 0..n} 3^(n-k)*C(n,k)*a(k). Written umbrally this is a(n+1) = (a + 3)^n (expand the binomial and replace a^k with a(k)). More generally, a*f(a) = f(a+3) holds umbrally for any polynomial f(x). An inductive argument then establishes the umbral recurrence a*(a-3)*(a-6)*...*(a-3*(n-1)) = 1 with a(0) = 1. Compare with the Bell numbers B(n) = A000110(n), which satisfy the umbral recurrence B*(B-1)*...*(B-(n-1)) = 1 with B(0) = 1.
Touchard's congruence holds: for prime p not equal to 3, a(p+k) == (a(k) + a(k+1)) (mod p) for k = 0,1,2,... (adapt the proof of Theorem 10.1 in Gessel). In particular, a(p) == 2 (mod p) for prime p <> 3. (End)
G.f.: (G(0) - 1)/(x-1) where G(k) = 1 - 1/(1-x*3*k)/(1-x/(x-1/G(k+1) )); (recursively defined continued fraction). - Sergei N. Gladkovskii, Jan 16 2013
G.f.: T(0)/(1-x), where T(k) = 1 - 3*x^2*(k+1)/( 3*x^2*(k+1) - (1-x-3*x*k)*(1-4*x-3*x*k)/T(k+1) ); (continued fraction). - Sergei N. Gladkovskii, Oct 19 2013
a(n) ~ 3^n * n^n * exp(n/LambertW(3*n) - 1/3 - n) / (sqrt(1 + LambertW(3*n)) * LambertW(3*n)^n). - Vaclav Kotesovec, Jul 15 2021
a(n) = exp(-1/3)*Sum_{n >= 0} (3*n)^k/(n!*3^n). - Peter Bala, Jun 29 2024

A047891 Number of planar rooted trees with n nodes and tricolored end nodes.

Original entry on oeis.org

1, 3, 12, 57, 300, 1686, 9912, 60213, 374988, 2381322, 15361896, 100389306, 663180024, 4421490924, 29712558576, 201046204173, 1368578002188, 9366084668802, 64403308499592, 444739795023054, 3082969991029800
Offset: 1

Views

Author

Keywords

Comments

Essentially the same as A025231.
Also number of lattice paths from (0,0) to (n-1,n-1), with steps (1,0),(0,1) and (1,1), that never rise above the line y=x and the steps (1,1) are colored red or blue. - Emeric Deutsch, May 28 2003
The Hankel transform (see A001906 for definition) of this sequence forms A049656(n+1) = [1, 3, 27, 729, 59049, 14348907, ...]. - Philippe Deléham, Aug 29 2006
With a(0)=0, this is the series reversion of x(1-x)/(1+2x). - Paul Barry, Oct 18 2009
Row sums of the Riordan matrix A121576. - Emanuele Munarini, May 18 2011

Examples

			G.f. = x + 3*x^2 + 12*x^3 + 57*x^4 + 300*x^5 + 1686*x^6 + 9912*x^7 + ...
		

References

  • Lin Yang and S.-L. Yang, The parametric Pascal rhombus. Fib. Q., 57:4 (2019), 337-346.

Crossrefs

Programs

  • Magma
    Q:=Rationals(); R:=PowerSeriesRing(Q, 40); Coefficients(R!((1-2*x-Sqrt(1-8*x+4*x^2))/(2*x))); // G. C. Greubel, Feb 10 2018
  • Maple
    A047891_list := proc(n) local j, a, w; a := array(0..n); a[0] := 1;
    for w from 1 to n do a[w] := 3*a[w-1]+add(a[j]*a[w-j-1], j=1..w-1) od; convert(a,list)end: A047891_list(20); # Peter Luschny, May 19 2011
  • Mathematica
    CoefficientList[Series[(1-2x-Sqrt[1-8x+4x^2])/(2x),{x,0,100}],x] (* Emanuele Munarini, May 18 2011 *)
    a[ n_] := SeriesCoefficient[(1 - 2 x - Sqrt[1 - 8 x + 4 x^2]) / 2, {x, 0, n}]; (* Michael Somos, Apr 10 2014 *)
    Table[2^(n-1) (LegendreP[n, 2] - LegendreP[n-2, 2])/(2n-1), {n, 1, 20}] (* Vladimir Reshetnikov, Nov 01 2015 *)
    Table[3 Hypergeometric2F1[1-n, 2-n, 2, 3] - 2 KroneckerDelta[n-1], {n, 1, 20}] (* Vladimir Reshetnikov, Nov 01 2015 *)
  • Maxima
    makelist(sum(binomial(n,k)*binomial(2*n-k+1,n+1)*(2*n^2-6*(k-1)*n+3*k^2-9*k+4)/((n-k+2)*(n-k+1))*2^k,k,0,n)/2,n,0,24); /* Emanuele Munarini, May 18 2011 */
    
  • PARI
    a(n)=if(n<2,n==1,n--;sum(k=0,n,3^k*binomial(n,k)*binomial(n,k-1))/n)
    
  • PARI
    x='x+O('x^100); Vec((1-2*x-sqrt(1-8*x+4*x^2))/2) \\ Altug Alkan, Nov 02 2015
    

Formula

G.f.: (1 - 2*x - sqrt(1 - 8*x + 4*x^2))/2.
For n>0, a(n+1) = (1/n)*Sum_{k=0..n} 3^k*C(n, k)*C(n, k-1) - Benoit Cloitre, May 10 2003
a(1)=1, a(n) = 2*a(n-1) + Sum_{i=1..(n-1)} a(i)*a(n-i). - Benoit Cloitre, Mar 16 2004
The Hankel transform (see A001906 for definition) of this sequence form A049656(n+1)= [1, 3, 27, 729, 59049, 14348907, ...]. - Philippe Deléham, Aug 29 2006
2*a(n) = A054872(n+1). - Philippe Deléham, Aug 17 2007
From Paul Barry, Feb 01 2009: (Start)
G.f.: x/(1-2x-x/(1-2x-x/(1-2x-x/(1-2x-x/(1-... (continued fraction);
a(n+1) = Sum_{k=0..n} C(n+k,2k)*2^(n-k)*A000108(k). (End)
G.f.: x/(1-3x/(1-x/(1-3x/(1-x/(1-3x/(1-x/(1-3x/(1-... (continued fraction). - Paul Barry, Oct 18 2009
a(1) = 1, for n>=1, a(n+1) = 3*A007564(n). - Aoife Hennessy (aoife.hennessy(AT)gmail.com), Dec 02 2009
From Emanuele Munarini, May 18 2011: (Start)
a(n+1) = (Sum_{k=0..n} binomial(n,k)*binomial(2*n-k+1,n+1)*(2*n^2-6*(k-1)*n+3*k^2-9*k+4)/((n-k+2)*(n-k+1))*2^k)/2.
D-finite with recurrence: (n+2)*(n+3)*a(n+3) - 6*(n+2)^2*a(n+2) - 12*(n)^2*a(n+1) + 8*n*(n-1)*a(n) = 0. (End)
G.f.: A(x) = (1-2*x-sqrt(4*x^2-8*x+1))/2 = 1 - G(0); G(k)= 1 + 2*x - 3*x/G(k+1); (continued fraction, 1-step). - Sergei N. Gladkovskii, Jan 05 2012
G.f.: x/W(0), where W(k)= k+1 - 2*x*(k+1) - x*(k+1)*(k+2)/W(k+1); (continued fraction). - Sergei N. Gladkovskii, Aug 16 2013
From Vladimir Reshetnikov, Nov 01 2015: (Start)
a(n) = 2^(n-1)*(LegendreP_n(2) - LegendreP_{n-2}(2))/(2n-1).
a(n) = 3*hypergeom([1-n,2-n], [2], 3) - 2*0^(n-1). (End)
a(n) = 2^(n-1)*hypergeom([1-n, n], [2], -1/2). - Peter Luschny, Nov 25 2020
a(n) ~ 3^(1/4) * (1 + sqrt(3))^(2*n - 1) / (2*sqrt(Pi)*n^(3/2)). - Vaclav Kotesovec, Jul 31 2021
D-finite with recurrence n*a(n) +4*(-2*n+3)*a(n-1) +4*(n-3)*a(n-2)=0. - R. J. Mathar, Aug 01 2022

Extensions

More terms from Christian G. Bower, Dec 11 1999

A019586 Vertical para-Fibonacci sequence: takes value i on later (i.e., b_j, j >= 2) terms of i-th Fibonacci sequence defined by b_0 = i, b_1 = [ tau(i+1) ].

Original entry on oeis.org

0, 0, 0, 1, 0, 2, 1, 0, 3, 2, 1, 4, 0, 5, 3, 2, 6, 1, 7, 4, 0, 8, 5, 3, 9, 2, 10, 6, 1, 11, 7, 4, 12, 0, 13, 8, 5, 14, 3, 15, 9, 2, 16, 10, 6, 17, 1, 18, 11, 7, 19, 4, 20, 12, 0, 21, 13, 8, 22, 5, 23, 14, 3, 24, 15, 9, 25, 2, 26, 16, 10, 27, 6, 28, 17, 1, 29, 18, 11, 30, 7, 31, 19, 4, 32, 20, 12
Offset: 1

Views

Author

Keywords

Comments

Gives number of row in Wythoff array that contains n. - Casey Mongoven, Sep 10 2005
For a method of generating this sequence that does not refer to the Wythoff array or Fibonacci numbers, see A003603. - Clark Kimberling, Oct 29 2009

Crossrefs

Equals A003603(n) - 1.
Cf. Wythoff array: A035513.

Programs

  • Maple
    A019586 := proc(n::posint)
        local r,c,W ;
        for r from 1 do
            for c from 1 do
                W := A035513(r,c) ;
                if W = n then
                    return r-1 ;
                elif W > n then
                    break ;
                end if;
            end do:
        end do:
    end proc:
    seq(A019586(n),n=1..100) ; # R. J. Mathar, Aug 13 2021
  • Mathematica
    row[1] = row[2] = {1}; row[n_] := row[n] = Module[{ro, pos, lp, ins}, ro = row[n - 1]; pos = Position[ro, Alternatives @@ Intersection[ro, row[n - 2]]] // Flatten; lp = Length[pos]; ins = Range[lp] + Max[ro]; Do[ro = Insert[ro, ins[[i]], pos[[i]] + i], {i, 1, lp}]; ro];
    Flatten[Array[row, 9] - 1] (* Jean-François Alcover, Jul 12 2016, after Clark Kimberling *)

Formula

Says which row of Wythoff array (starting row count at 0) contains n.
If delete first occurrence of 0, 1, 2, 3, ... the sequence is unchanged.

Extensions

Casey Mongoven reports that where the sequence reads 15,9,2,16,10,6,29,1,30,11,7,19,..., the 29 and 30 should be 17 and 18.
More terms from Antonio G. Astudillo (afg_astudillo(AT)lycos.com), Mar 29 2003

A055302 Triangle of number of labeled rooted trees with n nodes and k leaves, n >= 1, 1 <= k <= n.

Original entry on oeis.org

1, 2, 0, 6, 3, 0, 24, 36, 4, 0, 120, 360, 140, 5, 0, 720, 3600, 3000, 450, 6, 0, 5040, 37800, 54600, 18900, 1302, 7, 0, 40320, 423360, 940800, 588000, 101136, 3528, 8, 0, 362880, 5080320, 16087680, 15876000, 5143824, 486864, 9144, 9, 0, 3628800
Offset: 1

Views

Author

Christian G. Bower, May 11 2000

Keywords

Comments

Beginning with the second row, dividing each row by n gives the mirror of row n-1 of A141618. Under the exponential transform, the mirror of A141618 is generated, relating the number of connected graphs here to the number of disconnected graphs associated with A141618 (cf. A127671 and A036040). - Tom Copeland, Oct 25 2014

Examples

			Triangle begins
     1,
     2,     0;
     6,     3,     0;
    24,    36,     4,     0;
   120,   360,   140,     5,    0;
   720,  3600,  3000,   450,    6, 0;
  5040, 37800, 54600, 18900, 1302, 7, 0;
		

References

  • Miklos Bona, editor, Handbook of Enumerative Combinatorics, CRC Press, 2015, page 313.

Crossrefs

Row sums give A000169. Columns 1 through 12: A000142, A055303-A055313. Cf. A055314.
Cf. A248120 for a natural refinement.

Programs

  • Maple
    T:= (n, k)-> (n!/k!)*Stirling2(n-1, n-k):
    seq(seq(T(n, k), k=1..n), n=1..10);  # Alois P. Heinz, Nov 13 2013
  • Mathematica
    Table[Table[n!/k! StirlingS2[n-1,n-k], {k,1,n}], {n,0,10}]//Grid  (* Geoffrey Critzer, Dec 01 2012 *)
  • PARI
    A055302(n,k)=n!/k!*stirling(n-1, n-k,2);
    for(n=1,10,for(k=1,n,print1(A055302(n,k),", "));print());
    \\ Joerg Arndt, Oct 27 2014

Formula

E.g.f. (relative to x) satisfies: A(x,y) = xy + x*exp(A(x,y)) - x. Divides by n and shifts up under exponential transform.
T(n,k) = (n!/k!)*Stirling2(n-1, n-k). - Vladeta Jovovic, Jan 28 2004
T(n,k) = A055314(n,k)*(n-k) + A055314(n,k+1)*(k+1). The first term is the number of such trees with root degree > 1 while the second term is the number of such trees with root degree = 1. This simplifies to the above formula by Vladeta Jovovic. - Geoffrey Critzer, Dec 01 2012
E.g.f.: G(x,t) = log[1 + t * N(x*t,1/t)], where N(x,t) is the e.g.f. of A141618. Also, G(x*t,1/t)= log[1 + N(x,t)/t] is the comp. inverse in x of x / [1 + t * (e^x - 1)]. - Tom Copeland, Oct 26 2014

A004213 Shifts one place left under 4th-order binomial transform.

Original entry on oeis.org

1, 1, 5, 29, 201, 1657, 15821, 170389, 2032785, 26546673, 376085653, 5736591885, 93614616409, 1625661357673, 29905322979421, 580513190237573, 11850869542405409, 253669139947767777, 5678266212792053029, 132607996474971041789, 3224106929536557918697
Offset: 0

Views

Author

Keywords

Comments

Length-n restricted growth strings (RGS) [s(0),s(1),...,s(n-1)] where s(k)<=F(k)+4 where F(0)=0 and F(k+1)=s(k+1) if s(k+1)-s(k)=4, otherwise F(k+1)=F(k); see example and Fxtbook link. - Joerg Arndt, Apr 30 2011

Examples

			Restricted growth strings: a(0)=1 corresponds to the empty string, a(1)=1 to [0],
a(2)=3 to [00], [01], [02], [03], and [04], a(3) = 29 to
       RGS          F
.1:  [ 0 0 0 ]    [ 0 0 0 ]
.2:  [ 0 0 1 ]    [ 0 0 0 ]
.3:  [ 0 0 2 ]    [ 0 0 0 ]
.4:  [ 0 0 3 ]    [ 0 0 0 ]
.5:  [ 0 0 4 ]    [ 0 0 4 ]
.6:  [ 0 1 0 ]    [ 0 0 0 ]
.7:  [ 0 1 1 ]    [ 0 0 0 ]
.8:  [ 0 1 2 ]    [ 0 0 0 ]
.9:  [ 0 1 3 ]    [ 0 0 0 ]
10:  [ 0 1 4 ]    [ 0 0 4 ]
11:  [ 0 2 0 ]    [ 0 0 0 ]
12:  [ 0 2 1 ]    [ 0 0 0 ]
13:  [ 0 2 2 ]    [ 0 0 0 ]
14:  [ 0 2 3 ]    [ 0 0 0 ]
15:  [ 0 2 4 ]    [ 0 0 4 ]
16:  [ 0 3 0 ]    [ 0 0 0 ]
17:  [ 0 3 1 ]    [ 0 0 0 ]
18:  [ 0 3 2 ]    [ 0 0 0 ]
19:  [ 0 3 3 ]    [ 0 0 0 ]
20:  [ 0 3 4 ]    [ 0 0 4 ]
21:  [ 0 4 0 ]    [ 0 4 4 ]
22:  [ 0 4 1 ]    [ 0 4 4 ]
23:  [ 0 4 2 ]    [ 0 4 4 ]
24:  [ 0 4 3 ]    [ 0 4 4 ]
25:  [ 0 4 4 ]    [ 0 4 4 ]
26:  [ 0 4 5 ]    [ 0 4 4 ]
27:  [ 0 4 6 ]    [ 0 4 4 ]
28:  [ 0 4 7 ]    [ 0 4 4 ]
29:  [ 0 4 8 ]    [ 0 4 8 ]
[_Joerg Arndt_, Apr 30 2011]
		

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A075499 (row sums).
A004211 (RGS where s(k)<=F(k)+2), A004212 (s(k)<=F(k)+3), A005011 (s(k)<=F(k)+5), A000110 (s(k)<=F(k)+1). - Joerg Arndt, Apr 30 2011

Programs

  • Maple
    A004213 := proc(n)
        add(4^(n-m)*combinat[stirling2](n,m),m=0..n) ;
    end proc:
    seq(A004213(n),n=0..30) ; # R. J. Mathar, Aug 20 2022
  • Mathematica
    Table[4^n BellB[n, 1/4], {n, 0, 20}] (* Vladimir Reshetnikov, Oct 20 2015 *)
  • Maxima
    a(n):=if n=0 then 1 else sum(4^(n-k)*binomial(n-1, k-1)*a(k-1), k, 1, n); /* Vladimir Kruchinin, Nov 28 2011 */
  • PARI
    x='x+O('x^66);
    egf=exp(intformal(exp(4*x))); /* =  1 + x + 5/2*x^2 + 29/6*x^3 + 67/8*x^4 + ... */
    /* egf=exp(1/4*(exp(4*x)-1)) */ /* alternative computation */
    Vec(serlaplace(egf)) /* Joerg Arndt, Apr 30 2011 */
    

Formula

a(n) = Sum_{m=0..n} 4^(n-m)*Stirling2(n, m).
E.g.f.: exp((exp(4*x)-1)/4).
O.g.f. A(x) satisfies A'(x)/A(x) = e^(4x).
E.g.f.: exp(Integral_{t = 0..x} exp(4*t)). - Joerg Arndt, Apr 30 2011
O.g.f.: Sum_{k>=0} x^k/Product_{j=1..k} (1-4*j*x). - Joerg Arndt, Apr 30 2011
Define f_1(x), f_2(x), ... such that f_1(x) = e^x, f_{n+1}(x) = (d/dx)(x*f_n(x)), for n = 2, 3, .... Then a(n) = e^(-1/4)*4^{n-1}*f_n(1/4). - Milan Janjic, May 30 2008
a(n) = upper left term in M^n, M = an infinite square production matrix in which a diagonal of (4,4,4,...) is appended to the right of Pascal's triangle:
1, 4, 0, 0, 0, ...
1, 1, 4, 0, 0, ...
1, 2, 1, 4, 0, ...
1, 3, 3, 1, 4, ...
... - Gary W. Adamson, Jul 29 2011
G.f. satisfies A(x) = 1 + x/(1 - 4*x)*A(x/(1 - 4*x)). a(n) = Sum_{k = 1..n} 4^(n-k)*binomial(n-1,k-1)*a(k-1), n > 0, a(0) = 1. - Vladimir Kruchinin, Nov 28 2011 [corrected by Ilya Gutkovskiy, May 02 2019]
G.f.: (G(0) - 1)/(x-1) where G(k) = 1 - 1/(1-4*k*x)/(1-x/(x-1/G(k+1) )); (recursively defined continued fraction). - Sergei N. Gladkovskii, Jan 24 2013
G.f.: (G(0) - 1)/(1+x) where G(k) = 1 + 1/(1-4*k*x)/(1-x/(x+1/G(k+1) )); (recursively defined continued fraction). - Sergei N. Gladkovskii, Jan 31 2013
G.f.: T(0)/(1-x), where T(k) = 1 - 4*x^2*(k+1)/( 4*x^2*(k+1) - (1-x-4*x*k)*(1-5*x-4*x*k)/T(k+1) ); (continued fraction). - Sergei N. Gladkovskii, Oct 19 2013
a(n) = exp(-1/4) * Sum_{k>=0} 4^(n-k) * k^n / k!. - Vaclav Kotesovec, Jul 15 2021
a(n) ~ 4^n * n^n * exp(n/LambertW(4*n) - 1/4 - n) / (sqrt(1 + LambertW(4*n)) * LambertW(4*n)^n). - Vaclav Kotesovec, Jul 15 2021
From Peter Bala, Jun 29 2024: (Start)
a(n) = exp(-1/4)*Sum_{n >= 0} (4*n)^k/(n!*4^n).
Touchard's congruence holds: for odd prime p, a(p+k) == (a(k) + a(k+1)) (mod p) for k = 0,1,2,.... In particular, a(p) == 2 (mod p) for odd prime p. See A004211. (End)

A047841 Autobiographical numbers: Fixed under operator T (A047842): "Say what you see".

Original entry on oeis.org

22, 10213223, 10311233, 10313314, 10313315, 10313316, 10313317, 10313318, 10313319, 21322314, 21322315, 21322316, 21322317, 21322318, 21322319, 31123314, 31123315, 31123316, 31123317, 31123318, 31123319
Offset: 1

Views

Author

Ulrich Schimke (ulrschimke(AT)aol.com)

Keywords

Comments

A digit count numerically summarizes the frequency of digits 0 through 9 in that order when they occur in a number.
This uses a different method from A108810. Here the digits are described in increasing order, whereas in A108810 they can be described in any order.
This sequence is finite, since T(x) < x for every x with at least 22 digits. Last term is a(109) = 101112213141516171819. - Schimke
A character in the Verghese (2009) novel declares that 10213223 "is the only number that describes itself when you read it." - Alonso del Arte, Jan 26 2014

Examples

			10313314 contains 1 0's, 3 1's, 3 3's and 1 4's, hence T(10313314) = 10313314 is in the sequence
The entry 3122331418, for instance, is a member since it is indeed made up of three 1's, two 2's, three 3's, one 4 and one 8.
		

References

  • J. N. Kapur, Reflections of a Mathematician, Chapter 33, pp. 314-318, Arya Book Depot, New Delhi 1996.
  • Abraham Verghese, Cutting for Stone: A Novel. New York: Alfred A. Knopf (2009): 294.

Crossrefs

Cf. A005151, which is the sequence 1, T(1), T(T(1)), .. ending in the fixed-point 21322314.

Extensions

Entry revised by N. J. A. Sloane, Dec 15 2006

A000994 Shifts 2 places left under binomial transform.

Original entry on oeis.org

1, 0, 1, 1, 2, 5, 13, 36, 109, 359, 1266, 4731, 18657, 77464, 337681, 1540381, 7330418, 36301105, 186688845, 995293580, 5491595645, 31310124067, 184199228226, 1116717966103, 6968515690273, 44710457783760, 294655920067105, 1992750830574681, 13817968813639426
Offset: 0

Views

Author

Keywords

Comments

a(n) is the number of permutations of [n-1] that avoid both of the dashed patterns 1-23 and 3-12 and start with a descent (or are a singleton). For example, a(5)=5 counts 2143, 3142, 3214, 3241, 4321. - David Callan, Nov 21 2011

Examples

			A(x) = 1 + x^2/(1-x) + x^4/((1-x)^2*(1-2x)) + x^6/((1-x)^2*(1-2x)^2*(1-3x)) +...
		

References

  • Ulrike Sattler, Decidable classes of formal power series with nice closure properties, Diplomarbeit im Fach Informatik, Univ. Erlangen - Nuernberg, Jul 27 1994
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Column k=2 of A143983. Cf. A007476, A088022, A086880.

Programs

  • Haskell
    a000994 n = a000994_list !! n
    a000994_list = 1 : 0 : us where
      us = 1 : 1 : f 2 where
        f x = (1 + sum (zipWith (*) (map (a007318' x) [2..x]) us)) : f (x + 1)
    -- Reinhard Zumkeller, Jun 02 2013
  • Maple
    A000994 := proc(n) local k; option remember; if n <= 1 then 1 else 1 + add(binomial(n, k)*A000994(k - 2), k = 2 .. n); fi; end;
  • Mathematica
    a[n_] := a[n] = 1 + Sum[Binomial[n, k]*a[k-2], {k, 2, n}]; Join[{1, 0}, Table[a[n], {n, 0, 24}]] (* Jean-François Alcover, Oct 11 2011, after Maple *)
  • PARI
    a(n)=polcoeff(sum(k=0, n, x^(2*k)*(1-k*x)/prod(j=0, k, 1-j*x+x*O(x^n))^2), n) \\ Paul D. Hanna, Nov 02 2006
    

Formula

Since this satisfies a recurrence similar to that of the Bell numbers (A000110), the asymptotic behavior is presumably just as complicated - see A000110 for details.
However, a(n)/A000995(n) (e.g., 77464/63117) -> 1.228..., the constant in A051148 and A051149.
O.g.f.: A(x) = Sum_{n>=0} x^(2*n)*(1-n*x)/Product_{k=0..n} (1-k*x)^2. - Paul D. Hanna, Nov 02 2006
Let S(n) = Sum_{k >= 1} k^n/k!^2. Then S(n) = a(n)*S(0) + A000995(n)*S(1) is stated in A086880, where S(0) = 2.279585302... (see A070910) and S(1) = 1.590636854... (see A096789). Cf. A088022. - Peter Bala, Jan 27 2015
G.f. A(x) satisfies: A(x) = 1 + x^2 * A(x/(1 - x)) / (1 - x). - Ilya Gutkovskiy, Aug 09 2020
Previous Showing 21-30 of 438 results. Next