A008585 a(n) = 3*n.
0, 3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33, 36, 39, 42, 45, 48, 51, 54, 57, 60, 63, 66, 69, 72, 75, 78, 81, 84, 87, 90, 93, 96, 99, 102, 105, 108, 111, 114, 117, 120, 123, 126, 129, 132, 135, 138, 141, 144, 147, 150, 153, 156, 159, 162, 165, 168, 171, 174, 177
Offset: 0
Examples
G.f.: 3*x + 6*x^2 + 9*x^3 + 12*x^4 + 15*x^5 + 18*x^6 + 21*x^7 + ...
References
- A. H. Beiler, Recreations in the Theory of Numbers, Dover, NY, 1964, p. 189.
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..5000
- J. Coquet, A summation formula related to the binary digits, Inventiones Mathematicae 73 (1983), pp. 107-115.
- Charles Cratty, Samuel Erickson, Frehiwet Negass, and Lara Pudwell, Pattern Avoidance in Double Lists, preprint, 2015.
- A. S. Fraenkel, New games related to old and new sequences, INTEGERS, Electronic J. of Combinatorial Number Theory, Vol. 4, Paper G6, 2004.
- John Graham-Cumming, The hollow triangular numbers are divisible by three (2013)
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 315
- Tanya Khovanova, Recursive Sequences
- D. J. Newman, On the number of binary digits in a multiple of three, Proc. Amer. Math. Soc. 21 (1969) 719-721.
- Franck Ramaharo, Statistics on some classes of knot shadows, arXiv:1802.07701 [math.CO], 2018.
- Luis Manuel Rivera, Integer sequences and k-commuting permutations, arXiv preprint arXiv:1406.3081 [math.CO], 2014-2015.
- Wikipedia, Maximal planar graphs
- Index entries for linear recurrences with constant coefficients, signature (2,-1).
Crossrefs
Programs
-
Haskell
a008585 = (* 3) a008585_list = iterate (+ 3) 0 -- Reinhard Zumkeller, Feb 19 2013
-
Magma
[3*n: n in [0..60]]; // Vincenzo Librandi, Jul 23 2011
-
Mathematica
Range[0, 500, 3] (* Vladimir Joseph Stephan Orlovsky, May 26 2011 *)
-
Maxima
makelist(3*n,n,0,30); /* Martin Ettl, Nov 12 2012 */
-
PARI
a(n)=3*n \\ Charles R Greathouse IV, Jun 28 2013
Formula
G.f.: 3*x/(1-x)^2. - R. J. Mathar, Oct 23 2008
a(n) = A008486(n), n > 0. - R. J. Mathar, Oct 28 2008
G.f.: A(x) - 1, where A(x) is the g.f. of A008486. - Gennady Eremin, Feb 20 2021
E.g.f.: 3*x*exp(x). - Ilya Gutkovskiy, May 18 2016
From Guenther Schrack, May 18 2017: (Start)
a(3*k) = a(a(k)) = A008591(n).
Extensions
Partially edited by Joerg Arndt, Mar 11 2010
Comments