cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 141 results. Next

A273866 Coefficients a(k,m) of polynomials a{k}(h) appearing in the product Product_{k >= 1} (1 - a{k}(h)*x^k) = 1 - h*x/(1-x).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 2, 2, 2, 1, 1, 3, 5, 5, 3, 1, 1, 3, 6, 7, 6, 3, 1, 1, 4, 9, 13, 13, 9, 4, 1, 1, 4, 10, 17, 20, 17, 10, 4, 1, 1, 5, 15, 30, 42, 42, 30, 15, 5, 1, 1, 5, 16, 36, 57, 66, 57, 36, 16, 5, 1
Offset: 1

Views

Author

Gevorg Hmayakyan, Jun 01 2016

Keywords

Comments

The a(k,m) form a table where each row has k-1 elements starting from 2 and the a(1,1) = 1.

Examples

			a{1}(h) = h,
a{2}(h) = h,
a{3}(h) = h^2 + h,
a{4}(h) = h^3 + h^2 + h,
a{5}(h) = h^4 + 2*h^3 + 2*h^2 + h,
a{6}(h) = h^5 + 2*h^4 + 2*h^3 + 2*h^2 + h,
a{7}(h) = h^6 + 3*h^5 + 5*h^4 + 5*h^3 + 3*h^2 + h,
a{8}(h) = h^7 + 3*h^6 + 6*h^5 + 7*h^4 + 6*h^3 + 3*h^2 + h,
a{9}(h) = h^8 + 4*h^7 + 9*h^6 + 13*h^5 + 13*h^4 + 9*h^3 + 4*h^2 + h
...
and the corresponding a(k,m) table is:
  1,
  1,
  1,  1,
  1,  1,  1,
  1,  2,  2,  1,
  1,  2,  2,  2,  1,
  1,  3,  5,  5,  3,  1,
  1,  3,  6,  7,  6,  3,  1,
  1,  4,  9, 13, 13,  9,  4,  1,
  ...
a(7,3) = 5 because there are six strict trees contributing positive one {{5,1},1}, {{4,2},1}, {{4,1},2}, {{3,2},2}, {4,{2,1}}, {{3,1},3} and there is one strict tree contributing negative one {4,2,1}. - _Gus Wiseman_, Nov 14 2016
		

Crossrefs

Programs

  • Maple
    with(ListTools), with(numtheory), with(combinat);
    L := product(1-a[k]*x^k, k = 1 .. 600);
    S := Flatten([seq(-h, i = 1 .. 100)]);
    Sabs := Flatten([seq(i, i = 1 .. 100)]);
    seq(assign(a[i] = solve(coeff(L, x^i) = `if`(is(i in Sabs), S[Search(i, Sabs)], 0), a[i])), i = 1 .. 20);
    map(coeffs, [seq(simplify(a[i]), i = 1 .. 20)]);
  • Mathematica
    strictrees[n_Integer?Positive]:=Prepend[Join@@Function[ptn,Tuples[strictrees/@ptn]]/@Select[IntegerPartitions[n],And[Length[#]>1,UnsameQ@@#]&],n];
    Table[Sum[(-1)^(Count[tree,,{0,Infinity}]-1),{tree,Select[strictrees[n],Length[Flatten[{#}]]===m&]}],{n,1,9},{m,1,n-1/.(0->1)}] (* _Gus Wiseman, Nov 14 2016 *)
    (* second program *)
    A[m_, n_] :=
      A[m, n] =
       Which[m == 1, -h, m > n >= 1, 0, True,
        A[m - 1, n] - A[m - 1, m - 1]*A[m, n - m + 1]];
    a[n_] := Expand[-A[n, n]];
    a /@ Range[1, 25] (* Petros Hadjicostas, Oct 04 2019, courtesy of Jean-François Alcover *)

Formula

a(k,m) = a(k, k-m).
For prime p: Sum_{m = 1..p-1} a(p, m) = (2^p - 2)/p.
a{k}(h) satisfies Sum_{d|k} (1/d)*(a{k/d}(h))^d = ((h+1)^k - 1)/k. [Corrected by Petros Hadjicostas, Oct 04 2019]
For prime p: a{p}(h) = ((h+1)^p - h^p - 1)/p.
See A273873 for the definition of strict tree. Then a(n,m) = Sum_t (-1)^{v(t)-1} where the sum is over all strict trees of weight n with m leaves, and v(t) is the number of nodes in t (including the leaves, which are positive integers). See example 2 and the first Mathematica program. - Gus Wiseman, Nov 14 2016

A013961 a(n) = sigma_13(n), the sum of the 13th powers of the divisors of n.

Original entry on oeis.org

1, 8193, 1594324, 67117057, 1220703126, 13062296532, 96889010408, 549822930945, 2541867422653, 10001220711318, 34522712143932, 107006334784468, 302875106592254, 793811662272744, 1946196290656824, 4504149450301441, 9904578032905938, 20825519793796029, 42052983462257060
Offset: 1

Views

Author

Keywords

Comments

If the canonical factorization of n into prime powers is the product of p^e(p) then sigma_k(n) = Product_{p prime} ((p^((e(p)+1)*k)) - 1)/(p^k - 1).
Sum_{d|n} 1/d^k is equal to sigma_k(n)/n^k. So sequences A017665-A017712 also give the numerators and denominators of sigma_k(n)/n^k for k = 1..24. The power sums sigma_k(n) are in sequences A000203 (k=1), A001157-A001160 (k=2,3,4,5), A013954-A013972 for k = 6,7,...,24. - Ahmed Fares (ahmedfares(AT)my-deja.com), Apr 05 2001
By Fermat's little theorem n^13 == n (mod 13). Hence sigma_13(n) == sigma_(1) (mod 13). In fact, sigma_13(n) == sigma_(1) (mod 2730), where 2730 = 2*3*5*7*13 = the numerator of Bernoulli(12). - Peter Bala, Jan 12 2025

Crossrefs

Programs

  • Magma
    [DivisorSigma(13, n): n in [1..20]]; // Vincenzo Librandi, Sep 10 2016
    
  • Maple
    A013961 := proc(n)
        numtheory[sigma][13](n) ;
    end proc: # R. J. Mathar, Sep 21 2017
  • Mathematica
    DivisorSigma[13, Range[30]] (* Vincenzo Librandi, Sep 10 2016 *)
  • PARI
    my(N=99, q='q+O('q^N)); Vec(sum(n=1, N, n^13*q^n/(1-q^n))) \\ Altug Alkan, Sep 10 2016
    
  • PARI
    a(n) = sigma(n, 13); \\ Michel Marcus, Sep 10 2016
  • Sage
    [sigma(n,13)for n in range(1,16)] # Zerinvary Lajos, Jun 04 2009
    

Formula

G.f.: Sum_{k>=1} k^13*x^k/(1-x^k). - Benoit Cloitre, Apr 21 2003
Dirichlet g.f.: zeta(s-13)*zeta(s). - Ilya Gutkovskiy, Sep 10 2016
Empirical: Sum_{n>=1} a(n)/exp(2*Pi*n) = 1/24. - Simon Plouffe, Mar 01 2021
From Amiram Eldar, Oct 29 2023: (Start)
Multiplicative with a(p^e) = (p^(13*e+13)-1)/(p^13-1).
Sum_{k=1..n} a(k) = zeta(14) * n^14 / 14 + O(n^15). (End)

A087215 Lucas(6*n): a(n) = 18*a(n-1) - a(n-2), starting with a(0) = 2 and a(1) = 18.

Original entry on oeis.org

2, 18, 322, 5778, 103682, 1860498, 33385282, 599074578, 10749957122, 192900153618, 3461452808002, 62113250390418, 1114577054219522, 20000273725560978, 358890350005878082, 6440026026380244498, 115561578124838522882, 2073668380220713167378
Offset: 0

Views

Author

Nikolay V. Kosinov (kosinov(AT)unitron.com.ua), Oct 19 2003

Keywords

Comments

a(n+1)/a(n) converges to 9 + sqrt(80) = 17.9442719... a(0)/a(1) = 2/18; a(1)/a(2) = 18/322; a(2)/a(3) = 322/5778; a(3)/a(4) = 5778/103682; etc.
Lim_{n -> oo} a(n)/a(n+1) = 0.05572809000084... = 1/(9 + sqrt(80)) = 9 - sqrt(80).
From Peter Bala, Oct 13 2019: (Start)
Let F(x) = Product_{n >= 0} (1 + x^(4*n+1))/(1 + x^(4*n+3)). Let Phi = (1/2)*(sqrt(5) - 1). This sequence gives the partial denominators in the simple continued fraction expansion of the number F(Phi^6) = 1.0555459720... = 1 + 1/(18 + 1/(322 + 1/(5778 + ...))).
Also F(-Phi^6) = 0.9444348576... has the continued fraction representation 1 - 1/(18 - 1/(322 - 1/(5788 - ...))) and the simple continued fraction expansion 1/(1 + 1/((18 - 2) + 1/(1 + 1/((322 - 2) + 1/(1 + 1/((5788 - 2) + 1/(1 + ...))))))).
F(Phi^6)*F(-Phi^6) = 0.9968944099... has the simple continued fraction expansion 1/(1 + 1/((18^2 - 4) + 1/(1 + 1/((322^2 - 4) + 1/(1 + 1/((5788^2 - 4) + 1/(1 + ...))))))).
1/2 + (1/2)*F(Phi^6)/F(-Phi^6) = 1.0588241282... has the simple continued fraction expansion 1 + 1/((18 - 2) + 1/(1 + 1/((5778 - 2) + 1/(1 + 1/(1860498 - 2) + 1/(1 + ...))))). (End)

Examples

			a(4) = 103682 = 18*a(3) - a(2) = 18*5778 - 322 = (9 + sqrt(80))^4 + (9 - sqrt(80))^4 = 103681.99999035512... + 0.00000964487... = 103682.
		

References

  • J. M. Borwein and P. B. Borwein, Pi and the AGM, Wiley, 1987, p. 91.
  • R. P. Stanley. Enumerative combinatorics. Vol. 2, volume 62 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge, 1999.

Crossrefs

Cf. A074919.
Row 2 * 2 of array A188645.
Cf. Lucas(k*n): A000032 (k = 1), A005248 (k = 2), A014448 (k = 3), A056854 (k = 4), A001946 (k = 5), A087281 (k = 7), A087265 (k = 8), A087287 (k = 9), A065705 (k = 10), A089772 (k = 11), A089775 (k = 12).

Programs

  • Magma
    [ Lucas(6*n) : n in [0..100]]; // Vincenzo Librandi, Apr 14 2011
    
  • Mathematica
    a[0] = 2; a[1] = 18; a[n_] := 18a[n - 1] - a[n - 2]; Table[ a[n], {n, 0, 15}] (* Robert G. Wilson v, Jan 30 2004 *)
    Table[LucasL[6n], {n, 0, 18}]  (* or *) CoefficientList[Series[2*(1 - 9*x)/(1 - 18*x + x^2), {x, 0, 17}], x] (* Indranil Ghosh, Mar 15 2017 *)
  • PARI
    Vec(2*(1-9*x)/(1-18*x+x^2) + O(x^20)) \\ Colin Barker, Jan 24 2016
    
  • PARI
    a(n) = if(n<2, 17^n + 1, 18*a(n - 1) - a(n - 2));
    for(n=0, 17, print1(a(n),", ")) \\ Indranil Ghosh, Mar 15 2017

Formula

a(n) = A000032(6*n).
a(n) = 18*a(n-1) - a(n-2), starting with a(0) = 2 and a(1) = 18.
a(n) = (9 + sqrt(80))^n + (9 - sqrt(80))^n.
G.f.: 2*(1-9*x)/(1-18*x+x^2). - Philippe Deléham, Nov 17 2008
a(n) = 2*A023039(n). - R. J. Mathar, Oct 22 2010
From Peter Bala, Oct 13 2019: (Start)
a(n) = F(6*n+6)/F(6) - F(6*n-6)/F(6) = A049660(n+1) - A049660(n-1).
a(n) = trace(M^n), where M is the 2 X 2 matrix [0, 1; 1, 1]^6 = [5, 8; 8, 13].
Consequently the Gauss congruences hold: a(n*p^k) = a(n*p^(k-1)) ( mod p^k ) for all prime p and positive integers n and k. See Zarelua and also Stanley (Ch. 5, Ex. 5.2(a) and its solution).
16*Sum_{n >= 1} 1/(a(n) - 20/a(n)) = 1: (20 = Lucas(6) + 2 and 16 = Lucas(6) - 2)
20*Sum_{n >= 1} (-1)^(n+1)/(a(n) + 16/a(n)) = 1.
Series acceleration formulas for sum of reciprocals:
Sum_{n >= 1} 1/a(n) = 1/16 - 20*Sum_{n >= 1} 1/(a(n)*(a(n)^2 - 20)).
Sum_{n >= 1} (-1)^(n+1)/a(n) = 1/20 + 16*Sum_{n >= 1} (-1)^(n+1)/(a(n)*(a(n)^2 + 16)).
Sum_{n >= 1} 1/a(n) = ( (theta_3(9-4*sqrt(5)))^2 - 1 )/4 and
Sum_{n >= 1} (-1)^(n+1)/a(n) = ( 1 - (theta_3(4*sqrt(5)-9))^2 )/4,
where theta_3(x) = 1 + 2*Sum_{n >= 1} x^(n^2) (see A000122). Cf. A153415 and A003499.
x*exp(Sum_{n >= 1} a(n)*x^/n) = x + 18*x^2 + 323*x^3 + ... is the o.g.f. for A049660. (End)
E.g.f.: 2*exp(9*x)*cosh(4*sqrt(5)*x). - Stefano Spezia, Oct 18 2019
a(n) = L(2n-1)^2 * F(2n+1) + L(2n+1)^2 * F(2n-1), where F(n) = A000045(n) and L(n) = A000032(n). - Diego Rattaggi, Nov 12 2020
From Peter Bala, Apr 16 2025: (Start)
a(n) = Lucas(2*n)^3 - 3*Lucas(2*n) = 2*T(3, (1/2)*Lucas(2*n)), where T(k, x) denotes the k-th Chebyshev polynomial of the first kind; more generally, for k >= 0, Lucas(2*k*n) = 2*T(k, Lucas(2*n)/2).
Sum_{n >= 1} 1/a(n) = (1/4) * (theta_3(9 - sqrt(80))^2 - 1) and
Sum_{n >= 1} (-1)^(n+1)/a(n) = (1/4) * (1 - theta_3(sqrt(80) - 9)^2), where theta_3(x) = 1 + 2*Sum_{n >= 1} x^(n^2) (see A000122). See Borwein and Borwein, Proposition 3.5 (i), p. 91. Cf. A153415 and A003499. (End)

A001638 A Fielder sequence: a(n) = a(n-1) + a(n-3) + a(n-4), n >= 4.

Original entry on oeis.org

4, 1, 1, 4, 9, 11, 16, 29, 49, 76, 121, 199, 324, 521, 841, 1364, 2209, 3571, 5776, 9349, 15129, 24476, 39601, 64079, 103684, 167761, 271441, 439204, 710649, 1149851, 1860496, 3010349, 4870849, 7881196, 12752041, 20633239, 33385284, 54018521, 87403801
Offset: 0

Views

Author

Keywords

Comments

For n > 1, a(n) is the number of ways of choosing a subset of vertices of an n-cycle so that every vertex of the n-cycle is adjacent to one of the chosen vertices. (Note that this is not the same as the number of dominating sets of the n-cycle, which is given by A001644.) - Joel B. Lewis, Sep 12 2010
For n >= 3, a(n) is also the number of total dominating sets in the n-cycle graph. - Eric W. Weisstein, Apr 10 2018
For n > 0, a(n) is the number of ways to tile a strip of length n with squares, trominos, and quadrominos where the inital tile (of length 1, 3, or 4) can take on 1, 3, or 4 colors respectively. - Greg Dresden and Yuan Shen, Aug 10 2024

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Magma
    I:=[4,1,1,4]; [n le 4 select I[n] else Self(n-1) + Self(n-3) + Self(n-4): n in [1..30]]; // G. C. Greubel, Jan 09 2018
  • Maple
    A001638:=-(z+1)*(4*z**2-z+1)/(z**2+z-1)/(z**2+1); # conjectured by Simon Plouffe in his 1992 dissertation; gives sequence except for the initial 4
  • Mathematica
    LinearRecurrence[{1, 0, 1, 1}, {4, 1, 1, 4}, 50] (* T. D. Noe, Aug 09 2012 *)
    Table[LucasL[n] + 2 Cos[n Pi/2], {n, 0, 20}] (* Eric W. Weisstein, Apr 10 2018 *)
    CoefficientList[Series[(-4 + 3 x + x^3)/(-1 + x + x^3 + x^4), {x, 0, 20}], x] (* Eric W. Weisstein, Apr 10 2018 *)
  • PARI
    a(n)=if(n<0,0,fibonacci(n+1)+fibonacci(n-1)+simplify(I^n+(-I)^n))
    
  • PARI
    a(n)=if(n<0,0,polsym((1+x-x^2)*(1+x^2),n)[n+1])
    

Formula

G.f.: (1-x)*(4+x+x^2)/((1+x^2)*(1-x-x^2)).
a(n) = L(n) + i^n + (-i)^n, a(2n) = L(n)^2, a(2n+1) = L(2n+1) where L() is Lucas sequence A000032.
a(n) = a(n-1) + a(n-3) + a(n-4). - Eric W. Weisstein, Apr 10 2018
a(n) = Trace(M^n), where M = [0, 0, 0, 1; 1, 0, 0, 1; 0, 1, 0, 0; 0, 0, 1, 1] is the companion matrix to the monic polynomial x^4 - x^3 - x - 1. . It follows that the sequence satisfies the Gauss congruences: a(n*p^r) == a(n*p^(r-1)) (mod p^r) for positive integers n and r and all primes p. See Zarelua. - Peter Bala, Jan 08 2023

Extensions

Edited by Michael Somos, Feb 17 2002 and Nov 02 2002

A015911 Numbers k such that 2^k mod k is odd.

Original entry on oeis.org

25, 45, 55, 91, 95, 99, 125, 135, 143, 153, 155, 161, 175, 187, 225, 235, 245, 247, 261, 273, 275, 279, 285, 289, 297, 319, 329, 333, 335, 355, 363, 369, 387, 391, 403, 407, 413, 423, 425, 429, 435, 437, 441, 459, 473, 477, 481, 483, 493, 507, 517, 525, 529
Offset: 1

Views

Author

Keywords

Comments

All terms are composite: due to Fermat's little theorem, 2^p == 2 (mod p) when p is prime. - M. F. Hasler, May 10 2021

Crossrefs

Programs

  • Maple
    q:= n-> is(2&^n mod n, odd):
    select(q, [$1..1000])[];  # Alois P. Heinz, May 10 2021
  • Mathematica
    Select[Range@532, OddQ@PowerMod[2, #, # ] &]
  • PARI
    is(n)=lift(Mod(2,n)^n)%2 \\ Charles R Greathouse IV, May 31 2013

A064535 a(n) = (2^prime(n)-2)/prime(n); a(0) = 0 by convention.

Original entry on oeis.org

0, 1, 2, 6, 18, 186, 630, 7710, 27594, 364722, 18512790, 69273666, 3714566310, 53634713550, 204560302842, 2994414645858, 169947155749830, 9770521225481754, 37800705069076950, 2202596307308603178, 33256101992039755026, 129379903640264252430
Offset: 0

Views

Author

Shane Findley, Oct 09 2001

Keywords

Comments

As a corollary to Fermat's little theorem, (2^p - 2)/p is always an integer for p prime. - Alonso del Arte, May 04 2013

Examples

			a(3) = 6, because prime(3) = 5, and (2^5 - 2)/5 = 30/5 = 6.
a(4) = 18, because prime(4) = 7, and (2^7  - 2)/7 = 126/7 = 18.
		

Crossrefs

Cf. A007663, A056743, A225101 (superset).

Programs

  • Magma
    [0] cat [(2^NthPrime(n)-2)/NthPrime(n): n in [1..25]]; // Vincenzo Librandi, Sep 14 2018
  • Maple
    A064535 := proc(n) ( 2^ithprime(n) - 2 )/ithprime(n); end;
  • Mathematica
    Table[(2^Prime[n] - 2)/Prime[n], {n, 50}] (* Alonso del Arte, Apr 28 2013 *)
  • PARI
    { for (n=0, 100, if (n, a=(2^prime(n) - 2)/prime(n), a=0); write("b064535.txt", n, " ", a) ) } \\ Harry J. Smith, Sep 17 2009
    

Formula

a(n) = A001037(prime(n)) for n >= 1. - Hilko Koning, Sep 10 2018
a(n) = 2*A007663(n) for n > 1. - Jeppe Stig Nielsen, May 16 2021

A069051 Primes p such that p-1 divides 2^p-2.

Original entry on oeis.org

2, 3, 7, 19, 43, 127, 163, 379, 487, 883, 1459, 2647, 3079, 3943, 5419, 9199, 11827, 14407, 16759, 18523, 24967, 26407, 37339, 39367, 42463, 71443, 77659, 95923, 99079, 113779, 117307, 143263, 174763, 175447, 184843, 265483, 304039, 308827
Offset: 1

Views

Author

Benoit Cloitre, Apr 03 2002

Keywords

Comments

These are the prime values of n such that 2^n == 2 (mod n*(n-1)). - V. Raman, Sep 17 2012
These are the prime values p such that n^(2^(p-1)) is congruent to n or -n (mod p) for all n in Z/pZ, the commutative ring associated with each term. This results follows from Fermat's little theorem. - Philip A. Hoskins, Feb 08 2013
A prime p is in this sequence iff p-1 belongs to A014741. For p>2, this is equivalent to (p-1)/2 belonging to A014945. - Max Alekseyev, Aug 31 2016
From Thomas Ordowski, Nov 20 2018: (Start)
Conjecture: if n-1 divides 2^n-2, then (2^n-2)/(n-1) is squarefree.
Numbers n such that b^n == b (mod (n-1)*n) for every integer b are 2, 3, 7, and 43; i.e., only prime numbers of the form A014117(k) + 1. (End)
These are primes p such that p^2 divides b^(2^p-2) - 1 for every b coprime to p. - Thomas Ordowski, Jul 01 2024

Crossrefs

a(n)-1 form subsequence of A014741; (a(n)-1)/2 for n>1 forms a subsequence of A014945.

Programs

  • GAP
    Filtered([1..350000],p->IsPrime(p) and (2^p-2) mod (p-1)=0); # Muniru A Asiru, Dec 03 2018
    
  • Magma
    [p : p in PrimesUpTo(310000) | IsZero((2^p-2) mod (p-1))]; // Vincenzo Librandi, Dec 03 2018
    
  • Mathematica
    Select[Prime[Range[10000]], Mod[2^# - 2, # - 1] == 0 &] (* T. D. Noe, Sep 19 2012 *)
    Join[{2,3},Select[Prime[Range[30000]],PowerMod[2,#,#-1]==2&]] (* Harvey P. Dale, Apr 17 2022 *)
  • PARI
    isA069051(p)=Mod(2,p-1)^p==2 && isprime(p); \\ Charles R Greathouse IV, Sep 19 2012
    
  • Python
    from sympy import prime
    for n in range(1,350000):
        if (2**prime(n)-2) % (prime(n)-1)==0:
            print(prime(n)) # Stefano Spezia, Dec 07 2018

Extensions

a(1) added by Charles R Greathouse IV, Sep 19 2012

A170912 Write cos(x) = Product_{n >= 1} (1 + g_n*x^(2*n)); a(n) = numerator(g_n).

Original entry on oeis.org

-1, 1, 7, 131, 1843, 97261, 4683059, 1331727679, 568285777, 9521655609199, 175554688130609, 11334988388673161, 3457026400678609391, 6594042537777612027841, 249248595232521829462213, 268938575250382935485761673113, 3929672369519648081411955883, 4719016202742955262333630268611
Offset: 1

Views

Author

N. J. A. Sloane, Jan 30 2010

Keywords

Examples

			-1/2, 1/24, 7/360, 131/13440, 1843/453600, 97261/47900160, ...
		

Crossrefs

Cf. A170913.

Programs

  • Maple
    t1:=cos(x);
    L:=100;
    t0:=series(t1,x,L):
    g:=[]; M:=40; t2:=t0:
    for n from 1 to M do
    t3:=coeff(t2,x,n); t2:=series(t2/(1+t3*x^n),x,L); g:=[op(g),t3];
    od:
    g;
    h:=[seq(g[2*n],n=1..nops(g)/2)];
    h1:=map(numer,h);
    h2:=map(denom,h);
  • Mathematica
    A[m_, n_] :=
      A[m, n] =
       Which[m == 1, (-1)^n/(2*n)!, m > n >= 1, 0, True,
        A[m - 1, n] - A[m - 1, m - 1]*A[m, n - m + 1]];
    a[n_] := Numerator[A[n, n]];
    a /@ Range[1, 55] (* Petros Hadjicostas, Oct 04 2019, courtesy of Jean-François Alcover *)

A170913 Write cos(x) = Product_{n>=1} (1 + g_n*x^(2*n)); a(n) = denominator(g_n).

Original entry on oeis.org

2, 24, 360, 13440, 453600, 47900160, 5448643200, 2988969984000, 3126159036000, 101370917007360000, 4390627842881280000, 552984315270266880000, 393839317506450816000000, 1465809349094778175488000000, 129517997955171415349760000000, 263130836933693530167218012160000000
Offset: 1

Views

Author

N. J. A. Sloane, Jan 30 2010

Keywords

Examples

			-1/2, 1/24, 7/360, 131/13440, 1843/453600, 97261/47900160, ...
		

Crossrefs

Cf. A170912.

Programs

  • Maple
    t1:=cos(x);
    L:=100;
    t0:=series(t1, x, L):
    g:=[]; M:=40; t2:=t0:
    for n from 1 to M do
    t3:=coeff(t2, x, n); t2:=series(t2/(1+t3*x^n), x, L); g:=[op(g), t3];
    od:
    g;
    h:=[seq(g[2*n], n=1..nops(g)/2)];
    h1:=map(numer, h);
    h2:=map(denom, h);
  • Mathematica
    A[m_, n_] :=
      A[m, n] =
       Which[m == 1, (-1)^n/(2*n)!, m > n >= 1, 0, True,
        A[m - 1, n] - A[m - 1, m - 1]*A[m, n - m + 1]];
    a[n_] := Denominator[A[n, n]];
    a /@ Range[1, 55] (* Petros Hadjicostas, Oct 04 2019, courtesy of  Jean-François Alcover *)

A353583 Numerators of coefficients c(n) in product expansion of 1 + tan x = Product_{k>=1} 1 + c(k)*x^k.

Original entry on oeis.org

1, 0, 1, -1, 7, -7, 199, -71, 484, -368, 187909, -610103, 2068657, -63614, 1530164189, -1715846683, 7628902283, -125125345078, 9521826231889, -17921564328719, 291162274608871, -47147385565688, 552647133893696333, -36898601487519532, 4761064630028162378
Offset: 1

Views

Author

M. F. Hasler, May 07 2022

Keywords

Comments

See A353584 for the denominators, and A353586 for the analog for (tan x)/x.

Examples

			1 + tan x = (1 + x)(1 + 1/3*x^3)(1 - 1/3*x^4/3)(1 + 7/15*x^5)(1 - 7/15*x^5)(...),
and this sequence lists the numerators of (1, 0, 1/3, -1/3, 7/15, -7/15, ...).
		

Crossrefs

Cf. A353584 (denominators), A353586 / A353587 (similar for (tan x)/x).
Cf. A170918 / A170919 for a variant.

Programs

  • PARI
    t=1+tan(x+O(x)^29); vector(#t-1,n,c=polcoef(t,n);t/=1+c*x^n;numerator(c))
Previous Showing 31-40 of 141 results. Next