A192744 Constant term of the reduction by x^2->x+1 of the polynomial p(n,x) defined below in Comments.
1, 1, 3, 8, 29, 133, 762, 5215, 41257, 369032, 3676209, 40333241, 483094250, 6271446691, 87705811341, 1314473334832, 21017294666173, 357096406209005, 6424799978507178, 122024623087820183, 2439706330834135361, 51219771117454755544
Offset: 0
Keywords
Examples
The first five polynomials and their reductions: 1 -> 1 1+x -> 1+x 2+x+x^2 -> 3+2x 6+2x+x^2+x^3 -> 8+5x 24+6x+2x^2+x^3+x^4 -> 29+13x, so that A192744=(1,1,3,8,29,...) and A192745=(0,1,2,5,13,...).
Crossrefs
Cf. A192232.
Programs
-
Maple
A192744p := proc(n,x) option remember; if n = 0 then 1; else x*procname(n-1,x)+n! ; expand(%) ; end if; end proc: A192744 := proc(n) local p; p := A192744p(n,x) ; while degree(p,x) > 1 do p := algsubs(x^2=x+1,p) ; p := expand(p) ; end do: coeftayl(p,x=0,0) ; end proc: # R. J. Mathar, Dec 16 2015
-
Mathematica
q = x^2; s = x + 1; z = 40; p[0, n_] := 1; p[n_, x_] := x*p[n - 1, x] + n!; Table[Expand[p[n, x]], {n, 0, 7}] reduce[{p1_, q_, s_, x_}] := FixedPoint[(s PolynomialQuotient @@ #1 + PolynomialRemainder @@ #1 &)[{#1, q, x}] &, p1] t = Table[reduce[{p[n, x], q, s, x}], {n, 0, z}]; u1 = Table[Coefficient[Part[t, n], x, 0], {n, 1, z}] (* A192744 *) u2 = Table[Coefficient[Part[t, n], x, 1], {n, 1, z}] (* A192745 *)
Formula
G.f.: (1-x)/(1-x-x^2)/Q(0), where Q(k)= 1 - x*(k+1)/(1 - x*(k+1)/Q(k+1)); (continued fraction). - Sergei N. Gladkovskii, May 20 2013
Conjecture: a(n) +(-n-2)*a(n-1) +2*(n-1)*a(n-2) +3*a(n-3) +(-n+2)*a(n-4)=0. - R. J. Mathar, May 04 2014
Conjecture: (-n+2)*a(n) +(n^2-n-1)*a(n-1) +(-n^2+3*n-3)*a(n-2) -(n-1)^2*a(n-3)
=0. - R. J. Mathar, Dec 16 2015
Comments