cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A133936 Number of times prime powers occur in the columns of tables A133232 and A133233.

Original entry on oeis.org

0, 2, 6, 4, 20, 0, 42, 8, 18, 0, 110, 0, 156, 0, 0, 16, 272, 0, 342, 0, 0, 0, 506, 0, 100, 0, 54, 0, 812, 0, 930, 32, 0, 0, 0, 0, 1332, 0, 0, 0, 1640, 0, 1806, 0, 0, 0, 2162, 0, 294, 0, 0, 0, 2756, 0, 0, 0, 0, 0, 3422, 0, 3660, 0, 0, 64, 0, 0, 4422, 0, 0, 0, 4970, 0, 5256, 0, 0, 0, 0, 0
Offset: 1

Views

Author

Mats Granvik, Jan 21 2008

Keywords

Crossrefs

Programs

Formula

a(n) = if A014963*A100994A014963*A100994-n

A134579 Column products of tables A133232 and A133233.

Original entry on oeis.org

1, 4, 729, 256, 95367431640625, 0, 311973482284542371301330321821976049, 16777216, 150094635296999121, 0, 3574335935197503226412197580625705154978327969466895714094061686977589739390331653361877238387305580817715435470601
Offset: 1

Views

Author

Mats Granvik, Jan 23 2008

Keywords

Examples

			a(1) = 1^(1*1-1) = 1
a(2) = 2^(2*2-2) = 4
a(3) = 3^(3*3-3) = 729
a(4) = 4^(2*4-4) = 256
a(5) = 5^(5*5-5) = 95367431640625
a(6) = 6^(1*1-6) = 0
		

Crossrefs

Programs

  • Maple
    A100994 := proc(n) if nops(numtheory[factorset](n)) <> 1 then 1 ; else n ; fi ; end: A014963 := proc(n) if nops(numtheory[factorset](n)) <> 1 then 1 ; else op(1,op(1,ifactors(n)[2])) ; fi ; end: A134579 := proc(n) local e ; e := A014963(n)*A100994(n)-n ; if e >= 0 then n^e ; else 0 ; fi ; end: seq(A134579(n),n=1..13) ; # R. J. Mathar, Jan 30 2008

Formula

a(n) = if A014963(n)*A100994(n)-n >= 0 then n^(A014963(n)*A100994(n)-n) else 0.

Extensions

More terms from R. J. Mathar, Jan 30 2008

A003418 Least common multiple (or LCM) of {1, 2, ..., n} for n >= 1, a(0) = 1.

Original entry on oeis.org

1, 1, 2, 6, 12, 60, 60, 420, 840, 2520, 2520, 27720, 27720, 360360, 360360, 360360, 720720, 12252240, 12252240, 232792560, 232792560, 232792560, 232792560, 5354228880, 5354228880, 26771144400, 26771144400, 80313433200, 80313433200, 2329089562800, 2329089562800
Offset: 0

Views

Author

Roland Anderson (roland.anderson(AT)swipnet.se)

Keywords

Comments

The minimal exponent of the symmetric group S_n, i.e., the least positive integer for which x^a(n)=1 for all x in S_n. - Franz Vrabec, Dec 28 2008
Product over all primes of highest power of prime less than or equal to n. a(0) = 1 by convention.
Also smallest number whose set of divisors contains an n-term arithmetic progression. - Reinhard Zumkeller, Dec 09 2002
An assertion equivalent to the Riemann hypothesis is: | log(a(n)) - n | < sqrt(n) * log(n)^2. - Lekraj Beedassy, Aug 27 2006. (This is wrong for n = 1 and n = 2. Should "for n large enough" be added? - Georgi Guninski, Oct 22 2011)
Corollary 3 of Farhi gives a proof that a(n) >= 2^(n-1). - Jonathan Vos Post, Jun 15 2009
Appears to be row products of the triangle T(n,k) = b(A010766) where b = A130087/A130086. - Mats Granvik, Jul 08 2009
Greg Martin (see link) proved that "the product of the Gamma function sampled over the set of all rational numbers in the open interval (0,1) whose denominator in lowest terms is at most n" equals (2*Pi)^(1/2)*a(n)^(-1/2). - Jonathan Vos Post, Jul 28 2009
a(n) = lcm(A188666(n), A188666(n)+1, ..., n). - Reinhard Zumkeller, Apr 25 2011
a(n+1) is the smallest integer such that all polynomials a(n+1)*(1^i + 2^i + ... + m^i) in m, for i=0,1,...,n, are polynomials with integer coefficients. - Vladimir Shevelev, Dec 23 2011
It appears that A020500(n) = a(n)/a(n-1). - Asher Auel, corrected by Bill McEachen, Apr 05 2024
n-th distinct value = A051451(n). - Matthew Vandermast, Nov 27 2009
a(n+1) = least common multiple of n-th row in A213999. - Reinhard Zumkeller, Jul 03 2012
For n > 2, (n-1) = Sum_{k=2..n} exp(a(n)*2*i*Pi/k). - Eric Desbiaux, Sep 13 2012
First column minus second column of A027446. - Eric Desbiaux, Mar 29 2013
For n > 0, a(n) is the smallest number k such that n is the n-th divisor of k. - Michel Lagneau, Apr 24 2014
Slowest growing integer > 0 in Z converging to 0 in Z^ when considered as profinite integer. - Herbert Eberle, May 01 2016
What is the largest number of consecutive terms that are all equal? I found 112 equal terms from a(370261) to a(370372). - Dmitry Kamenetsky, May 05 2019
Answer: there exist arbitrarily long sequences of consecutive terms with the same value; also, the maximal run of consecutive terms with different values is 5 from a(1) to a(5) (see link Roger B. Eggleton). - Bernard Schott, Aug 07 2019
Related to the inequality (54) in Ramanujan's paper about highly composite numbers A002182, also used in A199337: a(A329570(m))^2 is a (not minimal) bound above which all highly composite numbers are divisible by m, according to the right part of that inequality. - M. F. Hasler, Jan 04 2020
For n > 2, a(n) is of the form 2^e_1 * p_2^e_2 * ... * p_m^e_m, where e_m = 1 and e = floor(log_2(p_m)) <= e_1. Therefore, 2^e * p_m^e_m is a primitive Zumkeler number (A180332). Therefore, 2^e_1 * p_m^e_m is a Zumkeller number (A083207). Therefore, for n > 2, a(n) = 2^e_1 * p_m^e_m * r, where r is relatively prime to 2*p_m, is a Zumkeller number (see my proof at A002182 for details). - Ivan N. Ianakiev, May 10 2020
For n > 1, 2|(a(n)+2) ... n|(a(n)+n), so a(n)+2 .. a(n)+n are all composite and (part of) a prime gap of at least n. (Compare n!+2 .. n!+n). - Stephen E. Witham, Oct 09 2021

Examples

			LCM of {1,2,3,4,5,6} = 60. The primes up to 6 are 2, 3 and 5. floor(log(6)/log(2)) = 2 so the exponent of 2 is 2.
floor(log(6)/log(3)) = 1 so the exponent of 3 is 1.
floor(log(6)/log(5)) = 1 so the exponent of 5 is 1. Therefore, a(6) = 2^2 * 3^1 * 5^1 = 60. - _David A. Corneth_, Jun 02 2017
		

References

  • J. M. Borwein and P. B. Borwein, Pi and the AGM, Wiley, 1987, p. 365.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Row products of A133233.
Cf. A025528 (number of prime factors of a(n) with multiplicity).
Cf. A275120 (lengths of runs of consecutive equal terms), A276781 (ordinal transform from term a(1)=1 onward).

Programs

  • Haskell
    a003418 = foldl lcm 1 . enumFromTo 2
    -- Reinhard Zumkeller, Apr 04 2012, Apr 25 2011
    
  • Magma
    [1] cat [Exponent(SymmetricGroup(n)) : n in [1..28]]; // Arkadiusz Wesolowski, Sep 10 2013
    
  • Magma
    [Lcm([1..n]): n in [0..30]]; // Bruno Berselli, Feb 06 2015
    
  • Maple
    A003418 := n-> lcm(seq(i,i=1..n));
    HalfFarey := proc(n) local a,b,c,d,k,s; a := 0; b := 1; c := 1; d := n; s := NULL; do k := iquo(n + b, d); a, b, c, d := c, d, k*c - a, k*d - b; if 2*a > b then break fi; s := s,(a/b); od: [s] end: LCM := proc(n) local i; (1/2)*mul(2*sin(Pi*i),i=HalfFarey(n))^2 end: # Peter Luschny
    # next Maple program:
    a:= proc(n) option remember; `if`(n=0, 1, ilcm(n, a(n-1))) end:
    seq(a(n), n=0..33);  # Alois P. Heinz, Jun 10 2021
  • Mathematica
    Table[LCM @@ Range[n], {n, 1, 40}] (* Stefan Steinerberger, Apr 01 2006 *)
    FoldList[ LCM, 1, Range@ 28]
    A003418[0] := 1; A003418[1] := 1; A003418[n_] := A003418[n] = LCM[n,A003418[n-1]]; (* Enrique Pérez Herrero, Jan 08 2011 *)
    Table[Product[Prime[i]^Floor[Log[Prime[i], n]], {i, PrimePi[n]}], {n, 0, 28}] (* Wei Zhou, Jun 25 2011 *)
    Table[Product[Cyclotomic[n, 1], {n, 2, m}], {m, 0, 28}] (* Fred Daniel Kline, May 22 2014 *)
    a1[n_] := 1/12 (Pi^2+3(-1)^n (PolyGamma[1,1+n/2] - PolyGamma[1,(1+n)/2])) // Simplify
    a[n_] := Denominator[Sqrt[a1[n]]];
    Table[If[IntegerQ[a[n]], a[n], a[n]*(a[n])[[2]]], {n, 0, 28}] (* Gerry Martens, Apr 07 2018 [Corrected by Vaclav Kotesovec, Jul 16 2021] *)
  • PARI
    a(n)=local(t); t=n>=0; forprime(p=2,n,t*=p^(log(n)\log(p))); t
    
  • PARI
    a(n)=if(n<1,n==0,1/content(vector(n,k,1/k)))
    
  • PARI
    a(n)=my(v=primes(primepi(n)),k=sqrtint(n),L=log(n+.5));prod(i=1,#v,if(v[i]>k,v[i],v[i]^(L\log(v[i])))) \\ Charles R Greathouse IV, Dec 21 2011
    
  • PARI
    a(n)=lcm(vector(n,i,i)) \\ Bill Allombert, Apr 18 2012 [via Charles R Greathouse IV]
    
  • PARI
    n=1; lim=100; i=1; j=1; until(n==lim, a=lcm(j,i+1); i++; j=a; n++; print(n" "a);); \\ Mike Winkler, Sep 07 2013
    
  • Python
    from functools import reduce
    from operator import mul
    from sympy import sieve
    def integerlog(n,b): # find largest integer k>=0 such that b^k <= n
        kmin, kmax = 0,1
        while b**kmax <= n:
            kmax *= 2
        while True:
            kmid = (kmax+kmin)//2
            if b**kmid > n:
                kmax = kmid
            else:
                kmin = kmid
            if kmax-kmin <= 1:
                break
        return kmin
    def A003418(n):
        return reduce(mul,(p**integerlog(n,p) for p in sieve.primerange(1,n+1)),1) # Chai Wah Wu, Mar 13 2021
    
  • Python
    # generates initial segment of sequence
    from math import gcd
    from itertools import accumulate
    def lcm(a, b): return a * b // gcd(a, b)
    def aupton(nn): return [1] + list(accumulate(range(1, nn+1), lcm))
    print(aupton(30)) # Michael S. Branicky, Jun 10 2021
  • Sage
    [lcm(range(1,n)) for n in range(1, 30)] # Zerinvary Lajos, Jun 06 2009
    
  • Scheme
    (define (A003418 n) (let loop ((n n) (m 1)) (if (zero? n) m (loop (- n 1) (lcm m n))))) ;; Antti Karttunen, Jan 03 2018
    

Formula

The prime number theorem implies that lcm(1,2,...,n) = exp(n(1+o(1))) as n -> infinity. In other words, log(lcm(1,2,...,n))/n -> 1 as n -> infinity. - Jonathan Sondow, Jan 17 2005
a(n) = Product (p^(floor(log n/log p))), where p runs through primes not exceeding n (i.e., primes 2 through A007917(n)). - Lekraj Beedassy, Jul 27 2004
Greg Martin showed that a(n) = lcm(1,2,3,...,n) = Product_{i = Farey(n), 0 < i < 1} 2*Pi/Gamma(i)^2. This can be rewritten (for n > 1) as a(n) = (1/2)*(Product_{i = Farey(n), 0 < i <= 1/2} 2*sin(i*Pi))^2. - Peter Luschny, Aug 08 2009
Recursive formula useful for computations: a(0)=1; a(1)=1; a(n)=lcm(n,a(n-1)). - Enrique Pérez Herrero, Jan 08 2011
From Enrique Pérez Herrero, Jun 01 2011: (Start)
a(n)/a(n-1) = A014963(n).
if n is a prime power p^k then a(n)=a(p^k)=p*a(n-1), otherwise a(n)=a(n-1).
a(n) = Product_{k=2..n} (1 + (A007947(k)-1)*floor(1/A001221(k))), for n > 1. (End)
a(n) = A079542(n+1, 2) for n > 1.
a(n) = exp(Sum_{k=1..n} Sum_{d|k} moebius(d)*log(k/d)). - Peter Luschny, Sep 01 2012
a(n) = A025529(n) - A027457(n). - Eric Desbiaux, Mar 14 2013
a(n) = exp(Psi(n)) = 2 * Product_{k=2..A002088(n)} (1 - exp(2*Pi*i * A038566(k+1) / A038567(k))), where i is the imaginary unit, and Psi the second Chebyshev's function. - Eric Desbiaux, Aug 13 2014
a(n) = A064446(n)*A038610(n). - Anthony Browne, Jun 16 2016
a(n) = A000142(n) / A025527(n) = A000793(n) * A225558(n). - Antti Karttunen, Jun 02 2017
log(a(n)) = Sum_{k>=1} (A309229(n, k)/k - 1/k). - Mats Granvik, Aug 10 2019
From Petros Hadjicostas, Jul 24 2020: (Start)
Nair (1982) proved that 2^n <= a(n) <= 4^n for n >= 9. See also Farhi (2009). Nair also proved that
a(n) = lcm(m*binomial(n,m): 1 <= m <= n) and
a(n) = gcd(a(m)*binomial(n,m): n/2 <= m <= n). (End)
Sum_{n>=1} 1/a(n) = A064859. - Bernard Schott, Aug 24 2020

A120112 Row sums of number triangle A120111.

Original entry on oeis.org

1, -1, -2, -1, -4, 0, -6, -1, -2, 0, -10, 0, -12, 0, 0, -1, -16, 0, -18, 0, 0, 0, -22, 0, -4, 0, -2, 0, -28, 0, -30, -1, 0, 0, 0, 0, -36, 0, 0, 0, -40, 0, -42, 0, 0, 0, -46, 0, -6, 0, 0, 0, -52, 0, 0, 0, 0, 0, -58, 0, -60, 0, 0, -1, 0, 0, -66, 0, 0, 0, -70, 0, -72
Offset: 0

Views

Author

Paul Barry, Jun 09 2006

Keywords

Comments

The last row of the columns in tables A133232 and A133233 are given by this sequence via the formula: if n < k + k*abs(a(n)) then k, otherwise 1 (1 <= k <= n). - Mats Granvik, Jan 22 2008

Crossrefs

Programs

  • GAP
    Concatenation([1],List([1..70],n->1-Lcm(List([1..n+1],i->i))/Lcm(List([1..n],i->i)))); # Muniru A Asiru, Mar 04 2019
    
  • Magma
    A120112:= func< n | n eq 0 select 1 else 1-Lcm([1..n+1])/Lcm([1..n]) >;
    [A120112(n): n in [0..100]]; // G. C. Greubel, May 05 2023
    
  • Mathematica
    Table[If[n==0, 1, 1-LCM@@Range[n+1]/(LCM@@Range[n])], {n,0,100}] (* G. C. Greubel, May 05 2023 *)
  • PARI
    a(n) = if (n==0, 1, 1 - lcm(vector(n+1, k, k))/lcm(vector(n, k, k))); \\ Michel Marcus, Sep 11 2016
    
  • SageMath
    def A120112(n):
        return 1 if n == 0 else 1 - lcm(range(1,n+2)) // lcm(range(1,n+1))
    [A120112(n) for n in range(101)] # G. C. Greubel, May 05 2023

Formula

a(n) = 1 - lcm(1,...,n+1)/lcm(1,...,n) for n > 0.
a(n) = 1 - A014963(n+1). - Joerg Arndt, Sep 12 2016

A173185 Partial sums of A003418.

Original entry on oeis.org

1, 2, 4, 10, 22, 82, 142, 562, 1402, 3922, 6442, 34162, 61882, 422242, 782602, 1142962, 1863682, 14115922, 26368162, 259160722, 491953282, 724745842, 957538402, 6311767282, 11665996162, 38437140562, 65208284962, 145521718162, 225835151362, 2554924714162
Offset: 0

Views

Author

Jonathan Vos Post, Feb 12 2010

Keywords

Comments

From Antti Karttunen, Feb 27 2014: (Start)
For all n >= 4, a(n) mod 10 = 2 (as A003418(5) = 60, the first multiple of ten in that sequence).
For all n >= 24, a(n) mod 100 = 62 (as A003418(25) = 26771144400, the first multiple of one hundred in that sequence).
Cf. also A236856.
a(n-1) gives the position of the first element of row n in irregular tables like A238280.
(End)

Crossrefs

Programs

  • Maple
    b:= proc(n) b(n):= `if`(n=0, 1, ilcm(n, b(n-1))) end:
    a:= proc(n) a(n):= `if`(n<0, 0, a(n-1) +b(n)) end:
    seq(a(n), n=0..35);  # Alois P. Heinz, Mar 31 2018
  • Mathematica
    Table[If[n == 0, 1, LCM @@ Range[n]], {n, 0, 50}] // Accumulate (* Jean-François Alcover, Jan 03 2022 *)
  • PARI
    a(n) = sum(k=0, n, lcm(vector(k, i, i))); \\ Michel Marcus, Mar 13 2018
  • Scheme
    (define (A173185 n) (if (< n 1) 1 (+ (A173185 (- n 1)) (A003418 n))))
    

Formula

a(n) = Sum_{i=0..n} A003418(i).

Extensions

Missing term a(9)=3922 inserted by Antti Karttunen, Feb 27 2014

A137152 Triangle read by rows: prime powers whose row products give A051451.

Original entry on oeis.org

1, 1, 2, 1, 2, 3, 1, 1, 3, 4, 1, 1, 3, 4, 5, 1, 1, 3, 4, 5, 7, 1, 1, 3, 1, 5, 7, 8, 1, 1, 1, 1, 5, 7, 8, 9, 1, 1, 1, 1, 5, 7, 8, 9, 11, 1, 1, 1, 1, 5, 7, 8, 9, 11, 13, 1, 1, 1, 1, 5, 7, 1, 9, 11, 13, 16, 1, 1, 1, 1, 5, 7, 1, 9, 11, 13, 16, 17, 1, 1, 1, 1, 5, 7, 1, 9, 11, 13, 16, 17, 19, 1, 1, 1, 1, 5, 7, 1
Offset: 1

Views

Author

Mats Granvik, Jan 24 2008

Keywords

Comments

Similar to tables A133232 and A133233.

Examples

			The least common multiple of the first few rows are:
lcm{1} = 1
lcm{1,2} = 2
lcm{1,2,3} = 6
lcm{1,1,3,4} = 12
lcm{1,1,3,4,5} = 60
lcm{1,1,3,4,5,7} = 420
lcm{1,1,3,1,5,7,8} = 840
lcm{1,1,1,1,5,7,8,9} = 2520
lcm{1,1,1,1,5,7,8,9,11} = 27720
Multiplying the terms in the rows produces the same result:
1 = 1
1*2 = 2
1*2*3 = 6
1*1*3*4 = 12
1*1*3*4*5 = 60
1*1*3*4*5*7 = 420
1*1*3*1*5*7*8 = 840
1*1*1*1*5*7*8*9 = 2520
1*1*1*1*5*7*8*9*11 = 27720
		

Crossrefs

Cf. A051451.

A140580 a(n) = (n^2)/A048671(n), = n*A014963(n) = A140579 * [1, 2, 3, ...].

Original entry on oeis.org

1, 4, 9, 8, 25, 6, 49, 16, 27, 10, 121, 12, 169, 14, 15, 32, 289, 18, 361, 20, 21, 22, 529, 24, 125, 26, 81, 28, 841, 30, 961, 64, 33, 34, 35, 36, 1369, 38, 39, 40, 1681, 42, 1849, 44, 45, 46, 2209, 48, 343, 50, 51, 52, 2809, 54, 55, 56, 57, 58, 3481, 60, 3721, 62, 63
Offset: 1

Views

Author

Gary W. Adamson, May 17 2008

Keywords

Comments

a(n) gives the last row of columns in A133233. - Mats Granvik, Jun 07 2008

Examples

			a(9) = 27 = 81/3 where 9^2 = 81 and A048671(9) = 3.
a(9) = 27 = 9*A014963(n) = 9*3.
		

Crossrefs

Extensions

Corrected and extended by Mats Granvik, Jun 07 2008

A133255 Triangle with a minimum occurrence of prime powers for which the least common multiple of the rows will give the terms in A003418.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 1, 1, 2, 3, 1, 1, 4, 3, 1, 1, 1, 4, 3, 1, 5, 1, 1, 4, 3, 1, 5, 1, 1, 1, 4, 3, 1, 5, 1, 7, 1, 1, 8, 3, 1, 5, 1, 7, 1, 1, 1, 8, 9, 1, 5, 1, 7, 1, 1, 1, 1, 8, 9, 1, 5, 1, 7, 1, 1, 1, 1, 1, 8, 9, 1, 5, 1, 7, 1, 1, 1, 11, 1, 1, 8, 9, 1, 5, 1, 7, 1, 1, 1, 11, 1, 1, 1, 8, 9, 1, 5, 1, 7, 1, 1, 1, 11, 1
Offset: 1

Views

Author

Mats Granvik, Oct 14 2007

Keywords

Comments

Checked up to 29th row. Similar to A133232 and A133233. In this table the prime powers with the same base are in the same column. A prime power occurs in the table: (base of prime power-1)*(the prime power).

Examples

			lcm{1}= 1
lcm{1,1} = 1
lcm{1,1,2} = 2
lcm{1,1,2,3} = 6
lcm{1,1,4,3,1} = 12
lcm{1,1,4,3,1,5} = 60
lcm{1,1,4,3,1,5,1} = 60
lcm{1,1,4,3,1,5,1,7} = 420
lcm{1,1,8,3,1,5,1,7,1} = 840
lcm{1,1,8,9,1,5,1,7,1,1} = 2520
1 = 1
1*1 = 1
1*1*2 = 2
1*1*2*3 = 6
1*1*4*3*1 = 12
1*1*4*3*1*5 = 60
1*1*4*3*1*5*1 = 60
1*1*4*3*1*5*1*7 = 420
1*1*8*3*1*5*1*7*1 = 840
1*1*8*9*1*5*1*7*1*1 = 2520
		

Crossrefs

Programs

Formula

T(n,k) = if k=1 then 1 elseif n-1>=(A089026(n-1))^0 and n-1<(A089026(n-1))^1 then (A089026(n-1))^0 elseif n-1>=(A089026(n-1))^1 and n-1<(A089026(n-1))^2 then (A089026(n-1))^1 elseif n-1>=(A089026(n-1))^2 and n-1<(A089026(n-1))^3 then (A089026(n-1))^2 elseif n-1>=(A089026(n-1))^3 and n-1<(A089026(n-1))^4 then (A089026(n-1))^3 elseif n-1>=(A089026(n-1))^4 and n-1<(A089026(n-1))^5 then (A089026(n-1))^4 else 1 (1<=k<=n) And so on, this formula needs to be expanded if one wants to make a bigger table. A089026(n-1) means that the index to that sequence is shifted in this formula so that the first term in A089026 is used in the second column of the table.
Showing 1-8 of 8 results.