cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 23 results. Next

A002275 Repunits: (10^n - 1)/9. Often denoted by R_n.

Original entry on oeis.org

0, 1, 11, 111, 1111, 11111, 111111, 1111111, 11111111, 111111111, 1111111111, 11111111111, 111111111111, 1111111111111, 11111111111111, 111111111111111, 1111111111111111, 11111111111111111, 111111111111111111, 1111111111111111111, 11111111111111111111
Offset: 0

Views

Author

Keywords

Comments

R_n is a string of n 1's.
Base-4 representation of Jacobsthal bisection sequence A002450. E.g., a(4)= 1111 because A002450(4)= 85 (in base 10) = 64 + 16 + 4 + 1 = 1*(4^3) + 1*(4^2) + 1*(4^1) + 1. - Paul Barry, Mar 12 2004
Except for the first two terms, these numbers cannot be perfect squares, because x^2 != 11 (mod 100). - Zak Seidov, Dec 05 2008
For n >= 0: a(n) = (A000225(n) written in base 2). - Jaroslav Krizek, Jul 27 2009, edited by M. F. Hasler, Jul 03 2020
Let A be the Hessenberg matrix of order n, defined by: A[1,j]=1, A[i,i]:=10, (i>1), A[i,i-1]=-1, and A[i,j]=0 otherwise. Then, for n>=1, a(n)=det(A). - Milan Janjic, Feb 21 2010
Except 0, 1 and 11, all these integers are Brazilian numbers, A125134. - Bernard Schott, Dec 24 2012
Numbers n such that 11...111 = R_n = (10^n - 1)/9 is prime are in A004023. - Bernard Schott, Dec 24 2012
The terms 0 and 1 are the only squares in this sequence, as a(n) == 3 (mod 4) for n>=2. - Nehul Yadav, Sep 26 2013
For n>=2 the multiplicative order of 10 modulo the a(n) is n. - Robert G. Wilson v, Aug 20 2014
The above is a special case of the statement that the order of z modulo (z^n-1)/(z-1) is n, here for z=10. - Joerg Arndt, Aug 21 2014
From Peter Bala, Sep 20 2015: (Start)
Let d be a divisor of a(n). Let m*d be any multiple of d. Split the decimal expansion of m*d into 2 blocks of contiguous digits a and b, so we have m*d = 10^k*a + b for some k, where 0 <= k < number of decimal digits of m*d. Then d divides a^n - (-b)^n (see McGough). For example, 271 divides a(5) and we find 2^5 + 71^5 = 11*73*271*8291 and 27^5 + 1^5 = 2^2*7*31*61*271 are both divisible by 271. Similarly, 4*271 = 1084 and 10^5 + 84^5 = 2^5*31*47*271*331 while 108^5 + 4^5 = 2^12*7*31*61*271 are again both divisible by 271. (End)
Starting with the second term this sequence is the binary representation of the n-th iteration of the Rule 220 and 252 elementary cellular automaton starting with a single ON (black) cell. - Robert Price, Feb 21 2016
If p > 5 is a prime, then p divides a(p-1). - Thomas Ordowski, Apr 10 2016
0, 1 and 11 are only terms that are of the form x^2 + y^2 + z^2 where x, y, z are integers. In other words, a(n) is a member of A004215 for all n > 2. - Altug Alkan, May 08 2016
Except for the initial terms, the binary representation of the x-axis, from the left edge to the origin, of the n-th stage of growth of the two-dimensional cellular automaton defined by "Rule 737", based on the 5-celled von Neumann neighborhood, initialized with a single black (ON) cell at stage zero. - Robert Price, Mar 17 2017
The term "repunit" was coined by Albert H. Beiler in 1964. - Amiram Eldar, Nov 13 2020
q-integers for q = 10. - John Keith, Apr 12 2021
Binomial transform of A001019 with leading zero. - Jules Beauchamp, Jan 04 2022

References

  • Albert H. Beiler, Recreations in the Theory of Numbers: The Queen of Mathematics Entertains, New York: Dover Publications, 1964, chapter XI, p. 83.
  • Paulo Ribenboim, The Little Book of Bigger Primes, Springer-Verlag NY 2004. See pp. 235-237.
  • David Wells, The Penguin Dictionary of Curious and Interesting Numbers, Penguin Books, 1987, pp. 197-198.
  • Samuel Yates, Peculiar Properties of Repunits, J. Recr. Math. 2, 139-146, 1969.
  • Samuel Yates, Prime Divisors of Repunits, J. Recr. Math. 8, 33-38, 1975.

Crossrefs

Programs

  • Haskell
    a002275 = (`div` 9) . subtract 1 . (10 ^)
    a002275_list = iterate ((+ 1) . (* 10)) 0
    -- Reinhard Zumkeller, Jul 05 2013, Feb 05 2012
    
  • Magma
    [(10^n-1)/9: n in [0..25]]; // Vincenzo Librandi, Nov 06 2014
    
  • Maple
    seq((10^k - 1)/9, k=0..30); # Wesley Ivan Hurt, Sep 28 2013
  • Mathematica
    Table[(10^n - 1)/9, {n, 0, 19}] (* Alonso del Arte, Nov 15 2011 *)
    Join[{0},Table[FromDigits[PadRight[{},n,1]],{n,20}]] (* Harvey P. Dale, Mar 04 2012 *)
  • Maxima
    a[0]:0$
    a[1]:1$
    a[n]:=11*a[n-1]-10*a[n-2]$
    A002275(n):=a[n]$
    makelist(A002275(n),n,0,30); /* Martin Ettl, Nov 05 2012 */
    
  • PARI
    a(n)=(10^n-1)/9; \\ Michael B. Porter, Oct 26 2009
    
  • PARI
    my(x='x+O('x^30)); concat(0, Vec(x/((1-10*x)*(1-x)))) \\ Altug Alkan, Apr 10 2016
    
  • Python
    print([(10**n-1)//9 for n in range(100)]) # Michael S. Branicky, Apr 30 2022
  • Sage
    [lucas_number1(n, 11, 10) for n in range(21)]  # Zerinvary Lajos, Apr 27 2009
    

Formula

a(n) = 10*a(n-1) + 1, a(0)=0.
a(n) = A000042(n) for n >= 1.
Second binomial transform of Jacobsthal trisection A001045(3n)/3 (A015565). - Paul Barry, Mar 24 2004
G.f.: x/((1-10*x)*(1-x)). Regarded as base b numbers, g.f. x/((1-b*x)*(1-x)). - Franklin T. Adams-Watters, Jun 15 2006
a(n) = 11*a(n-1) - 10*a(n-2), a(0)=0, a(1)=1. - Lekraj Beedassy, Jun 07 2006
a(n) = A125118(n,9) for n>8. - Reinhard Zumkeller, Nov 21 2006
a(n) = A075412(n)/A002283(n). - Reinhard Zumkeller, May 31 2010
a(n) = a(n-1) + 10^(n-1) with a(0)=0. - Vincenzo Librandi, Jul 22 2010
a(n) = A242614(n,A242622(n)). - Reinhard Zumkeller, Jul 17 2014
E.g.f.: (exp(9*x) - 1)*exp(x)/9. - Ilya Gutkovskiy, May 11 2016
a(n) = Sum_{k=0..n-1} 10^k. - Torlach Rush, Nov 03 2020
Sum_{n>=1} 1/a(n) = A065444. - Amiram Eldar, Nov 13 2020
From Elmo R. Oliveira, Aug 02 2025: (Start)
a(n) = A002283(n)/9 = A105279(n)/10.
a(n) = A010785(A017173(n-1)) for n >= 1. (End)

A057951 Number of prime factors of 10^n - 1 (counted with multiplicity).

Original entry on oeis.org

2, 3, 4, 4, 4, 7, 4, 6, 6, 6, 4, 9, 5, 6, 8, 8, 4, 11, 3, 9, 9, 9, 3, 12, 7, 8, 9, 10, 7, 15, 5, 13, 8, 8, 9, 14, 5, 5, 8, 13, 6, 17, 6, 13, 12, 8, 4, 15, 6, 12, 10, 11, 6, 16, 10, 14, 8, 10, 4, 22, 9, 7, 16, 17, 9, 17, 5, 12, 8, 14, 4, 20, 5, 9, 14, 8, 10, 18
Offset: 1

Views

Author

Patrick De Geest, Nov 15 2000

Keywords

Crossrefs

bigomega(b^n-1): this sequence (b=10), A057952 (b=9), A057953 (b=8), A057954 (b=7), A057955 (b=6), A057956 (b=5), A057957 (b=4), A057958 (b=3), A046051 (b=2).

Programs

Formula

Mobius transform of A085035 - T. D. Noe, Jun 19 2003
a(n) = Omega(10^n -1) = Omega(R_n) + 2 = A046053(n) + 2 {where Omega(n) = A001222(n) and R_n = (10^n - 1)/9 = A002275(n)}. - Lekraj Beedassy, Jun 09 2006
a(n) = A001222(A002283(n)). - Ray Chandler, Apr 22 2017

Extensions

Erroneous b-file replaced by Ray Chandler, Apr 26 2017

A057934 Number of prime factors of 10^n + 1 (counted with multiplicity).

Original entry on oeis.org

1, 1, 3, 2, 2, 2, 2, 2, 5, 3, 5, 3, 3, 4, 7, 5, 4, 3, 2, 4, 8, 4, 5, 3, 5, 3, 7, 4, 3, 7, 2, 4, 9, 4, 5, 6, 4, 3, 10, 4, 3, 7, 4, 4, 12, 4, 4, 9, 4, 7, 8, 4, 2, 6, 10, 5, 6, 5, 4, 6, 3, 3, 12, 3, 6, 8, 2, 4, 10, 11, 3, 5, 4, 7, 11, 6, 12, 7, 4, 9, 11, 3, 7, 8, 8, 3, 8, 4, 4, 11, 6, 4, 8, 4, 6, 8, 4, 5, 13
Offset: 1

Views

Author

Patrick De Geest, Oct 15 2000

Keywords

Comments

2^(a(2n)-1)-1 predicts the number of pair-solutions of even length L for AB = A^2 + B^2. For instance, with length 18 we have 10^18 + 1 = 101*9901*999999000001 or 3 divisors F which when put into the Mersenne formula 2^(F-1)-1 yields 3 pairs (see reference 'Puzzle 104' for details).

Crossrefs

bigomega(b^n+1): this sequence (b=10), A057935 (b=9), A057936 (b=8), A057937 (b=7), A057938 (b=6), A057939 (b=5), A057940 (b=4), A057941 (b=3), A054992 (b=2).

Programs

Formula

a(n) = A057951(2n) - A057951(n). - T. D. Noe, Jun 19 2003

A095370 Number of distinct prime factors of the repunit (-1 + 10^n)/9.

Original entry on oeis.org

0, 1, 2, 2, 2, 5, 2, 4, 3, 4, 2, 7, 3, 4, 6, 6, 2, 8, 1, 7, 7, 6, 1, 10, 5, 6, 5, 8, 5, 13, 3, 11, 6, 6, 7, 11, 3, 3, 6, 11, 4, 14, 4, 10, 9, 6, 2, 13, 4, 10, 8, 9, 4, 12, 8, 12, 6, 8, 2, 20, 7, 5, 13, 15, 7, 14, 3, 10, 6, 12, 2, 17, 3, 7, 12, 6, 8, 15, 6, 15, 10, 7, 3, 21, 7, 8, 10, 14, 5, 21, 12, 10
Offset: 1

Views

Author

Labos Elemer, Jun 04 2004; corrected Jun 09 2004

Keywords

Comments

Factoring certain repunits is especially difficult.

Examples

			a(62)=5 because
11111111111111111111111111111111111111111111111111111111111111 =
11 * 2791 * 6943319 * 57336415063790604359 * 909090909090909090909090909091.
a(97)=3 because (10^97 - 1)/9 = 12004721 * 846035731396919233767211537899097169 * 109399846855370537540339266842070119107662296580348039.
		

References

  • Yates, S. "Peculiar Properties of Repunits." J. Recr. Math. 2, 139-146,1969.
  • Yates, S. "Prime Divisors of Repunits." J. Recr. Math. 8, 33-38, 1975.

Crossrefs

Cf. A046053 (total number of prime factors).

Programs

Formula

a(n) = A001221(A002275(n)).
If 3|n, then a(n) = A102347(n); otherwise a(n) = A102347(n) - 1. - Max Alekseyev, Apr 25 2022

Extensions

Terms to a(322) in b-file from Ray Chandler, Apr 22 2017
a(323)-a(352) in b-file from Max Alekseyev, Apr 26 2022

A057935 Number of prime factors of 9^n + 1 (counted with multiplicity).

Original entry on oeis.org

2, 2, 3, 3, 4, 3, 4, 2, 4, 3, 4, 6, 4, 4, 6, 2, 4, 4, 4, 5, 7, 5, 4, 4, 8, 4, 5, 6, 4, 7, 5, 2, 6, 5, 9, 8, 5, 6, 7, 5, 5, 10, 7, 6, 9, 4, 4, 6, 9, 6, 8, 7, 6, 9, 8, 9, 9, 5, 3, 11, 6, 4, 11, 6, 8, 9, 9, 8, 6, 9, 5, 6, 6, 6, 13, 4, 8, 7, 5, 4, 7, 6, 5, 11, 8, 5, 8, 7, 4, 11, 7, 9, 9, 5, 9, 7, 5, 6, 10, 7, 6
Offset: 1

Views

Author

Patrick De Geest, Oct 15 2000

Keywords

Crossrefs

bigomega(b^n+1): A057934 (b=10), this sequence (b=9), A057936 (b=8), A057937 (b=7), A057938 (b=6), A057939 (b=5), A057940 (b=4), A057941 (b=3), A054992 (b=2).

Programs

  • Magma
    f:=func; [f(9^n + 1):n in [1..100]]; // Marius A. Burtea, Feb 02 2020
  • Mathematica
    PrimeOmega[Table[9^n + 1, {n, 1, 30}]] (* Amiram Eldar, Feb 02 2020 *)

Formula

a(n) = A057952(2n) - A057952(n). - T. D. Noe, Jun 19 2003
a(n) = A001222(A062396(n)) = A057941(2*n). - Amiram Eldar, Feb 02 2020

A070528 Number of divisors of 10^n-1 (999...999 with n digits).

Original entry on oeis.org

3, 6, 8, 12, 12, 64, 12, 48, 20, 48, 12, 256, 24, 48, 128, 192, 12, 640, 6, 384, 256, 288, 6, 2048, 96, 192, 96, 768, 96, 16384, 24, 6144, 128, 192, 384, 5120, 24, 24, 128, 6144, 48, 49152, 48, 4608, 1280, 192, 12, 16384, 48, 3072, 512, 1536, 48, 12288, 768
Offset: 1

Views

Author

Henry Bottomley, May 02 2002

Keywords

Examples

			a(7)=12 since the divisors of 9999999 are 1, 3, 9, 239, 717, 2151, 4649, 13947, 41841, 1111111, 3333333, 9999999.
		

Crossrefs

Programs

  • Mathematica
    DivisorSigma[0,#]&/@(10^Range[60]-1) (* Harvey P. Dale, Jan 14 2011 *)
    Table[DivisorSigma[0, 10^n - 1], {n, 60}] (* T. D. Noe, Aug 18 2011 *)
  • PARI
    a(n) = numdiv(10^n - 1); \\ Michel Marcus, Sep 08 2015

Formula

a(n) = A000005(A002283(n)).
a(n) = Sum_{d|n} A059892(d).
a(n) = A070529(n)*(A007949(n)+3)/(A007949(n)+1).

Extensions

Terms to a(280) in b-file from Hans Havermann, Aug 19 2011
a(281)-a(322) in b-file from Ray Chandler, Apr 22 2017
a(323)-a(352) in b-file from Max Alekseyev, May 04 2022

A105992 Near-repunit primes.

Original entry on oeis.org

101, 113, 131, 151, 181, 191, 211, 311, 811, 911, 1117, 1151, 1171, 1181, 1511, 1811, 2111, 4111, 8111, 10111, 11113, 11117, 11119, 11131, 11161, 11171, 11311, 11411, 16111, 101111, 111119, 111121, 111191, 111211, 111611, 112111, 113111, 131111, 311111, 511111
Offset: 1

Views

Author

Shyam Sunder Gupta, Apr 29 2005

Keywords

Comments

According to the prime glossary "a near-repunit prime is a prime all but one of whose digits are 1." This would also include {2, 3, 5, 7, 13, 17, 19, 31, 41, 61 and 71}, but this sequence only lists terms with more than two digits. - M. F. Hasler, Feb 10 2020

Examples

			a(2)=113 is a term because 113 is a prime and all digits are 1 except one.
		

References

  • C. Caldwell and H. Dubner, "The near repunit primes 1(n-k-1)01(1k)," J. Recreational Math., 27 (1995) 35-41.
  • Heleen, J. P., "More near-repunit primes 1(n-k-1)D(1)1(k), D=2,3, ..., 9," J. Recreational Math., 29:3 (1998) 190-195.

Crossrefs

Programs

  • Mathematica
    lst = {}; Do[r = (10^n - 1)/9; Do[AppendTo[lst, DeleteCases[Select[FromDigits[Permutations[Append[IntegerDigits[r], d]]], PrimeQ], r]], {d, 0, 9}], {n, 2, 14}]; Sort[Flatten[lst]] (* Arkadiusz Wesolowski, Sep 20 2011 *)

A046413 Numbers k such that the repunit of length k (11...11, with k 1's) has exactly 2 prime factors.

Original entry on oeis.org

3, 4, 5, 7, 11, 17, 47, 59, 71, 139, 211, 251, 311, 347, 457, 461
Offset: 1

Views

Author

Patrick De Geest, Jul 15 1998

Keywords

Comments

347, 457, 461 and 701 are also terms. The only other possible terms up to 1000 are 263, 311, 509, 557, 617, 647 and 991; repunits of these lengths are known to be composite but the linked sources do not provide their factors. - Rick L. Shepherd, Mar 11 2003
The Yousuke Koide reference now shows the repunit of length 263 partially factored; 263 is no longer a possible candidate for this sequence. - Ray Chandler, Sep 06 2005
The repunit of length 263 has 3 prime factors; the repunit of length 617 has one known prime factor and a large composite. Possible terms > 1000 are 1117, 1213, 1259, 1291, 1373, 1447, 1607, 1637, 1663, 1669, 1759, 1823, 1949, 1987, 2063 & 2087. - Robert G. Wilson v, Apr 26 2010
All terms are either primes or squares of primes in A004023. In particular, the only composite below a million is 4. - Charles R Greathouse IV, Nov 21 2014
a(17) >= 509. The only confirmed term below 2500 is 701. As of July 2019, no factorization is known for the potential terms 509, 557, 647, 991, 1117, 1259, 1447, 1607, 1637, 1663, 1669, 1759, 1823, 1949, 1987, 2063, 2087, 2111, 2203, 2269, 2309, 2341, 2467, 2503, 2521, ... Unless the least prime factors of the respective composites have fewer than ~80 decimal digits and are thus accessible by massive ECM computations, there is no chance for an extension using current publicly available factorization methods. See links to factordb.com for the status of the factorization of the smallest unknown terms. - Hugo Pfoertner, Jul 30 2019

Examples

			7 is a term because 1111111 = 239*4649.
		

References

  • Clifford A. Pickover, A Passion for Mathematics, Wiley, 2005; see p. 60.

Crossrefs

Cf. A000042, A004022 (repunit primes), A046053, A102782.

Programs

  • Mathematica
    Select[Range[60],PrimeOmega[FromDigits[PadRight[{},#,1]]]==2&] (* The program generates the first 8 terms of the sequence. *) (* Harvey P. Dale, Aug 26 2024 *)

Extensions

More terms from Rick L. Shepherd, Mar 11 2003
a(13)-a(16) from Robert G. Wilson v, Apr 26 2010

A070529 Number of divisors of repunit 111...111 (with n digits).

Original entry on oeis.org

1, 2, 4, 4, 4, 32, 4, 16, 12, 16, 4, 128, 8, 16, 64, 64, 4, 384, 2, 128, 128, 96, 2, 1024, 32, 64, 64, 256, 32, 8192, 8, 2048, 64, 64, 128, 3072, 8, 8, 64, 2048, 16, 24576, 16, 1536, 768, 64, 4, 8192, 16, 1024, 256, 512, 16, 8192, 256, 4096
Offset: 1

Views

Author

Henry Bottomley, May 02 2002

Keywords

Examples

			a(9) = 12 since the divisors of 111111111 are 1, 3, 9, 37, 111, 333, 333667, 1001001, 3003003, 12345679, 37037037, 111111111.
		

Crossrefs

Programs

Formula

a(n) = A000005(A002275(n)).
a(n) = A070528(n)*A051064(n)/(A051064(n)+2).
a(A004023(n)) = 2. - Michel Marcus, Sep 09 2015
a(A046413(n)) = 4. - Bruno Berselli, Sep 09 2015

Extensions

Terms to a(280) in b-file from Hans Havermann, Aug 20 2011
a(281)-a(322) in b-file from Ray Chandler, Apr 22 2017
a(323)-a(352) ib b-file from Max Alekseyev, May 04 2022

A102146 a(n) = sigma(10^n - 1), where sigma(n) is the sum of positive divisors of n.

Original entry on oeis.org

13, 156, 1520, 15912, 148512, 2042880, 14508000, 162493344, 1534205464, 16203253248, 144451398000, 2063316971520, 14903272088640, 158269280832000, 1614847741624320, 17205180696931968, 144444514193267496
Offset: 1

Views

Author

Jun Mizuki (suzuki32(AT)sanken.osaka-u.ac.jp), Feb 14 2005

Keywords

Crossrefs

Programs

  • Mathematica
    DivisorSigma[1,10^Range[20]-1] (* Harvey P. Dale, Jan 05 2012 *)
  • PARI
    a(n) = sigma(10^n-1); \\ Michel Marcus, Apr 22 2017

Formula

a(n) = A000203(A002283(n)). - Ray Chandler, Apr 22 2017
Showing 1-10 of 23 results. Next