A000182 Tangent (or "Zag") numbers: e.g.f. tan(x), also (up to signs) e.g.f. tanh(x).
1, 2, 16, 272, 7936, 353792, 22368256, 1903757312, 209865342976, 29088885112832, 4951498053124096, 1015423886506852352, 246921480190207983616, 70251601603943959887872, 23119184187809597841473536, 8713962757125169296170811392, 3729407703720529571097509625856
Offset: 1
Examples
tan(x) = x + 2*x^3/3! + 16*x^5/5! + 272*x^7/7! + ... = x + 1/3*x^3 + 2/15*x^5 + 17/315*x^7 + 62/2835*x^9 + O(x^11). tanh(x) = x - 1/3*x^3 + 2/15*x^5 - 17/315*x^7 + 62/2835*x^9 - 1382/155925*x^11 + ... (sec x)^2 = 1 + x^2 + 2/3*x^4 + 17/45*x^6 + ... a(3)=16 because we have: {1, 3, 2, 5, 4}, {1, 4, 2, 5, 3}, {1, 4, 3, 5, 2}, {1, 5, 2, 4, 3}, {1, 5, 3, 4, 2}, {2, 3, 1, 5, 4}, {2, 4, 1, 5, 3}, {2, 4, 3, 5, 1}, {2, 5, 1, 4, 3}, {2, 5, 3, 4, 1}, {3, 4, 1, 5, 2}, {3, 4, 2, 5, 1}, {3, 5, 1, 4, 2}, {3, 5, 2, 4, 1}, {4, 5, 1, 3, 2}, {4, 5, 2, 3, 1}. - _Geoffrey Critzer_, May 19 2013
References
- Miklos Bona, editor, Handbook of Enumerative Combinatorics, CRC Press, 2015, page 932.
- L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 88.
- John H. Conway and Richard K. Guy, The Book of Numbers, New York: Springer-Verlag, 1996. See p. 111.
- H. Doerrie, 100 Great Problems of Elementary Mathematics, Dover, NY, 1965, p. 69.
- L. M. Milne-Thompson, Calculus of Finite Differences, 1951, p. 148 (the numbers |C^{2n-1}|).
- J. W. Milnor and J. D. Stasheff, Characteristic Classes, Princeton, 1974, p. 282.
- S. Mukai, An Introduction to Invariants and Moduli, Cambridge, 2003; see p. 444.
- H. Rademacher, Topics in Analytic Number Theory, Springer, 1973, Chap. 1, p. 20.
- L. Seidel, Über eine einfache Entstehungsweise der Bernoullischen Zahlen und einiger verwandten Reihen, Sitzungsberichte der mathematisch-physikalischen Classe der königlich bayerischen Akademie der Wissenschaften zu München, volume 7 (1877), 157-187.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- E. van Fossen Conrad, Some continued fraction expansions of elliptic functions, PhD thesis, The Ohio State University, 2002, p. 28.
- J. V. Uspensky and M. A. Heaslet, Elementary Number Theory, McGraw-Hill, NY, 1939, pp. 267-268.
Links
- Seiichi Manyama, Table of n, a(n) for n = 1..243 (terms 1..100 from N. J. A. Sloane)
- V. E. Adler and A. B. Shabat, Volterra chain and Catalan numbers, arXiv:1810.13198 [nlin.SI], 2018.
- J. L. Arregui, Tangent and Bernoulli numbers related to Motzkin and Catalan numbers by means of numerical triangles, arXiv:math/0109108 [math.NT], 2001.
- Étienne Bellin, Arthur Blanc-Renaudie, Emmanuel Kammerer, and Igor Kortchemski, Uniform attachment with freezing, arXiv:2308.00493 [math.PR], 2023. See p. 13.
- Beáta Bényi, Miguel Méndez, José L. Ramírez, and Tanay Wakhare, Restricted r-Stirling Numbers and their Combinatorial Applications, arXiv:1811.12897 [math.CO], 2018.
- Richard P. Brent and David Harvey, Fast computation of Bernoulli, Tangent and Secant numbers, arXiv preprint arXiv:1108.0286 [math.CO], 2011.
- F. C. S. Brown, T. M. A. Fink and K. Willbrand, On arithmetic and asymptotic properties of up-down numbers, arXiv:math/0607763 [math.CO], 2006.
- K.-W. Chen, Algorithms for Bernoulli numbers and Euler numbers, J. Integer Sequences, 4 (2001), #01.1.6.
- Suyuong Choi and Younghan Yoon, A decomposition of graph a-numbers, arXiv:2508.06855 [math.CO], 2025. See p. 13.
- Bishal Deb and Alan D. Sokal, Classical continued fractions for some multivariate polynomials generalizing the Genocchi and median Genocchi numbers, arXiv:2212.07232 [math.CO], 2022. See p. 11.
- D. Dumont, Interprétations combinatoires des nombres de Genocchi, Duke Math. J., 41 (1974), 305-318.
- D. Dumont and G. Viennot, A combinatorial interpretation of the Seidel generation of Genocchi numbers, Preprint, Annotated scanned copy.
- A. L. Edmonds and S. Klee, The combinatorics of hyperbolized manifolds, arXiv preprint arXiv:1210.7396 [math.CO], 2012. - From _N. J. A. Sloane_, Jan 02 2013
- P. Feinsilver, Lie algebras, representations, and analytic semigroups through dual vector fields [broken link]
- C. J. Fewster and D. Siemssen, Enumerating Permutations by their Run Structure, arXiv preprint arXiv:1403.1723 [math.CO], 2014.
- P. Flajolet and R. Sedgewick, Analytic Combinatorics, 2009; see page 144.
- Dominique Foata and Guo-Niu Han, Doubloons and new q-tangent numbers, Quart. J. Math. 62 (2) (2011) 417-432.
- Dominique Foata and Guo-Niu Han, Tree Calculus for Bivariable Difference Equations, Journal of Difference Equations and Applications, 20 (2014), 1453-1488; arXiv:1304.2484 [math.CO], 2013. - From _N. J. A. Sloane_, Feb 02 2013
- Dominique Foata and Guo-Niu Han, Seidel Triangle Sequences and Bi-Entringer Numbers, European Journal of Combinatorics, 42 (2014), 243-260.
- Ghislain R. Franssens, On a Number Pyramid Related to the Binomial, Deleham, Eulerian, MacMahon and Stirling number triangles, Journal of Integer Sequences, Vol. 9 (2006), Article 06.4.1.
- M.-P. Grosset and A. P. Veselov, Bernoulli numbers and solitons, arXiv:math/0503175 [math.GM], 2005.
- Christian Günther and Kai-Uwe Schmidt, L^q norms of Fekete and related polynomials, arXiv:1602.01750 [math.NT], 2016.
- Guo-Niu Han and Jing-Yi Liu, Combinatorial proofs of some properties of tangent and Genocchi numbers, European Journal of Combinatorics, Vol. 71 (2018), pp. 99-110; arXiv preprint, arXiv:1707.08882 [math.CO], 2017-2018.
- Yanjun Han and Jonathan Niles-Weed, Approximate independence of permutation mixtures, arXiv:2408.09341 [math.ST], 2024. See p. 12.
- G. Hetyei, Meixner polynomials of the second kind and quantum algebras representing su(1,1), arXiv preprint arXiv:0909.4352 [math.QA], 2009.
- A. Hodges and C. Sukumar, Bernoulli, Euler, permutations and quantum algebras, Proc. Royal Soc. A (2007) 463, 2401-2414.
- A. Hodges and C. Sukumar, Quantum algebras and parity-dependent spectra, Proc. Royal Soc. A (2007) 463, 2415-2427.
- Jan Hubička, Matěj Konečný, Štěpán Vodseďálek, and Andy Zucker, Counting big Ramsey degrees of the homogeneous and universal K_4-free graph, arXiv:2505.22620 [math.CO], 2025. See pp. 2, 4.
- Hsien-Kuei Hwang and Emma Yu Jin, Asymptotics and statistics on Fishburn matrices and their generalizations, arXiv:1911.06690 [math.CO], 2019.
- Svante Janson, Euler-Frobenius numbers and rounding, arXiv preprint arXiv:1305.3512 [math.PR], 2013
- Donald E. Knuth and Thomas J. Buckholtz, Computation of tangent, Euler and Bernoulli numbers, Math. Comp. 21 1967 663-688.
- D. E. Knuth and Thomas J. Buckholtz, Computation of tangent, Euler and Bernoulli numbers, Math. Comp. 21 1967 663-688. [Annotated scanned copy]
- A. R. Kräuter, Permanenten - Ein kurzer Überblick, Séminaire Lotharingien de Combinatoire, B09b (1983), 34 pp.
- A. R. Kräuter, Über die Permanente gewisser zirkulärer Matrizen..., Séminaire Lotharingien de Combinatoire, B11b (1984), 11 pp.
- Johann Heinrich Lambert, Mémoire sur quelques propriétés remarquables des quantités transcendentes circulaires et logarithmiques, Histoire de l'Académie Royale des Sciences et des Belles-Lettres de Berlin 1761 (Berlin: Haude et Spener, 1768) pp. 265-322. [broken link]
- F. Luca and P. Stanica, On some conjectures on the monotonicity of some arithmetical sequences, J. Combin. Number Theory 4 (2012) 1-10.
- Peter Luschny, Approximation, inclusion and asymptotics of the Euler numbers
- Dragan Mašulović, Big Ramsey spectra of countable chains, arXiv:1912.03022 [math.CO], 2019.
- A. Niedermaier and J. Remmel, Analogues of Up-down Permutations for Colored Permutations, J. Int. Seq. 13 (2010), 10.5.6.
- N. E. Nørlund, Vorlesungen ueber Differenzenrechnung Springer 1924, p. 27.
- N. E. Nörlund, Vorlesungen über Differenzenrechnung, Springer-Verlag, Berlin, 1924 [Annotated scanned copy of pages 144-151 and 456-463]
- Jay Rosen, The Number of Product-Weighted Lead Codes for Ballots and Its Relation to the Ursell Functions of the Linear Ising Model, Journal of Combinatorial Theory, Vol. 20, No.3, May 1976, 377-384.
- G. Rzadkowski, Bernoulli numbers and solitons-revisited, Jrn. Nonlinear Math. Physics, 1711, pp. 121-126. (Added by Tom Copeland, Sep 29 2015)
- Raphael Schumacher, Rapidly Convergent Summation Formulas involving Stirling Series, arXiv preprint arXiv:1602.00336 [math.NT], 2016.
- D. Shanks, Generalized Euler and class numbers, Math. Comp. 21 (1967) 689-694.
- D. Shanks, Corrigendum: Generalized Euler and class numbers. Math. Comp. 22, (1968) 699.
- D. Shanks, Generalized Euler and class numbers, Math. Comp. 21 (1967), 689-694; 22 (1968), 699. [Annotated scanned copy]
- Vladimir Shevelev, The number of permutations with prescribed up-down structure as a function of two variables, INTEGERS, 12 (2012), #A1. - From _N. J. A. Sloane_, Feb 07 2013
- N. J. A. Sloane, Rough notes on Genocchi numbers
- N. J. A. Sloane, My favorite integer sequences, in Sequences and their Applications (Proceedings of SETA '98).
- R. P. Stanley, Permutations
- Ross Street, Trees, permutations and the tangent function gives definition of Joyce trees and tremolo permutations, arXiv:math/0303267 [math.HO], 2003.
- Ross Street, Surprising relationships connecting ploughing a field, mathematical trees, permutations, and trigonometry, Slides from a talk, July 15 2015, Macquarie University. ["There is a Web Page oeis.org by N. J. A. Sloane. It tells, from typing the first few terms of a sequence, whether that sequence has occurred somewhere else in Mathematics. Postgraduate student Daniel Steffen traced this down and found, to our surprise, that the sequence was related to the tangent function tan x. Ryan and Tam searched out what was known about this connection and discovered some apparently new results. We all found this a lot of fun and I hope you will too."]
- Zhi-Wei Sun, Conjectures involving arithmetical sequences, Number Theory: Arithmetic in Shangri-La (eds., S. Kanemitsu, H.-Z. Li and J.-Y. Liu), Proc. the 6th China-Japan Sem. Number Theory (Shanghai, August 15-17, 2011), World Sci., Singapore, 2013, pp. 244-258. - _N. J. A. Sloane_, Dec 28 2012 [broken link]
- Zhi-Wei Sun, Conjectures involving combinatorial sequences, arXiv preprint arXiv:1208.2683 [math.CO], 2012. - From N. J. A. Sloane, Dec 25 2012
- Anna A. Taranenko, Enumeration and constructions of vertices of the polytope of polystochastic matrices, arXiv:2502.09149 [math.CO], 2025. See p. 13.
- M. S. Tokmachev, Correlations Between Elements and Sequences in a Numerical Prism, Bulletin of the South Ural State University, Ser. Mathematics. Mechanics. Physics, 2019, Vol. 11, No. 1, 24-33.
- Yi Wang and Bao-Xuan Zhu, Proofs of some conjectures on monotonicity of number-theoretic and combinatorial sequences, arXiv preprint arXiv:1303.5595 [math.CO], 2013.
- Eric Weisstein's World of Mathematics, Tangent Number
- Eric Weisstein's World of Mathematics, Alternating Permutation
- Philip B. Zhang, On the Real-rootedness of the Descent Polynomials of (n-2)-Stack Sortable Permutations, arXiv preprint arXiv:1408.4235 [math.CO], 2014.
- Bao-Xuan Zhu, Analytic approaches to monotonicity and log-behavior of combinatorial sequences, arXiv preprint arXiv:1309.5693 [math.CO], 2013.
- Index entries for "core" sequences
- Index entries for sequences related to boustrophedon transform
- Index entries for sequences related to Bernoulli numbers.
Crossrefs
Programs
-
Maple
series(tan(x),x,40); with(numtheory): a := n-> abs(2^(2*n)*(2^(2*n)-1)*bernoulli(2*n)/(2*n)); A000182_list := proc(n) local T,k,j; T[1] := 1; for k from 2 to n do T[k] := (k-1)*T[k-1] od; for k from 2 to n do for j from k to n do T[j] := (j-k)*T[j-1]+(j-k+2)*T[j] od od; seq(T[j], j=1..n) end: A000182_list(15); # Peter Luschny, Apr 02 2012
-
Mathematica
Table[ Sum[2^(2*n + 1 - k)*(-1)^(n + k + 1)*k!*StirlingS2[2*n + 1, k], {k, 1, 2*n + 1}], {n, 0, 7}] (* Victor Adamchik, Oct 05 2005 *) v[1] = 2; v[n_] /; n >= 2 := v[n] = Sum[ Binomial[2 n - 3, 2 k - 2] v[k] v[n - k], {k, n - 1}]; Table[ v[n]/2, {n, 15}] (* Zerinvary Lajos, Jul 08 2009 *) Rest@ Union[ Range[0, 29]! CoefficientList[ Series[ Tan[x], {x, 0, 30}], x]] (* Harvey P. Dale, Oct 19 2011; modified by Robert G. Wilson v, Apr 02 2012 *) t[1, 1] = 1; t[1, 0] = 0; t[n_ /; n > 1, m_] := t[n, m] = m*(m+1)*Sum[t[n-1, k], {k, m-1, n-1}]; a[n_] := t[n, 1]; Table[a[n], {n, 1, 15}] (* Jean-François Alcover, Jan 02 2013, after A064190 *) a[ n_] := If[ n < 1, 0, With[{m = 2 n - 1}, m! SeriesCoefficient[ Tan[x], {x, 0, m}]]]; (* Michael Somos, Mar 12 2015 *) a[ n_] := If[ n < 1, 0, ((-16)^n - (-4)^n) Zeta[1 - 2 n]]; (* Michael Somos, Mar 12 2015 *) Table[2 PolyGamma[2n - 1, 1/2]/Pi^(2n), {n, 1, 10}] (* Vladimir Reshetnikov, Oct 18 2015 *) a[ n_] := a[n] = If[ n < 2, Boole[n == 1], Sum[Binomial[2 n - 2, 2 k - 1] a[k] a[n - k], {k, n - 1}]]; (* Michael Somos, Aug 02 2018 *) a[n_] := (2^(2*n)*(2^(2*n) - 1)*Abs[BernoulliB[2*n]])/(2*n); a /@ Range[20] (* Stan Wagon, Nov 21 2022 *)
-
Maxima
a(n):=sum(sum(binomial(k,r)*sum(sum(binomial(l,j)/2^(j-1)*sum((-1)^(n)*binomial(j,i)*(j-2*i)^(2*n),i,0,floor((j-1)/2))*(-1)^(l-j),j,1,l)*(-1)^l*binomial(r+l-1,r-1),l,1,2*n)*(-1)^(1-r),r,1,k)/k,k,1,2*n); /* Vladimir Kruchinin, Aug 23 2010 */
-
Maxima
a[n]:=if n=1 then 1 else 2*sum(sum(binomial(2*j,j+k)*(-4*k^2)^(n-1)*(-1)^k/(4^j),k,1,j),j,1,n-1); makelist(a[n],n,1,30); /* Tani Akinari, Sep 20 2023 */
-
PARI
{a(n) = if( n<1, 0, ((-4)^n - (-16)^n) * bernfrac(2*n) / (2*n))};
-
PARI
{a(n) = my(an); if( n<2, n==1, an = vector(n, m, 1); for( m=2, n, an[m] = sum( k=1, m-1, binomial(2*m - 2, 2*k - 1) * an[k] * an[m-k])); an[n])}; /* Michael Somos */
-
PARI
{a(n) = if( n<1, 0, (2*n - 1)! * polcoeff( tan(x + O(x^(2*n + 2))), 2*n - 1))}; /* Michael Somos */
-
PARI
{a(n) = my(X=x+x*O(x^n),Egf); Egf = x*sum(m=0,n, prod(k=1,m, tanh(2*k*X))); (n-1)!*polcoeff(Egf,n)} /* Paul D. Hanna, May 11 2010 */
-
PARI
/* Continued Fraction for the e.g.f. tan(x), from Paul D. Hanna: */ {a(n)=local(CF=1+O(x)); for(i=1, n, CF=1/(2*(n-i+1)-1-x^2*CF)); (2*n-1)!*polcoeff(x*CF, 2*n-1)}
-
PARI
/* O.g.f. Sum_{n>=1} a(n)*x^n, from Paul D. Hanna Feb 05 2013: */ {a(n)=polcoeff( x+2*x*sum(m=1, n, x^m*prod(k=1, m, (2*k-1)^2/(1+(2*k-1)^2*x +x*O(x^n))) ), n)}
-
Python
# The objective of this implementation is efficiency. # n -> [0, a(1), a(2), ..., a(n)] for n > 0. def A000182_list(n): T = [0 for i in range(1, n+2)] T[1] = 1 for k in range(2, n+1): T[k] = (k-1)*T[k-1] for k in range(2, n+1): for j in range(k, n+1): T[j] = (j-k)*T[j-1]+(j-k+2)*T[j] return T print(A000182_list(100)) # Peter Luschny, Aug 07 2011
-
Python
from sympy import bernoulli def A000182(n): return abs(((2-(2<<(m:=n<<1)))*bernoulli(m)<
Chai Wah Wu, Apr 14 2023 -
Sage
# Algorithm of L. Seidel (1877) # n -> [a(1), ..., a(n)] for n >= 1. def A000182_list(len) : R = []; A = {-1:0, 0:1}; k = 0; e = 1 for i in (0..2*len-1) : Am = 0; A[k + e] = 0; e = -e for j in (0..i) : Am += A[k]; A[k] = Am; k += e if e > 0 : R.append(A[i//2]) return R A000182_list(15) # Peter Luschny, Mar 31 2012
Formula
E.g.f.: log(sec x) = Sum_{n > 0} a(n)*x^(2*n)/(2*n)!.
E.g.f.: tan x = Sum_{n >= 0} a(n+1)*x^(2*n+1)/(2*n+1)!.
E.g.f.: (sec x)^2 = Sum_{n >= 0} a(n+1)*x^(2*n)/(2*n)!.
2/(exp(2x)+1) = 1 + Sum_{n>=1} (-1)^(n+1) a(n) x^(2n-1)/(2n-1)! = 1 - x + x^3/3 - 2*x^5/15 + 17*x^7/315 - 62*x^9/2835 + ...
a(n) = 2^(2*n) (2^(2*n) - 1) |B_(2*n)| / (2*n) where B_n are the Bernoulli numbers (A000367/A002445 or A027641/A027642).
Asymptotics: a(n) ~ 2^(2*n+1)*(2*n-1)!/Pi^(2*n).
Sum[2^(2*n + 1 - k)*(-1)^(n + k + 1)*k!*StirlingS2[2*n + 1, k], {k, 1, 2*n + 1}]. - Victor Adamchik, Oct 05 2005
a(n) = abs[c(2*n-1)] where c(n)= 2^(n+1) * (1-2^(n+1)) * Ber(n+1)/(n+1) = 2^(n+1) * (1-2^(n+1)) * (-1)^n * Zeta(-n) = [ -(1+EN(.))]^n = 2^n * GN(n+1)/(n+1) = 2^n * EP(n,0) = (-1)^n * E(n,-1) = (-2)^n * n! * Lag[n,-P(.,-1)/2] umbrally = (-2)^n * n! * C{T[.,P(.,-1)/2] + n, n} umbrally for the signed Euler numbers EN(n), the Bernoulli numbers Ber(n), the Genocchi numbers GN(n), the Euler polynomials EP(n,t), the Eulerian polynomials E(n,t), the Touchard / Bell polynomials T(n,t), the binomial function C(x,y) = x!/[(x-y)!*y! ] and the polynomials P(j,t) of A131758. - Tom Copeland, Oct 05 2007
a(1) = A094665(0,0)*A156919(0,0) and a(n) = Sum_{k=1..n-1} 2^(n-k-1)*A094665(n-1, k)*A156919(k,0) for n = 2, 3, .., see A162005. - Johannes W. Meijer, Jun 27 2009
G.f.: 1/(1-1*2*x/(1-2*3*x/(1-3*4*x/(1-4*5*x/(1-5*6*x/(1-... (continued fraction). - Paul Barry, Feb 24 2010
From Paul Barry, Mar 29 2010: (Start)
G.f.: 1/(1-2x-12x^2/(1-18x-240x^2/(1-50x-1260x^2/(1-98x-4032x^2/(1-162x-9900x^2/(1-... (continued fraction);
coefficient sequences given by 4*(n+1)^2*(2n+1)*(2n+3) and 2(2n+1)^2 (see Van Fossen Conrad reference). (End)
E.g.f.: x*Sum_{n>=0} Product_{k=1..n} tanh(2*k*x) = Sum_{n>=1} a(n)*x^n/(n-1)!. - Paul D. Hanna, May 11 2010 [corrected by Paul D. Hanna, Sep 28 2023]
a(n) = (-1)^(n+1)*Sum_{j=1..2*n+1} j!*Stirling2(2*n+1,j)*2^(2*n+1-j)*(-1)^j for n >= 0. Vladimir Kruchinin, Aug 23 2010: (Start)
If n is odd such that 2*n-1 is prime, then a(n) == 1 (mod (2*n-1)); if n is even such that 2*n-1 is prime, then a(n) == -1 (mod (2*n-1)). - Vladimir Shevelev, Sep 01 2010
Recursion: a(n) = (-1)^(n-1) + Sum_{i=1..n-1} (-1)^(n-i+1)*C(2*n-1,2*i-1)* a(i). - Vladimir Shevelev, Aug 08 2011
E.g.f.: tan(x) = Sum_{n>=1} a(n)*x^(2*n-1)/(2*n-1)! = x/(1 - x^2/(3 - x^2/(5 - x^2/(7 - x^2/(9 - x^2/(11 - x^2/(13 -...))))))) (continued fraction from J. H. Lambert - 1761). - Paul D. Hanna, Sep 21 2011
From Sergei N. Gladkovskii, Oct 31 2011 to Oct 09 2013: (Start)
Continued fractions:
E.g.f.: (sec(x))^2 = 1+x^2/(x^2+U(0)) where U(k) = (k+1)*(2k+1) - 2x^2 + 2x^2*(k+1)*(2k+1)/U(k+1).
E.g.f.: tan(x) = x*T(0) where T(k) = 1-x^2/(x^2-(2k+1)*(2k+3)/T(k+1)).
E.g.f.: tan(x) = x/(G(0)+x) where G(k) = 2*k+1 - 2*x + x/(1 + x/G(k+1)).
E.g.f.: tanh(x) = x/(G(0)-x) where G(k) = k+1 + 2*x - 2*x*(k+1)/G(k+1).
E.g.f.: tan(x) = 2*x - x/W(0) where W(k) = 1 + x^2*(4*k+5)/((4*k+1)*(4*k+3)*(4*k+5) - 4*x^2*(4*k+3) + x^2*(4*k+1)/W(k+1)).
E.g.f.: tan(x) = x/T(0) where T(k) = 1 - 4*k^2 + x^2*(1 - 4*k^2)/T(k+1).
E.g.f.: tan(x) = -3*x/(T(0)+3*x^2) where T(k)= 64*k^3 + 48*k^2 - 4*k*(2*x^2 + 1) - 2*x^2 - 3 - x^4*(4*k -1)*(4*k+7)/T(k+1).
G.f.: 1/G(0) where G(k) = 1 - 2*x*(2*k+1)^2 - x^2*(2*k+1)*(2*k+2)^2*(2*k+3)/G(k+1).
G.f.: 2*Q(0) - 1 where Q(k) = 1 + x^2*(4*k + 1)^2/(x + x^2*(4*k + 1)^2 - x^2*(4*k + 3)^2*(x + x^2*(4*k + 1)^2)/(x^2*(4*k + 3)^2 + (x + x^2*(4*k + 3)^2)/Q(k+1) )).
G.f.: (1 - 1/G(0))*sqrt(-x), where G(k) = 1 + sqrt(-x) - x*(k+1)^2/G(k+1).
G.f.: Q(0), where Q(k) = 1 - x*(k+1)*(k+2)/( x*(k+1)*(k+2) - 1/Q(k+1)). (End)
O.g.f.: x + 2*x*Sum_{n>=1} x^n * Product_{k=1..n} (2*k-1)^2 / (1 + (2*k-1)^2*x). - Paul D. Hanna, Feb 05 2013
a(n) = (-4)^n*Li_{1-2*n}(-1). - Peter Luschny, Jun 28 2012
a(n) = (-4)^n*(4^n-1)*Zeta(1-2*n). - Jean-François Alcover, Dec 05 2013
Asymptotic expansion: 4*((2*(2*n-1))/(Pi*e))^(2*n-1/2)*exp(1/2+1/(12*(2*n-1))-1/(360*(2*n-1)^3)+1/(1260*(2*n-1)^5)-...). (See Luschny link.) - Peter Luschny, Jul 14 2015
From Peter Bala, Sep 11 2015: (Start)
The e.g.f. A(x) = tan(x) satisfies the differential equation A''(x) = 2*A(x)*A'(x) with A(0) = 0 and A'(0) = 1, leading to the recurrence a(0) = 0, a(1) = 1, else a(n) = 2*Sum_{i = 0..n-2} binomial(n-2,i)*a(i)*a(n-1-i) for the aerated sequence [0, 1, 0, 2, 0, 16, 0, 272, ...].
Note, the same recurrence, but with the initial conditions a(0) = 1 and a(1) = 1, produces the sequence n! and with a(0) = 1/2 and a(1) = 1 produces A080635. Cf. A002105, A234797. (End)
a(n) = 2*polygamma(2*n-1, 1/2)/Pi^(2*n). - Vladimir Reshetnikov, Oct 18 2015
a(n) = 2^(2n-2)*|p(2n-1,-1/2)|, where p_n(x) are the shifted row polynomials of A019538. E.g., a(2) = 2 = 2^2 * |1 + 6(-1/2) + 6(-1/2)^2|. - Tom Copeland, Oct 19 2016
From Peter Bala, May 05 2017: (Start)
With offset 0, the o.g.f. A(x) = 1 + 2*x + 16*x^2 + 272*x^3 + ... has the property that its 4th binomial transform 1/(1 - 4*x) A(x/(1 - 4*x)) has the S-fraction representation 1/(1 - 6*x/(1 - 2*x/(1 - 20*x/(1 - 12*x/(1 - 42*x/(1 - 30*x/(1 - ...))))))), where the coefficients [6, 2, 20, 12, 42, 30, ...] in the partial numerators of the continued fraction are obtained from the sequence [2, 6, 12, 20, ..., n*(n + 1), ...] by swapping adjacent terms. Compare with the S-fraction associated with A(x) given above by Paul Barry.
A(x) = 1/(1 + x - 3*x/(1 - 4*x/(1 + x - 15*x/(1 - 16*x/(1 + x - 35*x/(1 - 36*x/(1 + x - ...))))))), where the unsigned coefficients in the partial numerators [3, 4, 15, 16, 35, 36,...] come in pairs of the form 4*n^2 - 1, 4*n^2 for n = 1,2,.... (End)
a(n) = Sum_{k = 1..n-1} binomial(2*n-2, 2*k-1) * a(k) * a(n-k), with a(1) = 1. - Michael Somos, Aug 02 2018
a(n) = 2^(2*n-1) * |Euler(2*n-1, 0)|, where Euler(n,x) are the Euler polynomials. - Daniel Suteu, Nov 21 2018 (restatement of one of Copeland's 2007 formulas.)
x - Sum_{n >= 1} (-1)^n*a(n)*x^(2*n)/(2*n)! = x - log(cosh(x)). The series reversion of x - log(cosh(x)) is (1/2)*x - (1/2)*log(2 - exp(x)) = Sum_{n >= 0} A000670(n)*x^(n+1)/(n+1)!. - Peter Bala, Jul 11 2022
For n > 1, a(n) = 2*Sum_{j=1..n-1} Sum_{k=1..j} binomial(2*j,j+k)*(-4*k^2)^(n-1)*(-1)^k/(4^j). - Tani Akinari, Sep 20 2023
a(n) = A110501(n) * 4^(n-1) / n (Han and Liu, 2018). - Amiram Eldar, May 17 2024
Comments