cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 18 results. Next

A385719 Expansion of B(x)/sqrt(1 + 2*(B(x)-1)/3), where B(x) is the g.f. of A004355.

Original entry on oeis.org

1, 4, 38, 428, 5204, 66104, 863840, 11515308, 155779966, 2131436392, 29426804398, 409254436452, 5726378247412, 80535621269208, 1137609359823936, 16130112288879248, 229462608491483364, 3273749607191060480, 46826932120849617128, 671341041479214814160, 9644654058165119642624
Offset: 0

Views

Author

Seiichi Manyama, Aug 17 2025

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 20; CoefficientList[Series[Sum[Binomial[6*n, n]*x^n, {n, 0, nmax}] / Sqrt[1 + 2*(Sum[Binomial[6*n, n]*x^n, {n, 0, nmax}] - 1)/3], {x, 0, nmax}], x] (* Vaclav Kotesovec, Aug 20 2025 *)

Formula

Sum_{k=0..n} a(k) * a(n-k) = A385497(n).
G.f.: 1/sqrt(1 - 4*x*g^4*(3-g)) where g = 1+x*g^6 is the g.f. of A002295.
G.f.: g/sqrt((2-g) * (6-5*g)) where g = 1+x*g^6 is the g.f. of A002295.
a(n) ~ 2^(6*n - 1/2) * 3^(6*n + 3/4) / (Gamma(1/4) * n^(3/4) * 5^(5*n + 1/4)) * (1 + 7*Gamma(1/4)^2/(48*Pi*sqrt(30*n))). - Vaclav Kotesovec, Aug 20 2025

A005809 a(n) = binomial(3n,n).

Original entry on oeis.org

1, 3, 15, 84, 495, 3003, 18564, 116280, 735471, 4686825, 30045015, 193536720, 1251677700, 8122425444, 52860229080, 344867425584, 2254848913647, 14771069086725, 96926348578605, 636983969321700, 4191844505805495, 27619435402363035
Offset: 0

Views

Author

Keywords

Comments

Number of paths in Z X Z starting at (0,0) and ending at (3n,0) using steps in {(1,1),(1,-2)}.
Number of even trees with 2n edges and one distinguished vertex. Even trees are rooted plane trees where every vertex (including root) has even degree.
Hankel transform is 3^n*A051255(n), where A051255 is the Hankel transform of C(3n,n)/(2n+1). - Paul Barry, Jan 21 2007
a(n) is the number of stack polyominoes inscribed in an (n+1) X (n+1) box. Equivalently, a(n) is the number of unimodal compositions with n+1 parts in which the maximum value of the parts is n+1. For instance, for n = 2, we have the following compositions: (3,3,3), (2,3,3), (1,3,3), (3,3,1), (3,3,2), (2,2,3), (1,2,3), (2,3,1), (1,1,3), (1,3,1), (3,1,1), (2,3,2), (1,3,2), (3,2,1), (3,2,2). - Emanuele Munarini, Apr 07 2011
Conjecture: a(n)==3 (mod n^3) iff n is an odd prime. - Gary Detlefs, Mar 23 2013. The congruence a(p) = binomial(3*p,p) = 3 (mod p^3) for odd prime p is a known generalization of Wolstenholme's theorem. See Mestrovic, Section 6, equation 35. - Peter Bala, Dec 28 2014
In general, C(k*n,n) = C(k*n-1,n-1)*C((k*n)^2,2)/(3*n*C(k*n+1,3)), n>0. - Gary Detlefs, Jan 02 2014

Examples

			G.f. = 1 + 3*x + 15*x^2 + 84*x^3 + 495*x^4 + 3003*x^5 + 18564*x^6 + ... - _Michael Somos_, Jan 30 2019
		

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 828.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

binomial(k*n,n): A000984 (k = 2), A005810 (k = 4), A001449 (k = 5), A004355 (k = 6), A004368 (k = 7), A004381 (k = 8), A169958 - A169961 (k = 9 thru 12).

Programs

  • Haskell
    a005809 n = a007318 (3*n) n  -- Reinhard Zumkeller, May 06 2012
    
  • Magma
    [ Binomial(3*n,n): n in [0..150] ]; // Vincenzo Librandi, Apr 21 2011
    
  • Maple
    A005809:=n->binomial(3*n,n); seq(A005809(n), n=0..40); # Wesley Ivan Hurt, Mar 21 2014
  • Mathematica
    R[ z_ ] := ((2-18*z + 27*z^2 + 3^(3/2)*z^(3/2)*(27*z-4)^(1/2))/2)^(1/3); f[ z_ ] := ( (R[ z ])^3 + (1-3*z)*(R[ z ])^2 + (1-6*z)*R[ z ] )/( (R[ z ])^4 + (1-6*z)*(R[ z ])^2 + (6*z-1)^2 )
    Table[Binomial[3*n,n],{n,0,40}] (* Vladimir Joseph Stephan Orlovsky, Mar 03 2011 *)
  • Maxima
    makelist(binomial(3*n,n),n,0,100); /* Emanuele Munarini, Apr 07 2011 */
    
  • Maxima
    B(x):=(2/sqrt(3*x))*sin((1/3)*asin(sqrt(27*x/4)))-1;
    taylor(x*diff(B(x),x)/B(x),x,0,10); /* Vladimir Kruchinin, Oct 02 2015 */
  • PARI
    a(n)=binomial(3*n,n) \\ Charles R Greathouse IV, Nov 20 2012
    
  • Sage
    [binomial(3*n,n) for n in range(0, 22)] # Zerinvary Lajos, Dec 16 2009
    

Formula

The g.f. R[ z_ ] below (in the Mathematica field) was found by Kurt Persson (kurt(AT)math.chalmers.se) and communicated by Einar Steingrimsson (einar(AT)math.chalmers.se).
Using Stirling's formula in A000142, it is easy to get the asymptotic expression a(n) ~ (1/2) * (27/4)^n / sqrt(Pi*n / 3). - Dan Fux (dan.fux(AT)OpenGaia.com or danfux(AT)OpenGaia.com), Apr 07 2001
a(n) = Sum_{k=0..n} C(n, k)*C(2n, k). - Paul Barry, May 15 2003
G.f.: 1/(1-3zg^2), where g=g(z) is given by g=1+zg^3, g(0)=1, i.e., (in Maple notation) g := 2*sin(arcsin(3*sqrt(3*z)/2)/3)/sqrt(3*z). - Emeric Deutsch, May 22 2003
G.f.: x*B'(x)/B(x), where B(x)+1 is the g.f. for A001764. - Vladimir Kruchinin, Oct 02 2015
a(n) ~ (1/2)*3^(1/2)*Pi^(-1/2)*n^(-1/2)*2^(-2*n)*3^(3*n)*(1 - 7/72*n^-1 + 49/10368*n^-2 + 6425/2239488*n^-3 - ...). - Joe Keane (jgk(AT)jgk.org), Nov 07 2003
a(n) = A006480(n)/A000984(n). - Lior Manor, May 04 2004
a(n) = Sum_{i_1=0..n, i_2=0..n} binomial(n, i_1)*binomial(n, i_2)*binomial(n, i_1+i_2). - Benoit Cloitre, Oct 14 2004
a(n) = Sum_{k=0..n} A109971(k)*3^k; a(0)=1, a(n) = Sum_{k=0..n} 3^k*C(3n-k,n-k)2k/(3n-k), n>0. - Paul Barry, Jan 21 2007
a(n) = A085478(2n,n). - Philippe Deléham, Sep 17 2009
E.g.f.: 2F2(1/3,2/3;1/2,1;27*x/4), where F(a1,a2;b1,b2;z) is a hypergeometric series. - Emanuele Munarini, Apr 12 2011
a(n) = Sum_{k=0..n} binomial(2*n+k-1,k). - Arkadiusz Wesolowski, Apr 02 2012
G.f.: cos((1/3)*asin(sqrt(27x/4)))/sqrt(1-27x/4). - Tom Copeland, May 24 2012
G.f.: A(x) = 1 + 6*x/(G(0)-6*x) where G(k) = (2*k+2)*(2*k+1) + 3*x*(3*k+1)*(3*k+2) - 6*x*(k+1)*(2*k+1)*(3*k+4)*(3*k+5)/G(k+1); (continued fraction). - Sergei N. Gladkovskii, Jun 30 2012
D-finite with recurrence: 2*n*(2*n-1)*a(n) - 3*(3*n-1)*(3*n-2)*a(n-1) = 0. - R. J. Mathar, Feb 05 2013
a(n) = (2n+1)*A001764(n). - Johannes W. Meijer, Aug 22 2013
a(n) = C(3*n-1,n-1)*C(9*n^2,2)/(3*n*C(3*n+1,3)), n>0. - Gary Detlefs, Jan 02 2014
a(n) = [x^n] 1/(1 - x)^(2*n+1). - Ilya Gutkovskiy, Oct 03 2017
a(n) = hypergeom([-2*n, -n], [1], 1). - Peter Luschny, Mar 19 2018
a(n) = Sum_{k=0..n} binomial(n, k) * binomial(2*n, n-k) = row sums of A110608. - Michael Somos, Jan 30 2019
0 = a(n)*(-3188646*a(n+2) +7322076*a(n+3) -2805111*a(n+4) +273585*a(n+5)) +a(n+1)*(+413343*a(n+2) -1252017*a(n+3) +538344*a(n+4) -55940*a(n+5)) +a(n+2)*(-4131*a(n+2) +38733*a(n+3) -21628*a(n+4) +2528*a(n+5)) for all n in Z. - Michael Somos, Jan 30 2019
Sum_{n>=1} 1/a(n) = A229705. - Amiram Eldar, Nov 14 2020
From Peter Bala, Feb 20 2022: (Start)
The o.g.f. A(x) satisfies the differential equation (4*x - 27*x^2)*A''(x) + (2 - 54*x)*A'(x) - 6*A(x) = 0, with A(0) = 1 and A'(0) = 3.
Algebraic equation: (1 - A(x))*(1 + 2*A(x))^2 + 27*x*A(x)^3 = 0.
Sum_{n >= 1} a(n)*( x*(2*x + 3)^2/(27*(1 + x)^3) )^n = x. (End)
From Vaclav Kotesovec, May 13 2022: (Start)
Sum_{n>=0} a(n) / 3^(2*n) = 2*cos(Pi/9).
Sum_{n>=0} a(n) / (27/2)^n = (1 + sqrt(3))/2.
Sum_{n>=0} a(n) / 3^(3*n) = 2*cos(Pi/18) / sqrt(3).
In general, for k > 27/4, Sum_{n>=0} a(n)/k^n = 2*cos(arccos(1 - 27/(2*k))/6) / sqrt(4 - 27/k). (End)
G.f.: hypergeom([1/3, 2/3], [1/2], 27*z/4), the Gauss hypergeometric function 2F1. - Karol A. Penson, Dec 12 2023
a(n) = 1/4^n * Sum_{k = n..3*n} binomial(k, n)*binomial(3*n, k). - Peter Bala, Jun 29 2025

A005810 a(n) = binomial(4n,n).

Original entry on oeis.org

1, 4, 28, 220, 1820, 15504, 134596, 1184040, 10518300, 94143280, 847660528, 7669339132, 69668534468, 635013559600, 5804731963800, 53194089192720, 488526937079580, 4495151581425648, 41432089765583440, 382460951663844400
Offset: 0

Views

Author

Keywords

Comments

Start off with 0 balls in a box. Find the number of ways you can throw 3 balls back out. Then continue to throw 4 balls into the box after each stage. (I.e., the first stage is 0. Then at the next stage there are 4 ways to throw 3 balls back out.) - Ruppi Rana (ruppirana007(AT)hotmail.com), Mar 03 2004
Central coefficients of A094527. - Paul Barry, Mar 08 2011
This is the case m = 2n in Catalan's formula (2m)!*(2n)!/(m!*(m+n)!*n!) - see Umberto Scarpis in References. - Bruno Berselli, Apr 27 2012
A generating function in terms of a (labyrinthine) solution to a depressed quartic equation is given in the Copeland link for signed A005810. - Tom Copeland, Oct 10 2012
Conjecture: a(n) == 4 (mod n^3) iff n is prime. - Gary Detlefs, Apr 03 2013
For prime p, the congruence a(p) = binomial(4*p,p) = 4 (mod p^3) is a known generalization of Wolstenholme's theorem. See Mestrovic, Section 6, equation 35. - Peter Bala, Dec 28 2014

Examples

			G.f. = 1 + 4*x + 28*x^2 + 220*x^3 + 1820*x^4 + 15504*x^5 + 134596*x^6 + ...
		

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 828.
  • Umberto Scarpis, Sui numeri primi e sui problemi dell'analisi indeterminata in Questioni riguardanti le matematiche elementari, Nicola Zanichelli Editore (1924-1927, third Edition), page 11.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Row 4 of A060539.
binomial(k*n,n): A000984 (k = 2), A005809 (k = 3), A001449 (k = 5), A004355 (k = 6), A004368 (k = 7), A004381 (k = 8), A169958 - A169961 (k = 9 thru 12).

Programs

Formula

a(n) is asymptotic to c*(256/27)^n/sqrt(n) with c = sqrt(2 / (3 Pi)) = 0.460658865961780639... - Benoit Cloitre, Jan 26 2003; corrected by Charles R Greathouse IV, Dec 14 2006
a(n) = Sum_{k=0..2n} binomial(2n,k) * binomial(2n,k-n). - Paul Barry, Mar 08 2011
G.f.: g/(4-3*g) where g = 1+x*g^4 is the g.f. of A002293. - Mark van Hoeij, Nov 11 2011
D-finite with recurrence: 3*n*(3*n-1)*(3*n-2)*a(n) - 8*(4*n-3)*(2*n-1)*(4*n-1)*a(n-1) = 0. - R. J. Mathar, Dec 02 2012
a(n) = binomial(4*n,n-1)*(3*n+1)/n. - Gary Detlefs, Apr 03 2013
a(n) = C(4*n-1,n-1)*C(16*n^2,2)/(3*n*C(4*n+1,3)), n>0. - Gary Detlefs, Jan 02 2014
a(n) = Sum_{i,j,k = 0..n} binomial(n,i)*binomial(n,j)*binomial(n,k)* binomial(n,i+j+k). - Peter Bala, Dec 28 2014
a(n) = GegenbauerC(n, -2*n, -1). - Peter Luschny, May 07 2016
From Ilya Gutkovskiy, Nov 22 2016: (Start)
O.g.f.: 3F2(1/4,1/2,3/4; 1/3,2/3; 256*x/27).
E.g.f.: 3F3(1/4,1/2,3/4; 1/3,2/3,1; 256*x/27). (End)
a(n) = hypergeom([-3*n, -1*n], [1], 1). - Peter Luschny, Mar 19 2018
RHS of the identity Sum_{k = 0..2*n} (-1)^(n+k)*binomial(4*n, k)* binomial(4*n, 2*n-k) = binomial(4*n,n). - Peter Bala, Oct 07 2021
From Peter Bala, Feb 20 2022: (Start)
The o.g.f. A(x) satisfies the differential equation
(-256*x^3 + 27*x^2)*A(x)''' + (-1152*x^2 + 54*x)*A(x)'' + (-816*x + 6)*A(x)' - 24*A(x) = 0 with A(0) = 1, A'(0) = 4 and A''(0) = 56.
Algebraic equation: (1 - A(x))*(1 + 3*A(x))^3 + 256*x*A(x)^4 = 0.
Sum_{n >= 1} a(n)*( x*(3*x + 4)^3/(256*(1 + x)^4) )^n = x. (End)
From Amiram Eldar, Dec 07 2024: (Start)
Sum_{n>=1} 1/a(n) = A378806.
Sum_{n>=1} (-1)^n/a(n) = A378807. (End)
From Peter Bala, Jun 29 2025: (Start)
a(n) = (1/8)^n * Sum_{k = n..4*n} binomial(k, n) * binomial(4*n, k).
Sum_{n >= 0 } a(n)*(1/128)^n = (1/5)*(sqrt(2) + sqrt(7 + 5*sqrt(2))). (End)
From Seiichi Manyama, Aug 16 2025: (Start)
a(n) = Sum_{k=0..n} (-1)^(n-k) * binomial(4*n+1,k).
G.f.: 1/(1 - 4*x*g^3) where g = 1+x*g^4 is the g.f. of A002293. (End)

Extensions

More terms from Henry Bottomley, Oct 06 2000
Corrected by T. D. Noe, Jan 16 2007

A001449 Binomial coefficients binomial(5n,n).

Original entry on oeis.org

1, 5, 45, 455, 4845, 53130, 593775, 6724520, 76904685, 886163135, 10272278170, 119653565850, 1399358844975, 16421073515280, 193253756909160, 2280012686716080, 26958221130508525
Offset: 0

Views

Author

Keywords

References

  • Ronald L. Graham, Donald E. Knuth, and Oren Patashnik, Concrete Mathematics, Addison-Wesley, Reading, 2nd ed. 1994.

Crossrefs

binomial(k*n,n): A000984 (k = 2), A005809 (k = 3), A005810 (k = 4), A004355 (k = 6), A004368 (k = 7), A004381 (k = 8), A169958 - A169961 (k = 9 thru 12).

Programs

  • Magma
    [ Binomial(5*n,n): n in [0..100] ]; // Vincenzo Librandi, Apr 13 2011
    
  • Maple
    f := n->(5*n)!/((4*n)!*(n)!);
  • Mathematica
    Table[ Binomial[5n, n], {n, 0, 18} ]
  • Maxima
    B(x):=sum(binomial(5*n,n-1)/n*x^n,n,1,30);
    taylor(x*diff(B(x),x)/B(x),x,0,10); /* Vladimir Kruchinin, Oct 05 2015 */
    
  • PARI
    a(n) = binomial(5*n, n) \\ Altug Alkan, Oct 05 2015

Formula

a(n) = (5*n)!/((4*n)!*(n)!).
a(n) is asymptotic to c*(3125/256)^n/sqrt(n), with c = sqrt(5/(8*Pi)) = 0.44603102903819277863474159... - Benoit Cloitre, Jan 23 2008
a(n) = C(5*n-1,n-1)*C(25*n^2,2)/(3*n*C(5*n+1,3)), n>0. - Gary Detlefs, Jan 02 2014
G.f.: A(x) = x*B'(x)/B(x), where B(x)+1 is g.f. of A002294. - Vladimir Kruchinin, Oct 05 2015
From Ilya Gutkovskiy, Jan 16 2017: (Start)
O.g.f.: 4F3(1/5,2/5,3/5,4/5; 1/4,1/2,3/4; 3125*x/256).
E.g.f.: 4F4(1/5,2/5,3/5,4/5; 1/4,1/2,3/4,1; 3125*x/256). (End)
a(n) = hypergeom([-4*n, -n], [1], 1). - Peter Luschny, Mar 19 2018
From Peter Bala, Feb 20 2022: (Start)
4*n(4*n-1)*(4*n-2)*(4*n-3)*a(n) = 5*(5*n-1)*(5*n-2)*(5*n-3)*(5*n-4)*a(n-1).
The o.g.f. A(x) is algebraic: (1 - A(x))*(1 + 4*A(x))^4 + 3125*x*A(x)^5 = 0.
Sum_{n >= 1} a(n)*( x*(4*x + 5)^4/(3125*(1 + x)^5) )^n = x. (End)
From Peter Bala, Oct 17 2024: (Start)
Let G******(x) denote the o.g.f. of sequence A******.
For n >= 1 , a(n) = (5/2) * [x^n] G006013(x)^n.
For n >= 1, a(n) = [x^n] (1 + x)^(5*n) = (5/4) * [x^n] (1/(1 - x))^(4*n) = (5/3) * [x^n] G000108(x)^(3*n) = (5/2) * [x^n] G001764(x)^(2*n) = 5 * [x^n] G002293(x)^n.
a(n) = 5 * [x^n] (1 - G006632(x))^(-n) = (5/2) * [x^n] (1 - x*G006013(x))^(-2*n) = (5/3) * [x^n] (1 - x*G000108(x))^(-3*n) (apply Concrete Mathematics, equation 5.60, p. 201). (End)

A224274 a(n) = binomial(4*n,n)/4.

Original entry on oeis.org

1, 7, 55, 455, 3876, 33649, 296010, 2629575, 23535820, 211915132, 1917334783, 17417133617, 158753389900, 1451182990950, 13298522298180, 122131734269895, 1123787895356412, 10358022441395860, 95615237915961100, 883829035553043580, 8179808679272664720, 75788358475481302185
Offset: 1

Views

Author

Gary Detlefs, Apr 02 2013

Keywords

Comments

In general, binomial(k*n,n)/k = binomial(k*n-1,n-1).
Sequences in the OEIS related to this identity are:
. C(2n,n) = A000984, C(2n,n)/2 = A001700;
. C(3n,n) = A005809, C(3n,n)/3 = A025174;
. C(4n,n) = A005810, C(4n,n)/4 = a(n);
. C(5n,n) = A001449, C(5n,n)/5 = A163456;
. C(6n,n) = A004355, C(6n,n)/6 is not in the OEIS.
Conjecture: a(n) == 1 (mod n^3) iff n is an odd prime.
It is known that a(p) == 1(mod p^3) for prime p >= 3. See Mestrovic, Section 3. - Peter Bala, Oct 09 2015

Examples

			For n=2, binomial(4*n,n) = binomial(8,2) = 8*7/2 = 28, so a(2) = 28/4 = 7. - _Michael B. Porter_, Jul 12 2016
		

Crossrefs

Programs

  • Magma
    [Binomial(4*n,n) div 4: n in [1..25]]; // Vincenzo Librandi, Jun 03 2015
  • Maple
    seq(binomial(4*n,n)/4, n=1..17);
  • Mathematica
    Table[Binomial[4 n, n]/4, {n, 30}] (* Vincenzo Librandi, Jun 03 2015 *)
  • PARI
    a(n) = binomial(4*n,n)/4; /* Joerg Arndt, Apr 02 2013 */
    

Formula

a(n) = binomial(4*n,n)/4 = A005810(n)/4.
a(n) = binomial(4*n-1,n-1).
G.f.: A(x) = B'(x)/B(x), where B(x) = 1 + x*B(x)^4 is g.f. of A002293. - Vladimir Kruchinin, Aug 13 2015
From Peter Bala, Oct 08 2015: (Start)
a(n) = 1/2*[x^n] (C(x)^2)^n, where C(x) = (1 - sqrt(1 - 4*x))/(2*x) is the o.g.f. for the Catalan numbers A000108. Cf. A163456.
exp( Sum_{n >= 1} a(n)*x^n/n ) = 1 + x + 4*x^2 + 22*x^3 + ... is the o.g.f. for A002293.
exp( 2*Sum_{n >= 1} a(n)*x^n/n ) = 1 + 2*x + 9*x^2 + 52*x^3 + ... is the o.g.f. for A069271. (End)
From Peter Bala, Nov 04 2015: (Start)
With an offset of 1, the o.g.f. equals f(x)*g(x)^3, where f(x) is the o.g.f. for A005810 and g(x) is the o.g.f. for A002293. More generally, f(x)*g(x)^k is the o.g.f. for the sequence binomial(4*n + k,n). Cf. A262977 (k = -1), A005810 (k = 0), A052203 (k = 1), A257633 (k = 2) and A004331 (k = 4). (End)
a(n) = 1/5*[x^n] (1 + x)/(1 - x)^(3*n + 1) = 1/5*[x^n]( 1/C(-x) )^(5*n), where C(x) = (1 - sqrt(1 - 4*x))/(2*x) is the o.g.f. for the Catalan numbers A000108. Cf. A227726. - Peter Bala, Jul 12 2016
a(n) ~ 2^(8*n-3/2)*3^(-3*n-1/2)*n^(-1/2)/sqrt(Pi). - Ilya Gutkovskiy, Jul 12 2016
O.g.f.: A(x) = f(x)/(1 - 3*f(x)), where f(x) = series reversion (x/(1 + x)^4) = x + 4*x^2 + 22*x^3 + 140*x^4 + 969*x^5 + ... is the o.g.f. of A002293 with the initial term omitted. Cf. A025174. - Peter Bala, Feb 03 2022
Right-hand side of the identities (1/3)*Sum_{k = 0..n} (-1)^(n+k)*C(x*n,n-k)*C((x+3)*n+k-1,k) = C(4*n,n)/4 and (1/4)*Sum_{k = 0..n} (-1)^k*C(x*n,n-k)*C((x-4)*n+k-1,k) = C(4*n,n)/4, both valid for n >= 1 and x arbitrary. - Peter Bala, Feb 28 2022
Right-hand side of the identity (1/3)*Sum_{k = 0..2*n} (-1)^k*binomial(5*n-k-1,2*n-k)*binomial(3*n+k-1,k) = binomial(4*n,n)/4. - Peter Bala, Mar 09 2022
a(n) = [x^n] G(x)^n, where G(x) = 1 + x + 3*x^2 + 12*x^3 + 55*x^4 + 273*x^5 + ... is the g.f. of A001764. - Peter Bala, Oct 17 2024

A060539 Table by antidiagonals of number of ways of choosing k items from n*k.

Original entry on oeis.org

1, 1, 2, 1, 6, 3, 1, 20, 15, 4, 1, 70, 84, 28, 5, 1, 252, 495, 220, 45, 6, 1, 924, 3003, 1820, 455, 66, 7, 1, 3432, 18564, 15504, 4845, 816, 91, 8, 1, 12870, 116280, 134596, 53130, 10626, 1330, 120, 9, 1, 48620, 735471, 1184040, 593775, 142506, 20475, 2024, 153, 10
Offset: 1

Views

Author

Henry Bottomley, Apr 02 2001

Keywords

Examples

			Square array A(n,k) begins:
  1,  1,    1,     1,      1,       1,        1, ...
  2,  6,   20,    70,    252,     924,     3432, ...
  3, 15,   84,   495,   3003,   18564,   116280, ...
  4, 28,  220,  1820,  15504,  134596,  1184040, ...
  5, 45,  455,  4845,  53130,  593775,  6724520, ...
  6, 66,  816, 10626, 142506, 1947792, 26978328, ...
  7, 91, 1330, 20475, 324632, 5245786, 85900584, ...
		

Crossrefs

Columns include A000027, A000384, A006566, A060541.
Main diagonal is A014062.
Cf. A295772.

Programs

  • Maple
    A:= (n, k)-> binomial(n*k, k):
    seq(seq(A(n, 1+d-n), n=1..d), d=1..10);  # Alois P. Heinz, Jul 28 2023
  • PARI
    { i=0; for (m=1, 20, for (n=1, m, k=m - n + 1; write("b060539.txt", i++, " ", binomial(n*k, k))); ) } \\ Harry J. Smith, Jul 06 2009

Formula

A(n,k) = binomial(n*k,k) = A007318(n*k,k) = A060538(n,k)/A060538(n-1,k).

A169958 a(n) = binomial(9*n, n).

Original entry on oeis.org

1, 9, 153, 2925, 58905, 1221759, 25827165, 553270671, 11969016345, 260887834350, 5720645481903, 126050526132804, 2788629694000605, 61902409203193230, 1378095785451705375, 30756373941461374800, 687917389635036844569, 15415916972482007401455, 346051021610256116115150
Offset: 0

Views

Author

N. J. A. Sloane, Aug 07 2010

Keywords

Crossrefs

binomial(k*n,n): A000984 (k = 2), A005809 (k = 3), A005810 (k = 4), A001449 (k = 5), A004355 (k = 6), A004368 (k = 7), A004381 (k = 8), A169959 - A169961 (k = 10 thru 12).

Programs

Formula

a(n) = C(9*n-1, n-1)*C(81*n^2, 2)/(3*n*C(9*n+1, 3)), n > 0. - Gary Detlefs, Jan 02 2014
From Peter Bala, Feb 21 2022: (Start)
The o.g.f. A(x) is algebraic: (1 - A(x))*(1 + 8*A(x))^8 + (9^9)*x*A(x)^9 = 0.
Sum_{n >= 1} a(n)*( x*(8*x + 9)^8/(9^9*(1 + x)^9) )^n = x. (End)
D-finite with recurrence 128*n*(8*n-5) *(4*n-1) *(8*n-7) *(2*n-1) *(8*n-1) *(4*n-3) *(8*n-3)*a(n) -81*(9*n-7) *(9*n-5) *(3*n-1) *(9*n-1) *(9*n-8) *(3*n-2) *(9*n-4) *(9*n-2)*a(n-1)=0. - R. J. Mathar, Aug 19 2025
G.f.: 8F7(8/9, 7/9, 2/3, 5/9, 4/9, 1/3, 2/9 ,1/9 ; 7/8, 3/4, 5/8, 1/2, 3/8, 1/4, 1/8; 387420489/16777216*x). - R. J. Mathar, Aug 19 2025

A004381 Binomial coefficient C(8n,n).

Original entry on oeis.org

1, 8, 120, 2024, 35960, 658008, 12271512, 231917400, 4426165368, 85113005120, 1646492110120, 32006008361808, 624668654531480, 12233149001721760, 240260199935164200, 4730523156632595024, 93343021201262177400, 1845382436487682488000
Offset: 0

Views

Author

Keywords

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 828.

Crossrefs

Row 8 of A060539.
binomial(k*n,n): A000984 (k = 2), A005809 (k = 3), A005810 (k = 4), A001449 (k = 5), A004355 (k = 6), A004368 (k = 7), A169958 - A169961 (k = 9 thru 12).

Programs

Formula

a(n) = C(8*n-1,n-1)*C(64*n^2,2)/(3*n*C(8*n+1,3)), n>0. - Gary Detlefs, Jan 02 2014
From Ilya Gutkovskiy, Jan 16 2017: (Start)
O.g.f.: 7F6(1/8,1/4,3/8,1/2,5/8,3/4,7/8; 1/7,2/7,3/7,4/7,5/7,6/7; 16777216*x/823543).
E.g.f.: 7F7(1/8,1/4,3/8,1/2,5/8,3/4,7/8; 1/7,2/7,3/7,4/7,5/7,6/7,1; 16777216*x/823543).
a(n) ~ 2^(24*n+1)/(sqrt(Pi*n)*7^(7*n+1/2)). (End)
From Peter Bala, Feb 20 2022: (Start)
The o.g.f. A(x) is algebraic: (1 - A(x))*(1 + 7*A(x))^7 + (8^8)*x*A(x)^8 = 0.
Sum_{n >= 1} a(n)*( x*(7*x + 8)^7/(8^8*(1 + x)^8) )^n = x. (End)
From Seiichi Manyama, Aug 16 2025: (Start)
a(n) = Sum_{k=0..n} (-1)^(n-k) * binomial(8*n+1,k).
G.f.: 1/(1 - 8*x*g^7) where g = 1+x*g^8 is the g.f. of A007556.
G.f.: g/(8-7*g) where g = 1+x*g^8 is the g.f. of A007556. (End)

A004368 Binomial coefficient C(7n,n).

Original entry on oeis.org

1, 7, 91, 1330, 20475, 324632, 5245786, 85900584, 1420494075, 23667689815, 396704524216, 6681687099710, 112992892764570, 1917283000904460, 32626924340528840, 556608279578340080, 9516306085765295355, 163011740982048945441
Offset: 0

Views

Author

Keywords

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 828.

Crossrefs

binomial(k*n,n): A000984 (k = 2), A005809 (k = 3), A005810 (k = 4), A001449 (k = 5), A004355 (k = 6), A004381 (k = 8), A169958 - A169961 (k = 9 thru 12).
Cf. A002296.

Programs

  • Magma
    [Binomial(7*n,n): n in [0..20]]; // Vincenzo Librandi, Oct 06 2015
  • Mathematica
    Table[Binomial[7n,n],{n,0,20}] (* Harvey P. Dale, Apr 05 2014 *)
  • Maxima
    B(x):=sum(binomial(7*n,n-1)/n*x^n,n,1,30);
    taylor(x*diff(B(x),x)/B(x),x,0,10); /* Vladimir Kruchinin, Oct 05 2015 */
    
  • PARI
    a(n) = binomial(7*n,n) \\ Altug Alkan, Oct 05 2015
    

Formula

a(n) = C(7*n-1,n-1)*C(49*n^2,2)/(3*n*C(7*n+1,3)), n>0. - Gary Detlefs, Jan 02 2014
G.f.: A(x) = x*B'(x)/B(x), where B(x)+1 is g.f. of A002296. - Vladimir Kruchinin, Oct 05 2015
From Ilya Gutkovskiy, Jan 16 2017: (Start)
O.g.f.: 6F5(1/7,2/7,3/7,4/7,5/7,6/7; 1/6,1/3,1/2,2/3,5/6; 823543*x/46656).
E.g.f.: 6F6(1/7,2/7,3/7,4/7,5/7,6/7; 1/6,1/3,1/2,2/3,5/6,1; 823543*x/46656).
a(n) ~ sqrt(7/3)*7^(7*n)/(2*sqrt(Pi*n)*6^(6*n)). (End)
From Peter Bala, Feb 20 2022: (Start)
The o.g.f. A(x) is algebraic: (1 - A(x))*(1 + 6*A(x))^6 + (7^7)*x*A(x)^7 = 0.
Sum_{n >= 1} a(n)*( x*(6*x + 7)^6/(7^7*(1 + x)^7) )^n = x. (End)

A169961 a(n) = binomial(12*n, n).

Original entry on oeis.org

1, 12, 276, 7140, 194580, 5461512, 156238908, 4529365776, 132601016340, 3911395881900, 116068178638776, 3461014728350400, 103619293824707388, 3112781199432937200, 93780365051563029360, 2832430653037446854640, 85733828145510955528212, 2600022926684976508835280
Offset: 0

Views

Author

N. J. A. Sloane, Aug 07 2010

Keywords

Crossrefs

Programs

  • Magma
    [Binomial(12*n, n): n in [0..20]]; // Vincenzo Librandi, Aug 07 2014
    
  • Mathematica
    Table[Binomial[12 n, n], {n, 0, 20}] (* Vincenzo Librandi, Aug 07 2014 *)
    CoefficientList[Series[HypergeometricPFQ[Range[11]/12, Range[10]/11,(12^12)/(11^11)*x], {x,0,10}],x] (* Bradley Klee, Jul 01 2018 *)
  • PARI
    a(n) = binomial(12*n, n); \\ Michel Marcus, Jul 02 2018

Formula

a(n) = C(12*n-1,n-1)*C(144*n^2,2)/(3*n*C(12*n+1,3)), n>0. - Gary Detlefs, Jan 02 2014
From Bradley Klee, Jul 01 2018 : (Start)
G.f. G(x) and derivatives G^(n)(x)=d^n/dx^n G(x) satisfy a Picard-Fuchs type differential equation, 0=Sum_{m=0..11}(v1_{n}*x^(n+1)-v2_{n}*x^n)*G^(n)(x), with integer coefficient vectors:
v1={479001600, 647647046323200, 99278289544896000, 1290870365178240000, 4245175263164774400, 5313701967430348800, 3083267876011868160, 918801061774295040, 147161631039160320, 12624021804810240, 539424077119488, 8916100448256}
v2={0, 39916800, 14079254112000, 1273481816745600, 11475123393888000, 27687351298068000, 25909403608075680, 11200182937408080, 2427742942653600, 268452344620350, 14265583530550, 285311670611}
G.f.: G(x) = 11F10(m/12;n/11;12^12/11^11*x), m=1..11, n=1..10. (End)
From Vaclav Kotesovec, Jul 15 2018: (Start)
Recurrence: 11*n*(11*n - 10)*(11*n - 9)*(11*n - 8)*(11*n - 7)*(11*n - 6)*(11*n - 5)*(11*n - 4)*(11*n - 3)*(11*n - 2)*(11*n - 1)*a(n) = 41472*(2*n - 1)*(3*n - 2)*(3*n - 1)*(4*n - 3)*(4*n - 1)*(6*n - 5)*(6*n - 1)*(12*n - 11)*(12*n - 7)*(12*n - 5)*(12*n - 1)*a(n-1).
a(n) ~ 2^(24*n + 1/2) * 3^(12*n + 1/2) / (sqrt(Pi*n) * 11^(11*n + 1/2)). (End)
From Peter Bala, Feb 21 2022: (Start)
The o.g.f. A(x) is algebraic: (1 - A(x))*(1 + 11*A(x))^11 + (12^12)*x*A(x)^12 = 0.
Sum_{n >= 1} a(n)*( x*(11*x + 12)^11/(12^12*(1 + x)^12) )^n = x. (End)
From Seiichi Manyama, Aug 16 2025: (Start)
a(n) = Sum_{k=0..n} (-1)^(n-k) * binomial(12*n+1,k).
G.f.: 1/(1 - 12*x*g^11) where g = 1+x*g^12.
G.f.: g/(12-11*g) where g = 1+x*g^12. (End)
Showing 1-10 of 18 results. Next