cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 13 results. Next

A074962 Decimal expansion of Glaisher-Kinkelin constant A.

Original entry on oeis.org

1, 2, 8, 2, 4, 2, 7, 1, 2, 9, 1, 0, 0, 6, 2, 2, 6, 3, 6, 8, 7, 5, 3, 4, 2, 5, 6, 8, 8, 6, 9, 7, 9, 1, 7, 2, 7, 7, 6, 7, 6, 8, 8, 9, 2, 7, 3, 2, 5, 0, 0, 1, 1, 9, 2, 0, 6, 3, 7, 4, 0, 0, 2, 1, 7, 4, 0, 4, 0, 6, 3, 0, 8, 8, 5, 8, 8, 2, 6, 4, 6, 1, 1, 2, 9, 7, 3, 6, 4, 9, 1, 9, 5, 8, 2, 0, 2, 3, 7, 4, 3, 9, 4, 2, 0, 6, 4, 6, 1, 2, 0
Offset: 1

Views

Author

Benoit Cloitre, Oct 05 2002

Keywords

Comments

Arises in expressions such as A002109(n) = 1^1*2^2*3^3*...*n^n which is asymptotic to A*n^(n^2/2 + n/2 + 1/12)*exp(-n^2/4). See A002109 for more references and links.
Named after the English mathematician and astronomer James Whitbread Lee Glaisher (1848-1928) and the Swiss mathematician Hermann Kinkelin (1832-1913). - Amiram Eldar, Jun 15 2021

Examples

			1.2824271291006226368753425688697917277676889273250011920637400217404...
		

References

  • Steven R. Finch, Mathematical constants, Encyclopedia of Mathematics and its Applications, Vol. 94, Cambridge University Press, 2003, p. 135.
  • Konrad Knopp, Theory and applications of infinite series, Dover, p. 555.

Crossrefs

Programs

  • Maple
    evalf(limit(product(k^k,k=1..n)/(n^(n^2/2+n/2+1/12)*exp(-n^2/4)),n=infinity),120); # Vaclav Kotesovec, Oct 23 2014
  • Mathematica
    RealDigits[Glaisher, 10, 111][[1]] (* Robert G. Wilson v *)
  • PARI
    x=10^(-100); exp(1/12-(zeta(-1+x)-zeta(-1))/x)
    
  • PARI
    exp(1/12-zeta'(-1)) \\ Charles R Greathouse IV, Dec 12 2013

Formula

A = 2^(1/36)*Pi^(1/6)*exp(1/3*(-Gamma/4 + s(2)/3 - s(3)/4 + ...)) where s(k) denotes Sum_{n>=0} 1/(2n+1)^k.
Closed expressions for A are exp(-zeta'(2)/2/Pi^2 + log(2*Pi)/12 + Gamma/12) or exp(1/12-zeta'(-1)).
Equals (2*Pi)^(1/4) / limit_{n->oo} Product_{k=1..n} Gamma(k/n)^(k/n^2). - Vaclav Kotesovec, Dec 02 2023
Equals (2*Pi*exp(gamma) * Product_{p prime} p^(1/(p^4-1)))^c, where gamma is Euler's constant (A001620), and c = Bernoulli(2)/2 = 1/12 (Van Gorder, 2012). - Amiram Eldar, Feb 08 2024
Equals e^(-1/4 + Integral_{x=1..2} x*log(sqrt(2*Pi)) - B_2(x) + x^2*Psi(x)/2 dx), where B_2(x) is the second Bernoulli polynomial and Psi(x) is the digamma function. - Andrea Pinos, Apr 16 2024
Equals exp(1/12 - 2*Integral_{x=0..oo} x*log(x)/(exp(2*Pi*x) - 1) dx) = exp(1/3 + 7*log(2)/36 - log(Pi)/6 + (2/3)*Integral_{x=0..1/2} log(Gamma(x+1)) dx) (see Finch). - Stefano Spezia, Dec 01 2024
From Antonio Graciá Llorente, May 03 2025: (Start)
Equals lim_{n->oo} (2^(13/3)*n)^(1/12) * Product_{k=1..n} (1 - 1/(2*k+1)^2)^((2*k+1)/6).
Equals lim_{n->oo} (24*n^2)^(1/24) * Product_{prime p<=n} (p^(1 - p/(p^2-1)) / sqrt(p^2-1))^(1/12). (End)

Extensions

More terms from Sascha Kurz, Feb 03 2003

A000178 Superfactorials: product of first n factorials.

Original entry on oeis.org

1, 1, 2, 12, 288, 34560, 24883200, 125411328000, 5056584744960000, 1834933472251084800000, 6658606584104736522240000000, 265790267296391946810949632000000000, 127313963299399416749559771247411200000000000, 792786697595796795607377086400871488552960000000000000
Offset: 0

Views

Author

Keywords

Comments

a(n) is also the Vandermonde determinant of the numbers 1,2,...,(n+1), i.e., the determinant of the (n+1) X (n+1) matrix A with A[i,j] = i^j, 1 <= i <= n+1, 0 <= j <= n. - Ahmed Fares (ahmedfares(AT)my-deja.com), May 06 2001
a(n) = (1/n!) * D(n) where D(n) is the determinant of order n in which the (i,j)-th element is i^j. - Amarnath Murthy, Jan 02 2002
Determinant of S_n where S_n is the n X n matrix S_n(i,j) = Sum_{d|i} d^j. - Benoit Cloitre, May 19 2002
Appears to be det(M_n) where M_n is the n X n matrix with m(i,j) = J_j(i) where J_k(n) denote the Jordan function of row k, column n (cf. A059380(m)). - Benoit Cloitre, May 19 2002
a(2n+1) = 1, 12, 34560, 125411328000, ... is the Hankel transform of A000182 (tangent numbers) = 1, 2, 16, 272, 7936, ...; example: det([1, 2, 16, 272; 2, 16, 272, 7936; 16, 272, 7936, 353792; 272, 7936, 353792, 22368256]) = 125411328000. - Philippe Deléham, Mar 07 2004
Determinant of the (n+1) X (n+1) matrix whose i-th row consists of terms 1 to n+1 of the Lucas sequence U(i,Q), for any Q. When Q=0, the Vandermonde matrix is obtained. - T. D. Noe, Aug 21 2004
Determinant of the (n+1) X (n+1) matrix A whose elements are A(i,j) = B(i+j) for 0 <= i,j <= n, where B(k) is the k-th Bell number, A000110(k) [I. Mezo, JIS 14 (2011) # 11.1.1]. - T. D. Noe, Dec 04 2004
The Hankel transform of the sequence A090365 is A000178(n+1); example: det([1,1,3; 1,3,11; 3,11,47]) = 12. - Philippe Deléham, Mar 02 2005
Theorem 1.3, page 2, of Polynomial points, Journal of Integer Sequences, Vol. 10 (2007), Article 07.3.6, provides an example of an Abelian quotient group of order (n-1) superfactorial, for each positive integer n. The quotient is obtained from sequences of polynomial values. - E. F. Cornelius, Jr. (efcornelius(AT)comcast.net), Apr 09 2007
Starting with offset 1 this is a 'Matryoshka doll' sequence with alpha=1, the multiplicative counterpart to the additive A000292. seq(mul(mul(i,i=alpha..k), k=alpha..n),n=alpha..12). - Peter Luschny, Jul 14 2009
For n>0, a(n) is also the determinant of S_n where S_n is the n X n matrix, indexed from 1, S_n(i,j)=sigma_i(j), where sigma_k(n) is the generalized divisor sigma function: A000203 is sigma_1(n). - Enrique Pérez Herrero, Jun 21 2010
a(n) is the multiplicative Wiener index of the (n+1)-vertex path. Example: a(4)=288 because in the path on 5 vertices there are 3 distances equal to 2, 2 distances equal to 3, and 1 distance equal to 4 (2*2*2*3*3*4=288). See p. 115 of the Gutman et al. reference. - Emeric Deutsch, Sep 21 2011
a(n-1) = Product_{j=1..n-1} j! = V(n) = Product_{1 <= i < j <= n} (j - i) (a Vandermondian V(n), see the Ahmed Fares May 06 2001 comment above), n >= 1, is in fact the determinant of any n X n matrix M(n) with entries M(n;i,j) = p(j-1,x = i), 1 <= i, j <= n, where p(m,x), m >= 0, are monic polynomials of exact degree m with p(0,x) = 1. This is a special x[i] = i choice in a general theorem given in Vein-Dale, p. 59 (written for the transposed matrix M(n;j,x_i) = p(i-1,x_j) = P_i(x_j) in Vein-Dale, and there a_{k,k} = 1, for k=1..n). See the Aug 26 2013 comment under A049310, where p(n,x) = S(n,x) (Chebyshev S). - Wolfdieter Lang, Aug 27 2013
a(n) is the number of monotonic magmas on n elements labeled 1..n with a symmetric multiplication table. I.e., Product(i,j) >= max(i,j); Product(i,j) = Product(j,i). - Chad Brewbaker, Nov 03 2013
The product of the pairwise differences of n+1 integers is a multiple of a(n) [and this does not hold for any k > a(n)]. - Charles R Greathouse IV, Aug 15 2014
a(n) is the determinant of the (n+1) X (n+1) matrix M with M(i,j) = (n+j-1)!/(n+j-i)!, 1 <= i <= n+1, 1 <= j <= n+1. - Stoyan Apostolov, Aug 26 2014
All terms are in A064807 and all terms after a(2) are in A005101. - Ivan N. Ianakiev, Sep 02 2016
Empirical: a(n-1) is the determinant of order n in which the (i,j)-th entry is the (j-1)-th derivative of x^(x+i-1) evaluated at x=1. - John M. Campbell, Dec 13 2016
Empirical: If f(x) is a smooth, real-valued function on an open neighborhood of 0 such that f(0)=1, then a(n) is the determinant of order n+1 in which the (i,j)-th entry is the (j-1)-th derivative of f(x)/((1-x)^(i-1)) evaluated at x=0. - John M. Campbell, Dec 27 2016
Also the automorphism group order of the n-triangular honeycomb rook graph. - Eric W. Weisstein, Jul 14 2017
Is the zigzag Hankel transform of A000182. That is, a(2*n+1) is the Hankel transform of A000182 and a(2*n+2) is the Hankel transform of A000182(n+1). - Michael Somos, Mar 11 2020
Except for n = 0, 1, superfactorial a(n) is never a square (proof in link Mabry and Cormick, FFF 4 p. 349); however, when k belongs to A349079 (see for further information), there exists m, 1 <= m <= k such that a(k) / m! is a square. - Bernard Schott, Nov 29 2021

Examples

			a(3) = (1/6)* | 1 1 1 | 2 4 8 | 3 9 27 |
a(7) = n! * a(n-1) = 7! * 24883200 = 125411328000.
a(12) = 1! * 2! * 3! * 4! * 5! * 6! * 7! * 8! * 9! * 10! * 11! * 12!
= 1^12 * 2^11 * 3^10 * 4^9 * 5^8 * 6^7 * 7^6 * 8^5 * 9^4 * 10^3 * 11^2 * 12^1
= 2^56 * 3^26 * 5^11 * 7^6 * 11^2.
G.f. = 1 + x + 2*x^2 + 12*x^3 + 288*x^4 + 34560*x^5 + 24883200*x^6 + ...
		

References

  • Miklos Bona, editor, Handbook of Enumerative Combinatorics, CRC Press, 2015, page 545.
  • Steven R. Finch, Mathematical Constants, Cambridge, 2003, pp. 135-145.
  • A. Fletcher, J. C. P. Miller, L. Rosenhead and L. J. Comrie, An Index of Mathematical Tables. Vols. 1 and 2, 2nd ed., Blackwell, Oxford and Addison-Wesley, Reading, MA, 1962, Vol. 1, p. 50.
  • R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics. Addison-Wesley, Reading, MA, 1990, p. 231.
  • H. J. Ryser, Combinatorial Mathematics. Mathematical Association of America, Carus Mathematical Monograph 14, 1963, p. 53.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • R. Vein and P. Dale, Determinants and Their Applications in Mathematical Physics, Springer, 1999.

Crossrefs

Programs

  • Magma
    [&*[Factorial(k): k in [0..n]]: n in [0..20]]; // Bruno Berselli, Mar 11 2015
    
  • Maple
    A000178 := proc(n)
        mul(i!,i=1..n) ;
    end proc:
    seq(A000178(n),n=0..10) ; # R. J. Mathar, Oct 30 2015
  • Mathematica
    a[0] := 1; a[1] := 1; a[n_] := n!*a[n - 1]; Table[a[n], {n, 1, 12}] (* Stefan Steinerberger, Mar 10 2006 *)
    Table[BarnesG[n], {n, 2, 14}] (* Zerinvary Lajos, Jul 16 2009 *)
    FoldList[Times,1,Range[20]!] (* Harvey P. Dale, Mar 25 2011 *)
    RecurrenceTable[{a[n] == n! a[n - 1], a[0] == 1}, a, {n, 0, 12}] (* Ray Chandler, Jul 30 2015 *)
    BarnesG[Range[2, 20]] (* Eric W. Weisstein, Jul 14 2017 *)
  • Maxima
    A000178(n):=prod(k!,k,0,n)$ makelist(A000178(n),n,0,30); /* Martin Ettl, Oct 23 2012 */
    
  • PARI
    A000178(n)=prod(k=2,n,k!) \\ M. F. Hasler, Sep 02 2007
    
  • PARI
    a(n)=polcoeff(1-sum(k=0, n-1, a(k)*x^k/prod(j=1, k+1, (1+j!*x+x*O(x^n)) )), n) \\ Paul D. Hanna, Oct 02 2013
    
  • PARI
    for(j=1,13, print1(prod(k=1,j,k^(j-k)),", ")) \\ Hugo Pfoertner, Apr 09 2020
    
  • Python
    A000178_list, n, m = [1], 1,1
    for i in range(1,100):
        m *= i
        n *= m
        A000178_list.append(n) # Chai Wah Wu, Aug 21 2015
    
  • Python
    from math import prod
    def A000178(n): return prod(i**(n-i+1) for i in range(2,n+1)) # Chai Wah Wu, Nov 26 2023
  • Ruby
    def mono_choices(a,b,n)
        n - [a,b].max
    end
    def comm_mono_choices(n)
        accum =1
        0.upto(n-1) do |i|
            i.upto(n-1) do |j|
                accum = accum * mono_choices(i,j,n)
            end
        end
        accum
    end
    1.upto(12) do |k|
        puts comm_mono_choices(k)
    end # Chad Brewbaker, Nov 03 2013
    

Formula

a(0) = 1, a(n) = n!*a(n-1). - Lee Hae-hwang, May 13 2003, corrected by Ilya Gutkovskiy, Jul 30 2016
a(0) = 1, a(n) = 1^n * 2^(n-1) * 3^(n-2) * ... * n = Product_{r=1..n} r^(n-r+1). - Amarnath Murthy, Dec 12 2003 [Formula corrected by Derek Orr, Jul 27 2014]
a(n) = sqrt(A055209(n)). - Philippe Deléham, Mar 07 2004
a(n) = Product_{i=1..n} Product_{j=0..i-1} (i-j). - Paul Barry, Aug 02 2008
log a(n) = 0.5*n^2*log n - 0.75*n^2 + O(n*log n). - Charles R Greathouse IV, Jan 13 2012
Asymptotic: a(n) ~ exp(zeta'(-1) - 3/4 - (3/4)*n^2 - (3/2)*n)*(2*Pi)^(1/2 + (1/2)*n)*(n+1)^((1/2)*n^2 + n + 5/12). For example, a(100) is approx. 0.270317...*10^6941. (See A213080.) - Peter Luschny, Jun 23 2012
G.f.: 1 + x/(U(0) - x) where U(k) = 1 + x*(k+1)! - x*(k+2)!/U(k+1); (continued fraction). - Sergei N. Gladkovskii, Oct 02 2012
G.f.: G(0)/2, where G(k) = 1 + 1/(1 - 1/(1 + 1/((k+1)!*x*G(k+1)))); (continued fraction). - Sergei N. Gladkovskii, Jun 14 2013
G.f.: 1 = Sum_{n>=0} a(n)*x^n / Product_{k=1..n+1} (1 + k!*x). - Paul D. Hanna, Oct 02 2013
A203227(n+1)/a(n) -> e, as n -> oo. - Daniel Suteu, Jul 30 2016
From Ilya Gutkovskiy, Jul 30 2016: (Start)
a(n) = G(n+2), where G(n) is the Barnes G-function.
a(n) ~ exp(1/12 - n*(3*n+4)/4)*n^(n*(n+2)/2 + 5/12)*(2*Pi)^((n+1)/2)/A, where A is the Glaisher-Kinkelin constant (A074962).
Sum_{n>=0} (-1)^n/a(n) = A137986. (End)
0 = a(n)*a(n+2)^3 + a(n+1)^2*a(n+2)^2 - a(n+1)^3*a(n+3) for all n in Z (if a(-1)=1). - Michael Somos, Mar 11 2020
Sum_{n>=0} 1/a(n) = A287013 = 1/A137987. - Amiram Eldar, Nov 19 2020
a(n) = Wronskian(1, x, x^2, ..., x^n). - Mohammed Yaseen, Aug 01 2023
From Andrea Pinos, Apr 04 2024: (Start)
a(n) = e^(Sum_{k=1..n} (Integral_{x=1..k+1} Psi(x) dx)).
a(n) = e^(Integral_{x=1..n+1} (log(sqrt(2*Pi)) - (x-1/2) + x*Psi(x)) dx).
a(n) = e^(Integral_{x=1..n+1} (log(sqrt(2*Pi)) - (x-1/2) + (n+1)*Psi(x) - log(Gamma(x))) dx).
Psi(x) is the digamma function. (End)

A002109 Hyperfactorials: Product_{k = 1..n} k^k.

Original entry on oeis.org

1, 1, 4, 108, 27648, 86400000, 4031078400000, 3319766398771200000, 55696437941726556979200000, 21577941222941856209168026828800000, 215779412229418562091680268288000000000000000, 61564384586635053951550731889313964883968000000000000000
Offset: 0

Views

Author

Keywords

Comments

A054374 gives the discriminants of the Hermite polynomials in the conventional (physicists') normalization, and A002109 (this sequence) gives the discriminants of the Hermite polynomials in the (in my opinion more natural) probabilists' normalization. See refs Wikipedia and Szego, eq. (6.71.7). - Alan Sokal, Mar 02 2012
a(n) = (-1)^n/det(M_n) where M_n is the n X n matrix m(i,j) = (-1)^i/i^j. - Benoit Cloitre, May 28 2002
a(n) = determinant of the n X n matrix M(n) where m(i,j) = B(n,i,j) and B(n,i,x) denote the Bernstein polynomial: B(n,i,x) = binomial(n,i)*(1-x)^(n-i)*x^i. - Benoit Cloitre, Feb 02 2003
Partial products of A000312. - Reinhard Zumkeller, Jul 07 2012
Number of trailing zeros (A246839) increases every 5 terms since the exponent of the factor 5 increases every 5 terms and the exponent of the factor 2 increases every 2 terms. - Chai Wah Wu, Sep 03 2014
Also the number of minimum distinguishing labelings in the n-triangular honeycomb rook graph. - Eric W. Weisstein, Jul 14 2017
Also shows up in a term in the solution to the generalized version of Raabe's integral. - Jibran Iqbal Shah, Apr 24 2021

References

  • Steven R. Finch, Mathematical Constants, Cambridge, 2003, pp. 135-145.
  • A. Fletcher, J. C. P. Miller, L. Rosenhead and L. J. Comrie, An Index of Mathematical Tables. Vols. 1 and 2, 2nd ed., Blackwell, Oxford and Addison-Wesley, Reading, MA, 1962, Vol. 1, p. 50.
  • R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics. Addison-Wesley, Reading, MA, 1990, p. 477.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • G. Szego, Orthogonal Polynomials, American Mathematical Society, 1981 edition, 432 Pages.

Crossrefs

Cf. A074962 [Glaisher-Kinkelin constant, also gives an asymptotic approximation for the hyperfactorials].
Cf. A246839 (trailing 0's).
Cf. A261175 (number of digits).

Programs

  • Haskell
    a002109 n = a002109_list !! n
    a002109_list = scanl1 (*) a000312_list  -- Reinhard Zumkeller, Jul 07 2012
    
  • Maple
    f := proc(n) local k; mul(k^k,k=1..n); end;
    A002109 := n -> exp(Zeta(1,-1,n+1)-Zeta(1,-1));
    seq(simplify(A002109(n)),n=0..11); # Peter Luschny, Jun 23 2012
  • Mathematica
    Table[Hyperfactorial[n], {n, 0, 11}] (* Zerinvary Lajos, Jul 10 2009 *)
    Hyperfactorial[Range[0, 11]] (* Eric W. Weisstein, Jul 14 2017 *)
    Join[{1},FoldList[Times,#^#&/@Range[15]]] (* Harvey P. Dale, Nov 02 2023 *)
  • PARI
    a(n)=prod(k=2,n,k^k) \\ Charles R Greathouse IV, Jan 12 2012
    
  • PARI
    a(n)=polcoeff(1-sum(k=0, n-1, a(k)*x^k/prod(j=1,k+1,(1+j^j*x+x*O(x^n)) )), n) \\ Paul D. Hanna, Oct 02 2013
    
  • Python
    A002109 = [1]
    for n in range(1, 10):
        A002109.append(A002109[-1]*n**n) # Chai Wah Wu, Sep 03 2014
    
  • Sage
    a = lambda n: prod(falling_factorial(n,k) for k in (1..n))
    [a(n) for n in (0..10)]  # Peter Luschny, Nov 29 2015

Formula

a(n)*A000178(n-1) = (n!)^n = A036740(n) for n >= 1.
Determinant of n X n matrix m(i, j) = binomial(i*j, i). - Benoit Cloitre, Aug 27 2003
a(n) = exp(zeta'(-1, n + 1) - zeta'(-1)) where zeta(s, z) is the Hurwitz zeta function. - Peter Luschny, Jun 23 2012
G.f.: 1 = Sum_{n>=0} a(n)*x^n / Product_{k=1..n+1} (1 + k^k*x). - Paul D. Hanna, Oct 02 2013
a(n) = A240993(n) / A000142(n+1). - Reinhard Zumkeller, Aug 31 2014
a(n) ~ A * n^(n*(n+1)/2 + 1/12) / exp(n^2/4), where A = 1.2824271291006226368753425... is the Glaisher-Kinkelin constant (see A074962). - Vaclav Kotesovec, Feb 20 2015
a(n) = Product_{k=1..n} ff(n,k) where ff denotes the falling factorial. - Peter Luschny, Nov 29 2015
log a(n) = (1/2) n^2 log n - (1/4) n^2 + (1/2) n log n + (1/12) log n + log(A) + o(1), where log(A) = A225746 is the logarithm of Glaisher's constant. - Charles R Greathouse IV, Mar 27 2020
From Amiram Eldar, Apr 30 2023: (Start)
Sum_{n>=1} 1/a(n) = A347345.
Sum_{n>=1} (-1)^(n+1)/a(n) = A347352. (End)
From Andrea Pinos, Apr 04 2024: (Start)
a(n) = e^(Integral_{x=1..n+1} (x - 1/2 - log(sqrt(2*Pi)) + (n+1-x)*Psi(x)) dx), where Psi(x) is the digamma function.
a(n) = e^(Integral_{x=1..n} (x + 1/2 - log(sqrt(2*Pi)) + log(Gamma(x+1))) dx). (End)

A243263 Decimal expansion of the generalized Glaisher-Kinkelin constant A(3).

Original entry on oeis.org

9, 7, 9, 5, 5, 5, 5, 2, 6, 9, 4, 2, 8, 4, 4, 6, 0, 5, 8, 2, 4, 2, 1, 8, 8, 3, 7, 2, 6, 3, 4, 9, 1, 8, 2, 6, 4, 4, 5, 5, 3, 6, 7, 5, 2, 4, 9, 5, 5, 2, 9, 9, 0, 2, 2, 5, 7, 7, 1, 7, 1, 4, 2, 7, 9, 7, 5, 8, 8, 5, 6, 7, 2, 4, 8, 1, 5, 5, 9, 6, 1, 4, 9, 4, 4, 4, 4, 4, 3, 5, 3, 8, 3, 3, 2, 1, 9, 6
Offset: 0

Views

Author

Jean-François Alcover, Jun 02 2014

Keywords

Comments

Also known as the third Bendersky constant.

Examples

			0.97955552694284460582421883726349...
		

References

  • Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 2.15 Glaisher-Kinkelin constant, p. 137.

Crossrefs

Programs

  • Mathematica
    RealDigits[Exp[-11/720 - Zeta'[-3]], 10, 98] // First
    RealDigits[Exp[(BernoulliB[4]/4) * (EulerGamma + Log[2 * Pi] - (Zeta'[4]/Zeta[4]))], 10, 100] // First (* G. C. Greubel, Dec 31 2015 *)
  • PARI
    exp(-11/720 - zeta'(-3)) \\ Stefano Spezia, Dec 01 2024

Formula

A(k) = exp(B(k+1)/(k+1)*H(k) - zeta'(-k)), where B(k) is the k-th Bernoulli number and H(k) the k-th harmonic number.
A(3) = exp(-11/720 - zeta'(-3)).
Equals exp(3*zeta'(4)/(4*Pi^4) - gamma/120) / (2*Pi)^(1/120), where gamma is the Euler-Mascheroni constant A001620. - Vaclav Kotesovec, Jul 24 2015
Equals (2*Pi*exp(gamma) * Product_{p prime} p^(1/(p^4-1)))^c, where gamma is Euler's constant (A001620), and c = Bernoulli(4)/4 = -1/120 (Van Gorder, 2012). - Amiram Eldar, Feb 08 2024

A051675 "Second factorials": Product_{k=1..n} k^(k^2).

Original entry on oeis.org

1, 16, 314928, 1352605460594688, 403107840000000000000000000000000, 4157825501361955044460594652554199040000000000000000000000000
Offset: 1

Views

Author

Keywords

References

  • Spyros G. Kanellos: Mathematical Researches and Results [in Greek]. Athens, 1965.

Crossrefs

Programs

  • Magma
    [(&*[k^(k^2): k in [1..n]]): n in [1..10]]; // G. C. Greubel, Oct 14 2018
  • Maple
    A051675 := proc(n) local k; mul(k^(k^2),k=1..n); end;
  • Mathematica
    Table[Product[k^(k^2),{k,1,n}],{n,1,10}] (* Vaclav Kotesovec, Feb 20 2015 *)
  • PARI
    for(n=1, 10, print1(prod(k=1,n, k^(k^2)), ", ")) \\ G. C. Greubel, Oct 14 2018
    

Formula

a(n) ~ n^(n*(n+1)*(2n+1)/6) / exp(n^3/9 - n/12 - Zeta(3)/(4*Pi^2)), where Zeta(3) = A002117 = 1.2020569031595942853997... . - Vaclav Kotesovec, Feb 20 2015

A255322 a(n) = Product_{k=0..n} (k^2)!.

Original entry on oeis.org

1, 1, 24, 8709120, 182219087869378560000, 2826438545846116156142906806150103040000000000, 1051416277636507481568264360276689674557030810000137484550133942059008000000000000000000
Offset: 0

Views

Author

Vaclav Kotesovec, Feb 21 2015

Keywords

Comments

Partial products of A088020. - Michel Marcus, Jul 06 2019

Crossrefs

Programs

  • Mathematica
    Table[Product[(k^2)!, {k, 0, n}], {n, 0, 10}]
    FoldList[Times,(Range[0,6]^2)!] (* Harvey P. Dale, Jan 30 2022 *)
    Table[(n^2)!^(n+1) / Product[j^(Ceiling[Sqrt[j]]), {j, 1, n^2}], {n, 0, 6}] (* Vaclav Kotesovec, Apr 23 2024 *)
    Table[(n^2)!^n * (n!)^2 / Product[j^(Floor[Sqrt[j]]), {j, 1, n^2}], {n, 0, 6}] (* Vaclav Kotesovec, Apr 23 2024 *)
  • PARI
    {a(n) = prod(k=1, n, (k^2)!)} \\ Seiichi Manyama, Jul 06 2019

Formula

a(n) ~ c * n^((2*n + 1)*(2*n^2 + 2*n + 3)/6) * (2*Pi)^(n/2) / exp(5*n^3/9 + n^2/2 + n), where c = A255504 = 3.048330306522348566911920417337613015885313475... .
From Vaclav Kotesovec, Apr 23 2024: (Start)
a(n) = Product_{j=1..n^2} j^(n - ceiling(sqrt(j)) + 1).
a(n) = (n^2)!^n * (n!)^2 / Product_{j=1..n^2} j^(floor(sqrt(j))). (End)

A255323 Product_{k=1..n} k^(k^4).

Original entry on oeis.org

1, 65536, 29060398333495723291328487792256607374737408
Offset: 1

Views

Author

Vaclav Kotesovec, Feb 21 2015

Keywords

Comments

The next term a(4) has 198 digits.

Crossrefs

Programs

  • Mathematica
    Table[Product[k^(k^4), {k, 1, n}], {n, 1, 5}]
  • PARI
    a(n)=prod(k=1,n,k^k^4) \\ Charles R Greathouse IV, Sep 08 2015

Formula

a(n) ~ A243264 * n^(n*(n+1)*(2*n+1)*(3*n^2+3*n-1)/30) / exp(n^5/25 - n^3/12 + 13*n/360), where A243264 = exp(-3*Zeta(5)/(4*Pi^4)).

A255344 Product_{k=1..n} k^(k^5).

Original entry on oeis.org

1, 4294967296
Offset: 1

Views

Author

Vaclav Kotesovec, Feb 21 2015

Keywords

Comments

The next terms: a(3) has 126 digits, a(4) has 743 digits, a(5) has 2927 digits.
In general, product_{k=1..n} k^(k^m) ~ A(m) * n^(B(m+1)/(m+1) + sum_{j=1..n} j^m) * exp(-n^(m+1)/(m+1)^2 + sum_{j=1..m-1} (1/(j+1) * B(j+1) * binomial(m,j) * n^(m-j) * sum_{i=0..j-1} 1/(m-i) )), where A(m) is the generalized Glaisher-Kinkelin constant (see A074962, A243262, A243263, A243264, A243265), and B(n) is the Bernoulli number A027641(n) / A027642(n).

References

  • Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 2.15 Glaisher-Kinkelin constant, p. 137.

Crossrefs

Programs

  • Mathematica
    Table[Product[k^(k^5), {k, 1, n}], {n, 1, 5}]
    FoldList[Times,Table[k^k^5,{k,5}]] (* Harvey P. Dale, Aug 05 2025 *)
  • PARI
    a(n)=prod(k=2,n,k^k^5) \\ Charles R Greathouse IV, Sep 08 2015

Formula

a(n) ~ A243265 * n^(n^2*(n+1)^2*(2*n^2+2*n-1)/12 + 1/252) / exp(47*n^2/720 - n^4/12 + n^6/36).

A255358 Product_{k=0..n} (k^3)!.

Original entry on oeis.org

1, 1, 40320, 439039216240867959122165760000000
Offset: 0

Views

Author

Vaclav Kotesovec, Feb 21 2015

Keywords

Comments

The next term a(4) has 122 digits.

Crossrefs

Programs

  • Mathematica
    Table[Product[(k^3)!, {k, 0, n}], {n, 0, 6}]
    Table[Product[j^(n - Ceiling[j^(1/3)] + 1), {j, 1, n^3}], {n, 0, 6}] (* Vaclav Kotesovec, Apr 25 2024 *)

Formula

a(n) ~ c * n^(29/40 + 3*n/2 + 3*n^2/4 + 3*n^3/2 + 3*n^4/4) * (2*Pi)^(n/2) / exp(n*(n+2)*(12 - 6*n + 7*n^2)/16), where c = A255511 = 4.113740552015338123052453340090368136...
a(n) = Product_{j=1..n^3} j^(n - ceiling(j^(1/3)) + 1). - Vaclav Kotesovec, Apr 25 2024

A255359 a(n) = Product_{k=0..n} (k^4)!.

Original entry on oeis.org

1, 1, 20922789888000
Offset: 0

Views

Author

Vaclav Kotesovec, Feb 21 2015

Keywords

Comments

The next term a(3) has 135 digits.

Crossrefs

Programs

  • Mathematica
    Table[Product[(k^4)!, {k, 0, n}], {n, 0, 5}]
    Table[Product[j^(n - Ceiling[j^(1/4)] + 1), {j, 1, n^4}], {n, 0, 5}] (* Vaclav Kotesovec, Apr 25 2024 *)

Formula

a(n) ~ c * n^(1 + 28*n/15 + 4*n^3/3 + 2*n^4 + 4*n^5/5) * (2*Pi)^(n/2) / exp(19*n/9 + n^4/2 + 9*n^5/25), where c = A255438 = 6.644987918706354049483118... .
a(n) = Product_{j=1..n^4} j^(n - ceiling(j^(1/4)) + 1). - Vaclav Kotesovec, Apr 25 2024
Showing 1-10 of 13 results. Next