cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 22 results. Next

A000688 Number of Abelian groups of order n; number of factorizations of n into prime powers.

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 1, 3, 2, 1, 1, 2, 1, 1, 1, 5, 1, 2, 1, 2, 1, 1, 1, 3, 2, 1, 3, 2, 1, 1, 1, 7, 1, 1, 1, 4, 1, 1, 1, 3, 1, 1, 1, 2, 2, 1, 1, 5, 2, 2, 1, 2, 1, 3, 1, 3, 1, 1, 1, 2, 1, 1, 2, 11, 1, 1, 1, 2, 1, 1, 1, 6, 1, 1, 2, 2, 1, 1, 1, 5, 5, 1, 1, 2, 1, 1, 1, 3, 1, 2, 1, 2, 1, 1, 1, 7, 1, 2, 2, 4, 1, 1, 1, 3, 1, 1, 1
Offset: 1

Views

Author

Keywords

Comments

Equivalently, number of Abelian groups with n conjugacy classes. - Michael Somos, Aug 10 2010
a(n) depends only on prime signature of n (cf. A025487). So a(24) = a(375) since 24 = 2^3*3 and 375 = 3*5^3 both have prime signature (3, 1).
Also number of rings with n elements that are the direct product of fields; these are the commutative rings with n elements having no nilpotents; likewise the commutative rings where for every element x there is a k > 0 such that x^(k+1) = x. - Franklin T. Adams-Watters, Oct 20 2006
Range is A033637.
a(n) = 1 if and only if n is from A005117 (squarefree numbers). See the Ahmed Fares comment there, and the formula for n>=2 below. - Wolfdieter Lang, Sep 09 2012
Also, from a theorem of Molnár (see [Molnár]), the number of (non-isomorphic) abelian groups of order 2*n + 1 is equal to the number of non-congruent lattice Z-tilings of R^n by crosses, where a "cross" is a unit cube in R^n for which at each facet is attached another unit cube (Z, R are the integers and reals, respectively). (Cf. [Horak].) - L. Edson Jeffery, Nov 29 2012
Zeta(k*s) is the Dirichlet generating function of the characteristic function of numbers which are k-th powers (k=1 in A000012, k=2 in A010052, k=3 in A010057, see arXiv:1106.4038 Section 3.1). The infinite product over k (here) is the number of representations n=product_i (b_i)^(e_i) where all exponents e_i are distinct and >=1. Examples: a(n=4)=2: 4^1 = 2^2. a(n=8)=3: 8^1 = 2^1*2^2 = 2^3. a(n=9)=2: 9^1 = 3^2. a(n=12)=2: 12^1 = 3*2^2. a(n=16)=5: 16^1 = 2*2^3 = 4^2 = 2^2*4^1 = 2^4. If the e_i are the set {1,2} we get A046951, the number of representations as a product of a number and a square. - R. J. Mathar, Nov 05 2016
See A060689 for the number of non-abelian groups of order n. - M. F. Hasler, Oct 24 2017
Kendall & Rankin prove that the density of {n: a(n) = m} exists for each m. - Charles R Greathouse IV, Jul 14 2024

Examples

			a(1) = 1 since the trivial group {e} is the only group of order 1, and it is Abelian; alternatively, since the only factorization of 1 into prime powers is the empty product.
a(p) = 1 for any prime p, since the only factorization into prime powers is p = p^1, and (in view of Lagrange's theorem) there is only one group of prime order p; it is isomorphic to (Z/pZ,+) and thus Abelian.
From _Wolfdieter Lang_, Jul 22 2011: (Start)
a(8) = 3 because 8 = 2^3, hence a(8) = pa(3) = A000041(3) = 3 from the partitions (3), (2, 1) and (1, 1, 1), leading to the 3 factorizations of 8: 8, 4*2 and 2*2*2.
a(36) = 4 because 36 = 2^2*3^2, hence a(36) = pa(2)*pa(2) = 4 from the partitions (2) and (1, 1), leading to the 4 factorizations of 36: 2^2*3^2, 2^2*3^1*3^1, 2^1*2^1*3^2 and 2^1*2^1*3^1*3^1.
(End)
		

References

  • Steven R. Finch, Mathematical Constants, Cambridge, 2003, pp. 274-278.
  • D. S. Mitrinovic et al., Handbook of Number Theory, Kluwer, Section XIII.12, p. 468.
  • J. S. Rose, A Course on Group Theory, Camb. Univ. Press, 1978, see p. 7.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • A. Speiser, Die Theorie der Gruppen von endlicher Ordnung, 4. Auflage, Birkhäuser, 1956.

Crossrefs

Cf. A080729 (Dgf at s=2), A369634 (Dgf at s=3).

Programs

  • Haskell
    a000688 = product . map a000041 . a124010_row
    -- Reinhard Zumkeller, Aug 28 2014
    
  • Maple
    with(combinat): readlib(ifactors): for n from 1 to 120 do ans := 1: for i from 1 to nops(ifactors(n)[2]) do ans := ans*numbpart(ifactors(n)[2][i][2]) od: printf(`%d,`,ans): od: # James Sellers, Dec 07 2000
  • Mathematica
    f[n_] := Times @@ PartitionsP /@ Last /@ FactorInteger@n; Array[f, 107] (* Robert G. Wilson v, Sep 22 2006 *)
    Table[FiniteAbelianGroupCount[n], {n, 200}] (* Requires version 7.0 or later. - Vladimir Joseph Stephan Orlovsky, Jul 01 2011 *)
  • PARI
    A000688(n)=local(f);f=factor(n);prod(i=1,matsize(f)[1],numbpart(f[i,2])) \\ Michael B. Porter, Feb 08 2010
    
  • PARI
    a(n)=my(f=factor(n)[,2]); prod(i=1,#f,numbpart(f[i])) \\ Charles R Greathouse IV, Apr 16 2015
    
  • Python
    from sympy import factorint, npartitions
    from math import prod
    def A000688(n): return prod(map(npartitions,factorint(n).values())) # Chai Wah Wu, Jan 14 2022
  • Sage
    def a(n):
        F=factor(n)
        return prod([number_of_partitions(F[i][1]) for i in range(len(F))])
    # Ralf Stephan, Jun 21 2014
    

Formula

Multiplicative with a(p^k) = number of partitions of k = A000041(k); a(mn) = a(m)a(n) if (m, n) = 1.
a(2n) = A101872(n).
a(n) = Product_{j = 1..N(n)} A000041(e(j)), n >= 2, if
n = Product_{j = 1..N(n)} prime(j)^e(j), N(n) = A001221(n). See the Richert reference, quoting A. Speiser's book on finite groups (in German, p. 51 in words). - Wolfdieter Lang, Jul 23 2011
In terms of the cycle index of the symmetric group: Product_{q=1..m} [z^{v_q}] Z(S_v) 1/(1-z) where v is the maximum exponent of any prime in the prime factorization of n, v_q are the exponents of the prime factors, and Z(S_v) is the cycle index of the symmetric group on v elements. - Marko Riedel, Oct 03 2014
Dirichlet g.f.: Sum_{n >= 1} a(n)/n^s = Product_{k >= 1} zeta(ks) [Kendall]. - Álvar Ibeas, Nov 05 2014
a(n)=2 for all n in A054753 and for all n in A085987. a(n)=3 for all n in A030078 and for all n in A065036. a(n)=4 for all n in A085986. a(n)=5 for all n in A030514 and for all n in A178739. a(n)=6 for all n in A143610. - R. J. Mathar, Nov 05 2016
A050360(n) = a(A025487(n)). a(n) = A050360(A101296(n)). - R. J. Mathar, May 26 2017
a(n) = A000001(n) - A060689(n). - M. F. Hasler, Oct 24 2017
From Amiram Eldar, Nov 01 2020: (Start)
a(n) = a(A057521(n)).
Asymptotic mean: lim_{n->oo} (1/n) * Sum_{k=1..n} a(k) = A021002. (End)
a(n) = A005361(n) except when n is a term of A046101, since A000041(x) = x for x <= 3. - Miles Englezou, Feb 17 2024
Inverse Moebius transform of A188585: a(n) = Sum_{d|n} A188585(d). - Amiram Eldar, Jun 10 2025

A048473 a(0)=1, a(n) = 3*a(n-1) + 2; a(n) = 2*3^n - 1.

Original entry on oeis.org

1, 5, 17, 53, 161, 485, 1457, 4373, 13121, 39365, 118097, 354293, 1062881, 3188645, 9565937, 28697813, 86093441, 258280325, 774840977, 2324522933, 6973568801, 20920706405, 62762119217, 188286357653, 564859072961, 1694577218885, 5083731656657, 15251194969973, 45753584909921
Offset: 0

Views

Author

Keywords

Comments

The number of triangles (of all sizes, including holes) in Sierpiński's triangle after n inscriptions. - Lee Reeves, May 10 2004
The sequence is not only related to Sierpiński's triangle, but also to "Floret's cube" and the quaternion factor space Q X Q / {(1,1), (-1,-1)}. It can be written as a_n = ves((A+1)x)^n) as described at the Math Forum Discussions link. - Creighton Dement, Jul 28 2004
Relation to C(n) = Collatz function iteration using only odd steps: If we look for record subsequences where C(n) > n, this subsequence starts at 2^n - 1 and stops at the local maximum of 2*3^n - 1. Examples: [3,5], [7,11,17], [15,23,35,53], ..., [127,191,287,431,647,971,1457]. - Lambert Klasen, Mar 11 2005
Group the natural numbers so that the (2n-1)-th group sum is a multiple of the (2n)-th group containing one term. (1,2),(3),(4,5,6,7,8,9,10,11),(12),(13,14,15,16,17,18,19,...,38),(39),(40,41,...,118,119),(120), (121,122,123,...) ... a(n) = {the sum of the terms of (2n-1)-th group}/{the term of (2n)th group}. The first term of the odd numbered group is given by A003462. The only term of even numbered group is given by A029858. - Amarnath Murthy, Aug 01 2005
a(n)+1 = A008776(n); it appears that this gives the number of terms in the (n+1)-th "gap" of numbers missing in A171884. - M. F. Hasler, May 09 2013
Sum of n-th row of triangle of powers of 3: 1; 1 3 1; 1 3 9 3 1; 1 3 9 27 9 3 1; ... - Philippe Deléham, Feb 23 2014
For n >= 3, also the number of dominating sets in the n-helm graph. - Eric W. Weisstein, May 28 2017
The number of elements of length <= n in the free group on two generators. - Anton Mellit, Aug 10 2017
In general, a first order inhomogeneous recurrence of the form s(0) = a, s(n) = m*s(n-1) + k, n>0, will have a closed form of a*m^n + ((m^n-1)/(m-1))*k. - Gary Detlefs, Jun 07 2024

Examples

			a(0) = 1;
a(1) = 1 + 3 + 1 = 5;
a(2) = 1 + 3 + 9 + 3 + 1 = 17;
a(3) = 1 + 3 + 9 + 27 + 9 + 3 + 1 = 53; etc. - _Philippe Deléham_, Feb 23 2014
		

References

  • Theoni Pappas, Math Stuff, Wide World Publ/Tetra, San Carlos CA, page 15, 2002.

Crossrefs

a(n)=T(2,n), array T given by A048471.
Cf. A003462, A029858. A column of A119725.

Programs

  • Magma
    [2*3^n - 1: n in [0..30]]; // Vincenzo Librandi, Sep 23 2011
    
  • Maple
    g:= ((1+x)/(1-3*x)/(1-x)): gser:=series(g, x=0, 43): seq(coeff(gser, x, n), n=0..30); # Zerinvary Lajos, Jan 11 2009; typo fixed by Marko Mihaily, Mar 07 2009
  • Mathematica
    NestList[3 # + 2 &, 1, 30] (* Harvey P. Dale, Mar 06 2012 *)
    LinearRecurrence[{4, -3}, {1, 5}, 30] (* Harvey P. Dale, Mar 06 2012 *)
    Table[2 3^n - 1, {n, 20}] (* Eric W. Weisstein, May 28 2017 *)
    2 3^Range[20] - 1 (* Eric W. Weisstein, May 28 2017 *)
  • PARI
    first(m)=vector(m,n,n--;2*3^n - 1) \\ Anders Hellström, Dec 11 2015

Formula

n-th difference of a(n), a(n-1), ..., a(0) is 2^(n+1) for n=1, 2, 3, ...
a(0)=1, a(n) = a(n-1) + 3^n + 3^(n-1). - Lee Reeves, May 10 2004
a(n) = (3^n + 3^(n+1) - 2)/2. - Creighton Dement, Jul 31 2004
(1, 5, 17, 53, 161, ...) = Ternary (1, 12, 122, 1222, 12222, ...). - Gary W. Adamson, May 02 2005
Row sums of triangle A134347. Also, binomial transform of A046055: (1, 4, 8, 16, 32, 64, ...); and double binomial transform of A010684: (1, 3, 1, 3, 1, 3, ...). - Gary W. Adamson, Oct 21 2007
G.f.: (1+x)/((1-3*x)*(1-x)). - Zerinvary Lajos, Jan 11 2009; corrected by R. J. Mathar, Jan 21 2009
a(0)=1, a(1)=5, a(n) = 4*a(n-1) - 3*a(n-2). - Harvey P. Dale, Mar 06 2012
a(n) = Sum_{k=0..n} A112468(n,k)*4^k. - Philippe Deléham, Feb 23 2014
E.g.f.: exp(x)*(2*exp(2*x) - 1). - Elmo R. Oliveira, Mar 08 2025

Extensions

Better description from Amarnath Murthy, May 27 2001

A151821 Powers of 2, omitting 2 itself.

Original entry on oeis.org

1, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048, 4096, 8192, 16384, 32768, 65536, 131072, 262144, 524288, 1048576, 2097152, 4194304, 8388608, 16777216, 33554432, 67108864, 134217728, 268435456, 536870912, 1073741824, 2147483648, 4294967296, 8589934592
Offset: 1

Views

Author

N. J. A. Sloane, Jul 08 2009

Keywords

Comments

Different from A046055.
An elephant sequence, see A175655. For the central square just one A[5] vector, with decimal value 170, leads to this sequence. For the corner squares this vector leads to the companion sequence A095121. - Johannes W. Meijer, Aug 15 2010
This is a subsequence of A055744, numbers n such that n and phi(n) have same prime factors. - Michel Marcus, Mar 20 2015
INVERTi transform of A007483: (1, 5, 17, 61, 217, 773, ...). - Gary W. Adamson, Aug 06 2016
Nonprimes that are also powers of 2. Intersection of A000079 and A018252. - Omar E. Pol, Jan 27 2017
Also the chromatic number of the n-Keller graph. - Eric W. Weisstein, Nov 17 2017

Crossrefs

Partial sums are given by 2*A000225(n)-1, which is not the same as A000918.

Programs

Formula

G.f.: x*(1+2*x)/(1-2*x). - Philippe Deléham, Sep 17 2009
a(1) = 1 and a(n) = 3 + Sum_{k=1..n-1} a(k) for n>=2. - Joerg Arndt, Aug 15 2012
E.g.f.: exp(2*x) - x - 1. - Stefano Spezia, Jan 31 2023

A097073 Expansion of (1-x+2*x^2)/((1+x)*(1-2*x)).

Original entry on oeis.org

1, 0, 4, 4, 12, 20, 44, 84, 172, 340, 684, 1364, 2732, 5460, 10924, 21844, 43692, 87380, 174764, 349524, 699052, 1398100, 2796204, 5592404, 11184812, 22369620, 44739244, 89478484, 178956972, 357913940, 715827884, 1431655764, 2863311532
Offset: 0

Views

Author

Paul Barry, Jul 22 2004

Keywords

Comments

Partial sums are A097074.
Pairwise sums are {1, 1, 4, 16, 32, ...} or 2^n -Sum_{k=0..n} binomial(n,k)*(-1)^(n+k)*k.

Crossrefs

Cf. A001045, A078008 (form a(n)=2^n-a(n-1)).

Programs

Formula

a(n) = (2*2^n + 4*(-1)^n)/3 - 0^n.
a(n) = A001045(n+1) + (-1)^n - 0^n.
a(n) = 2*A078008(n) - 0^n.
a(2*n+1) + a(2*n+2) = A000302(n+1). - Paul Curtz, Jun 30 2008
G.f.: 1 - x + x*Q(0), where Q(k) = 1 + 2*x^2 + (4*k+5)*x - x*(4*k+1 + 2*x)/Q(k+1); (continued fraction). - Sergei N. Gladkovskii, Oct 07 2013
E.g.f.: (1/3)*( 2*exp(2*x) + 4*exp(-x) - 3 ). - G. C. Greubel, Aug 19 2022

Extensions

Obscure variable k in Orlovsky comment replaced with a(n) by R. J. Mathar, Apr 23 2009

A093560 (3,1) Pascal triangle.

Original entry on oeis.org

1, 3, 1, 3, 4, 1, 3, 7, 5, 1, 3, 10, 12, 6, 1, 3, 13, 22, 18, 7, 1, 3, 16, 35, 40, 25, 8, 1, 3, 19, 51, 75, 65, 33, 9, 1, 3, 22, 70, 126, 140, 98, 42, 10, 1, 3, 25, 92, 196, 266, 238, 140, 52, 11, 1, 3, 28, 117, 288, 462, 504, 378, 192, 63, 12, 1, 3, 31, 145, 405, 750, 966, 882, 570, 255, 75, 13, 1
Offset: 0

Views

Author

Wolfdieter Lang, Apr 22 2004

Keywords

Comments

The array F(3;n,m) gives in the columns m >= 1 the figurate numbers based on A016777, including the pentagonal numbers A000326 (see the W. Lang link).
This is the third member, d=3, in the family of triangles of figurate numbers, called (d,1) Pascal triangles: A007318 (Pascal (d=1), A029653 (d=2).
This is an example of a Riordan triangle (see A053121 for a comment and the 1991 Shapiro et al. reference on the Riordan group) with o.g.f. of column no. m of the type g(x)*(x*f(x))^m with f(0)=1. Therefore the o.g.f. for the row polynomials p(n,x):=Sum_{m=0..n} a(n,m)*x^m is G(z,x)=g(z)/(1-x*z*f(z)). Here: g(x)=(1+2*x)/(1-x), f(x)=1/(1-x), hence G(z,x)=(1+2*z)/(1-(1+x)*z).
The SW-NE diagonals give the Lucas numbers A000032: L(n) = Sum_{k=0..ceiling((n-1)/2)} a(n-1-k,k), n >= 1, with L(0)=2. Observation by Paul Barry, Apr 29 2004. Proof via recursion relations and comparison of inputs.
Triangle T(n,k), read by rows, given by [3,-2,0,0,0,0,0,0,...] DELTA [1,0,0,0,0,0,0,0,...] where DELTA is the operator defined in A084938. - Philippe Deléham, Sep 17 2009
For a closed-form formula for generalized Pascal's triangle see A228576. - Boris Putievskiy, Sep 09 2013
From Wolfdieter Lang, Jan 09 2015: (Start)
The signed lower triangular matrix (-1)^(n-1)*a(n,m) is the inverse of the Riordan matrix A106516; that is Riordan ((1-2*x)/(1+x),x/(1+x)).
See the Peter Bala comment from Dec 23 2014 in A106516 for general Riordan triangles of the type (g(x), x/(1-x)): exp(x)*r(n,x) = d(n,x) with the e.g.f. r(n,x) of row n and the e.g.f. of diagonal n.
Similarly, for general Riordan triangles of the type (g(x), x/(1+x)): exp(x)*r(n,-x) = d(n,x). (End)
The n-th row polynomial is (3 + x)*(1 + x)^(n-1) for n >= 1. More generally, the n-th row polynomial of the Riordan array ( (1-a*x)/(1-b*x), x/(1-b*x) ) is (b - a + x)*(b + x)^(n-1) for n >= 1. - Peter Bala, Mar 02 2018
Binomial(n-2,k)+2*Binomial(n-3,k) is also the number of permutations avoiding both 123 and 132 with k double descents, i.e., positions with w[i]>w[i+1]>w[i+2]. - Lara Pudwell, Dec 19 2018

Examples

			Triangle begins
  1,
  3,  1,
  3,  4,  1,
  3,  7,  5,   1,
  3, 10, 12,   6,   1,
  3, 13, 22,  18,   7,   1,
  3, 16, 35,  40,  25,   8,   1,
  3, 19, 51,  75,  65,  33,   9,  1,
  3, 22, 70, 126, 140,  98,  42, 10,  1,
  3, 25, 92, 196, 266, 238, 140, 52, 11, 1,
		

References

  • Kurt Hawlitschek, Johann Faulhaber 1580-1635, Veroeffentlichung der Stadtbibliothek Ulm, Band 18, Ulm, Germany, 1995, Ch. 2.1.4. Figurierte Zahlen.
  • Ivo Schneider, Johannes Faulhaber 1580-1635, Birkhäuser, Basel, Boston, Berlin, 1993, ch.5, pp. 109-122.

Crossrefs

Cf. Column sequences for m=1..9: A016777, A000326 (pentagonal), A002411, A001296, A051836, A051923, A050494, A053367, A053310;
A007318 (Pascal's triangle), A029653 ((2,1) Pascal triangle), A093561 ((4,1) Pascal triangle), A228196, A228576.

Programs

  • GAP
    Concatenation([1],Flat(List([1..11],n->List([0..n],k->Binomial(n,k)+2*Binomial(n-1,k))))); # Muniru A Asiru, Dec 20 2018
    
  • Haskell
    a093560 n k = a093560_tabl !! n !! k
    a093560_row n = a093560_tabl !! n
    a093560_tabl = [1] : iterate
                   (\row -> zipWith (+) ([0] ++ row) (row ++ [0])) [3, 1]
    -- Reinhard Zumkeller, Aug 31 2014
    
  • Python
    from math import comb, isqrt
    def A093560(n): return comb(r:=(m:=isqrt(k:=n+1<<1))-(k<=m*(m+1)),a:=n-comb(r+1,2))*(r+(r-a<<1))//r if n else 1 # Chai Wah Wu, Nov 12 2024

Formula

a(n, m)=F(3;n-m, m) for 0<= m <= n, otherwise 0, with F(3;0, 0)=1, F(3;n, 0)=3 if n>=1 and F(3;n, m):=(3*n+m)*binomial(n+m-1, m-1)/m if m>=1.
G.f. column m (without leading zeros): (1+2*x)/(1-x)^(m+1), m>=0.
Recursion: a(n, m)=0 if m>n, a(0, 0)= 1; a(n, 0)=3 if n>=1; a(n, m)= a(n-1, m) + a(n-1, m-1).
T(n, k) = C(n, k) + 2*C(n-1, k). - Philippe Deléham, Aug 28 2005
Equals M * A007318, where M = an infinite triangular matrix with all 1's in the main diagonal and all 2's in the subdiagonal. - Gary W. Adamson, Dec 01 2007
Sum_{k=0..n} T(n,k) = A151821(n+1). - Philippe Deléham, Sep 17 2009
exp(x) * e.g.f. for row n = e.g.f. for diagonal n. For example, for n = 3 we have exp(x)*(3 + 7*x + 5*x^2/2! + x^3/3!) = 3 + 10*x + 22*x^2/2! + 40*x^3/3! + 65*x^4/4! + .... The same property holds more generally for Riordan arrays of the form ( f(x), x/(1 - x) ). - Peter Bala, Dec 22 2014
G.f.: (-1-2*x)/(-1+x+x*y). - R. J. Mathar, Aug 11 2015

Extensions

Incorrect connection with A046055 deleted by N. J. A. Sloane, Jul 08 2009

A100320 A Catalan transform of (1 + 2*x)/(1 - 2*x).

Original entry on oeis.org

1, 4, 12, 40, 140, 504, 1848, 6864, 25740, 97240, 369512, 1410864, 5408312, 20801200, 80233200, 310235040, 1202160780, 4667212440, 18150270600, 70690527600, 275693057640, 1076515748880, 4208197927440, 16466861455200, 64495207366200, 252821212875504, 991837065896208
Offset: 0

Views

Author

Paul Barry, Nov 14 2004

Keywords

Comments

A Catalan transform of (1 + 2*x)/(1 - 2*x) under the mapping g(x) -> g(x*c(x)). (Here c(x) is the g.f. of A000108.) The original sequence can be retrieved by g(x) -> g(x*(1-x)).
Hankel transform is A144704. - Paul Barry, Sep 19 2008
Central terms of the triangle in A124927. - Reinhard Zumkeller, Mar 04 2012

Crossrefs

Programs

Formula

G.f.: (1 + 2*x*c(x))/(1 - 2*x*c(x)), where c(x) is the g.f. of A000108.
a(n) = 4*binomial(2*n-1, n) - 3*0^n.
a(n) = binomial(2*n, n)*(4*2^(n-1) - 0^n)/2^n.
a(n) = Sum_{j=0..n} Sum_{k=0..n} C(2*n, n-k)*((2*k + 1)/(n + k + 1))*C(k, j)*(-1)^(j-k)*(4*2^(j-1) - 0^j).
a(n) = A028329(n), n > 0. - R. J. Mathar, Sep 02 2008
a(n) = T(2*n,n), where T(n,k) = A132046(n,k). - Paul Barry, Sep 19 2008
a(n) = Sum_{k=0..n} A039599(n,k)*A010684(k). - Philippe Deléham, Oct 29 2008
a(n) = A095660(2*n,n) for n > 0. - Reinhard Zumkeller, Apr 08 2012
G.f.: G(0) - 1, where G(k) = 1 + 1/(1 - 2*x*(2*k + 1)/(2*x*(2*k + 1) + (k + 1)/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, May 24 2013
a(n) = [x^n] (1 + 2*x)/(1 - x)^(n+1). - Ilya Gutkovskiy, Oct 12 2017
a(n) = 2*(2*n-1)*a(n-1)/n. - G. C. Greubel, Feb 01 2023
E.g.f.: 2*exp(2*x)*BesselI(0, 2*x) - 1. - Stefano Spezia, May 11 2024

Extensions

Incorrect connection with A046055 deleted by N. J. A. Sloane, Jul 08 2009

A134058 Triangle T(n, k) = 2*binomial(n, k) with T(0, 0) = 1, read by rows.

Original entry on oeis.org

1, 2, 2, 2, 4, 2, 2, 6, 6, 2, 2, 8, 12, 8, 2, 2, 10, 20, 20, 10, 2, 2, 12, 30, 40, 30, 12, 2, 2, 14, 42, 70, 70, 42, 14, 2, 2, 16, 56, 112, 140, 112, 56, 16, 2, 2, 18, 72, 168, 252, 252, 168, 72, 18, 2
Offset: 0

Views

Author

Gary W. Adamson, Oct 05 2007

Keywords

Comments

Triangle T(n,k), 0 <= k <= n, read by rows, given by [2, -1, 0, 0, 0, 0, 0, ...] DELTA [2, -1, 0, 0, 0, 0, 0, ...] where DELTA is the operator defined in A084938. - Philippe Deléham, Oct 07 2007
Equals A028326 for all but the first term. - R. J. Mathar, Jun 08 2008
Warning: the row sums do not give A046055. - N. J. A. Sloane, Jul 08 2009

Examples

			First few rows of the triangle:
  1
  2,  2;
  2,  4,  2;
  2,  6,  6,  2;
  2,  8, 12,  8,  2;
  2, 10, 20, 20, 10,  2;
  ...
		

Crossrefs

Programs

  • Magma
    A134058:= func< n,k | n eq 0 select 1 else 2*Binomial(n,k) >;
    [A134058(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Apr 26 2021
    
  • Mathematica
    T[n_, k_]:= SeriesCoefficient[(1+x+y)/(1-x-y), {x, 0, n-k}, {y, 0, k}];
    Table[T[n, k], {n,0,12}, {k,0,n}]//Flatten (* Jean-François Alcover, Apr 09 2015, after Vladimir Kruchinin *)
    Table[2*Binomial[n,k] -Boole[n==0], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Apr 26 2021 *)
  • Sage
    def A134058(n,k): return 2*binomial(n,k) - bool(n==0)
    flatten([[A134058(n,k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Apr 26 2021

Formula

Double Pascal's triangle and replace leftmost column with (1,2,2,2,...).
M*A007318, where M = an infinite lower triangular matrix with (1,2,2,2,...) in the main diagonal and the rest zeros.
Sum_{k=0..n} T(n,k) = A151821(n+1). - Philippe Deléham, Sep 17 2009
G.f.: (1+x+y)/(1-x-y). - Vladimir Kruchinin, Apr 09 2015
T(n, k) = 2*binomial(n, k) - [n=0]. - G. C. Greubel, Apr 26 2021
E.g.f.: 2*exp(x*(1+y)) - 1. - Stefano Spezia, Apr 03 2024

Extensions

Title changed by G. C. Greubel, Apr 26 2021

A155559 a(n) = 2*A131577(n).

Original entry on oeis.org

0, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048, 4096, 8192, 16384, 32768, 65536, 131072, 262144, 524288, 1048576, 2097152, 4194304, 8388608, 16777216, 33554432, 67108864, 134217728, 268435456, 536870912, 1073741824, 2147483648, 4294967296, 8589934592
Offset: 0

Views

Author

Paul Curtz, Jan 24 2009

Keywords

Comments

Essentially the same as A131577, A046055, A011782, A000079 and A034008.

Crossrefs

Programs

Formula

a(n) = A000079(n), n>0.
a(n) = (-1)^(n+1)*A084633(n+1).
a(n) + A155543(n) = 2^n+4^n = A063376(n) = 2*A007582(n) =2*A137173(2n+1).
Conjecture: a(n) = A090129(n+3)-A090129(n+2).
G.f.: 2*x/(1-2*x). - R. J. Mathar, Jul 23 2009
E.g.f.: exp(2*x) - 1. - Stefano Spezia, Aug 26 2025

Extensions

Edited by R. J. Mathar, Jul 23 2009
Extended by Omar E. Pol, Nov 19 2012

A046056 Smallest order for which there are n nonisomorphic finite Abelian groups, or 0 if no such order exists.

Original entry on oeis.org

1, 4, 8, 36, 16, 72, 32, 900, 216, 144, 64, 1800, 0, 288, 128, 44100, 0, 5400, 0, 3600, 864, 256, 0, 88200, 1296, 0, 27000, 7200, 0, 512, 0, 5336100, 1728, 0, 2592, 264600, 0, 0, 0, 176400, 0, 1024, 0, 2304, 3456, 0, 0, 10672200, 7776, 32400, 0, 0, 0, 1323000, 5184, 2048, 0, 0, 0, 4608
Offset: 1

Views

Author

Keywords

Comments

There is a k: A000688(k)=n if and only if n is product of partition numbers.

Crossrefs

Extensions

More terms from Christian G. Bower
a(20) and a(28) corrected, and a(52)-a(60) from Charlie Neder, Jan 17 2019

A047538 Numbers that are congruent to {0, 1, 4, 7} mod 8.

Original entry on oeis.org

0, 1, 4, 7, 8, 9, 12, 15, 16, 17, 20, 23, 24, 25, 28, 31, 32, 33, 36, 39, 40, 41, 44, 47, 48, 49, 52, 55, 56, 57, 60, 63, 64, 65, 68, 71, 72, 73, 76, 79, 80, 81, 84, 87, 88, 89, 92, 95, 96, 97, 100, 103, 104, 105, 108, 111, 112, 113, 116, 119, 120, 121, 124
Offset: 1

Views

Author

Keywords

Comments

Related to a Chebyshev transform of A046055. See A074231. - Paul Barry, Oct 27 2004
Starting (1, 4, 7, ...) = partial sums of (1, 3, 3, 1, 1, 3, 3, 1, 1, 3, 3, 1, 1, ...). - Gary W. Adamson, Jun 19 2008
The product of any two terms belongs to the sequence and therefore also a(n)^2, a(n)^3, a(n)^4 etc. - Bruno Berselli, Nov 28 2012
Nonnegative m such that floor(k*(m/4)^2) = k*floor((m/4)^2), where k can assume the values from 4 to 15. See also the second comment in A047513. - Bruno Berselli, Dec 03 2015

Crossrefs

Programs

  • Magma
    [2*n-2-(1+(-1)^n)*(-1)^((2*n-3) div 4-(-1)^n div 4) / 2 : n in [1..80]]; // Wesley Ivan Hurt, Sep 22 2015
    
  • Magma
    [n: n in [0..150] | n mod 8 in {0,1,4,7}]; // Vincenzo Librandi, Sep 23 2015
    
  • Maple
    A047538:=n->2*n-2-sin(Pi*(n-1)/2): seq(A047538(n), n=1..80); # Wesley Ivan Hurt, Sep 22 2015
  • Mathematica
    Table[2n-2-Sin[Pi*(n-1)/2], {n, 80}] (* Wesley Ivan Hurt, Sep 22 2015 *)
    Select[Range[0, 150], MemberQ[{0, 1, 4, 7}, Mod[#, 8]] &] (* Vincenzo Librandi, Sep 23 2015 *)
    LinearRecurrence[{2,-2,2,-1},{0,1,4,7},100] (* Harvey P. Dale, Aug 12 2016 *)
  • PARI
    a(n) = (-4+(-I)^n+I^n+4*n)/2 \\ Colin Barker, Oct 18 2015
    
  • PARI
    concat(0, Vec(x^2*(1+x)^2/((1+x^2)*(1-2*x+x^2)) + O(x^100))) \\ Colin Barker, Oct 18 2015
  • Sage
    [lucas_number1(n,0,1)+2*n-4 for n in (2..57)] # Zerinvary Lajos, Jul 06 2008
    

Formula

From Paul Barry, Oct 27 2004: (Start)
G.f.: x^2*(1+x)^2 / ((1+x^2)*(1-2*x+x^2)).
E.g.f.: 2*x*exp(x)-sin(x).
a(n) = 2*n-2-sin(Pi*(n-1)/2).
a(n) = 2*a(n-1)-2*a(n-2)+2*a(n-3)-a(n-4) for n>4. (End)
a(n) = 2*n-2-(1+(-1)^n)*(-1)^((2*n-3)/4-(-1)^n/4)/2. - Wesley Ivan Hurt, Sep 22 2015
a(n) = (-4+(-i)^n+i^n+4*n)/2, where i = sqrt(-1). - Colin Barker, Oct 18 2015
Sum_{n>=2} (-1)^n/a(n) = (6-sqrt(2))*log(2)/8 + sqrt(2)*log(2+sqrt(2))/4. - Amiram Eldar, Dec 20 2021

Extensions

More terms from Wesley Ivan Hurt, Sep 22 2015
G.f. adapted to offset by Colin Barker, Oct 18 2015
Showing 1-10 of 22 results. Next