A273866
Coefficients a(k,m) of polynomials a{k}(h) appearing in the product Product_{k >= 1} (1 - a{k}(h)*x^k) = 1 - h*x/(1-x).
Original entry on oeis.org
1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 2, 2, 2, 1, 1, 3, 5, 5, 3, 1, 1, 3, 6, 7, 6, 3, 1, 1, 4, 9, 13, 13, 9, 4, 1, 1, 4, 10, 17, 20, 17, 10, 4, 1, 1, 5, 15, 30, 42, 42, 30, 15, 5, 1, 1, 5, 16, 36, 57, 66, 57, 36, 16, 5, 1
Offset: 1
a{1}(h) = h,
a{2}(h) = h,
a{3}(h) = h^2 + h,
a{4}(h) = h^3 + h^2 + h,
a{5}(h) = h^4 + 2*h^3 + 2*h^2 + h,
a{6}(h) = h^5 + 2*h^4 + 2*h^3 + 2*h^2 + h,
a{7}(h) = h^6 + 3*h^5 + 5*h^4 + 5*h^3 + 3*h^2 + h,
a{8}(h) = h^7 + 3*h^6 + 6*h^5 + 7*h^4 + 6*h^3 + 3*h^2 + h,
a{9}(h) = h^8 + 4*h^7 + 9*h^6 + 13*h^5 + 13*h^4 + 9*h^3 + 4*h^2 + h
...
and the corresponding a(k,m) table is:
1,
1,
1, 1,
1, 1, 1,
1, 2, 2, 1,
1, 2, 2, 2, 1,
1, 3, 5, 5, 3, 1,
1, 3, 6, 7, 6, 3, 1,
1, 4, 9, 13, 13, 9, 4, 1,
...
a(7,3) = 5 because there are six strict trees contributing positive one {{5,1},1}, {{4,2},1}, {{4,1},2}, {{3,2},2}, {4,{2,1}}, {{3,1},3} and there is one strict tree contributing negative one {4,2,1}. - _Gus Wiseman_, Nov 14 2016
- Giedrius Alkauskas, One curious proof of Fermat's little theorem, arXiv:0801.0805 [math.NT], 2008.
- Giedrius Alkauskas, A curious proof of Fermat's little theorem, Amer. Math. Monthly 116(4) (2009), 362-364.
- H. Gingold, H. W. Gould, and Michael E. Mays, Power Product Expansions, Utilitas Mathematica 34 (1988), 143-161.
- H. Gingold and A. Knopfmacher, Analytic properties of power product expansions, Canad. J. Math. 47 (1995), 1219-1239.
- W. Lang, Recurrences for the general problem.
-
with(ListTools), with(numtheory), with(combinat);
L := product(1-a[k]*x^k, k = 1 .. 600);
S := Flatten([seq(-h, i = 1 .. 100)]);
Sabs := Flatten([seq(i, i = 1 .. 100)]);
seq(assign(a[i] = solve(coeff(L, x^i) = `if`(is(i in Sabs), S[Search(i, Sabs)], 0), a[i])), i = 1 .. 20);
map(coeffs, [seq(simplify(a[i]), i = 1 .. 20)]);
-
strictrees[n_Integer?Positive]:=Prepend[Join@@Function[ptn,Tuples[strictrees/@ptn]]/@Select[IntegerPartitions[n],And[Length[#]>1,UnsameQ@@#]&],n];
Table[Sum[(-1)^(Count[tree,,{0,Infinity}]-1),{tree,Select[strictrees[n],Length[Flatten[{#}]]===m&]}],{n,1,9},{m,1,n-1/.(0->1)}] (* _Gus Wiseman, Nov 14 2016 *)
(* second program *)
A[m_, n_] :=
A[m, n] =
Which[m == 1, -h, m > n >= 1, 0, True,
A[m - 1, n] - A[m - 1, m - 1]*A[m, n - m + 1]];
a[n_] := Expand[-A[n, n]];
a /@ Range[1, 25] (* Petros Hadjicostas, Oct 04 2019, courtesy of Jean-François Alcover *)
A013961
a(n) = sigma_13(n), the sum of the 13th powers of the divisors of n.
Original entry on oeis.org
1, 8193, 1594324, 67117057, 1220703126, 13062296532, 96889010408, 549822930945, 2541867422653, 10001220711318, 34522712143932, 107006334784468, 302875106592254, 793811662272744, 1946196290656824, 4504149450301441, 9904578032905938, 20825519793796029, 42052983462257060
Offset: 1
-
[DivisorSigma(13, n): n in [1..20]]; // Vincenzo Librandi, Sep 10 2016
-
A013961 := proc(n)
numtheory[sigma][13](n) ;
end proc: # R. J. Mathar, Sep 21 2017
-
DivisorSigma[13, Range[30]] (* Vincenzo Librandi, Sep 10 2016 *)
-
my(N=99, q='q+O('q^N)); Vec(sum(n=1, N, n^13*q^n/(1-q^n))) \\ Altug Alkan, Sep 10 2016
-
a(n) = sigma(n, 13); \\ Michel Marcus, Sep 10 2016
-
[sigma(n,13)for n in range(1,16)] # Zerinvary Lajos, Jun 04 2009
A087215
Lucas(6*n): a(n) = 18*a(n-1) - a(n-2), starting with a(0) = 2 and a(1) = 18.
Original entry on oeis.org
2, 18, 322, 5778, 103682, 1860498, 33385282, 599074578, 10749957122, 192900153618, 3461452808002, 62113250390418, 1114577054219522, 20000273725560978, 358890350005878082, 6440026026380244498, 115561578124838522882, 2073668380220713167378
Offset: 0
Nikolay V. Kosinov (kosinov(AT)unitron.com.ua), Oct 19 2003
a(4) = 103682 = 18*a(3) - a(2) = 18*5778 - 322 = (9 + sqrt(80))^4 + (9 - sqrt(80))^4 = 103681.99999035512... + 0.00000964487... = 103682.
- J. M. Borwein and P. B. Borwein, Pi and the AGM, Wiley, 1987, p. 91.
- R. P. Stanley. Enumerative combinatorics. Vol. 2, volume 62 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge, 1999.
- Colin Barker, Table of n, a(n) for n = 0..750
- Hacène Belbachir, Soumeya Merwa Tebtoub, and László Németh, Ellipse Chains and Associated Sequences, J. Int. Seq., Vol. 23 (2020), Article 20.8.5.
- P. Bhadouria, D. Jhala, and B. Singh, Binomial Transforms of the k-Lucas Sequences and its Properties, The Journal of Mathematics and Computer Science (JMCS), Volume 8, Issue 1, Pages 81-92; sequence R_4.
- Tanya Khovanova, Recursive Sequences
- A. V. Zarelua, On Matrix Analogs of Fermat's Little Theorem, Mathematical Notes, vol. 79, no. 6, 2006, pp. 783-796. Translated from Matematicheskie Zametki, vol. 79, no. 6, 2006, pp. 840-855.
- Index entries for recurrences a(n) = k*a(n - 1) +/- a(n - 2)
- Index entries for linear recurrences with constant coefficients, signature (18,-1).
Cf. Lucas(k*n):
A000032 (k = 1),
A005248 (k = 2),
A014448 (k = 3),
A056854 (k = 4),
A001946 (k = 5),
A087281 (k = 7),
A087265 (k = 8),
A087287 (k = 9),
A065705 (k = 10),
A089772 (k = 11),
A089775 (k = 12).
-
[ Lucas(6*n) : n in [0..100]]; // Vincenzo Librandi, Apr 14 2011
-
a[0] = 2; a[1] = 18; a[n_] := 18a[n - 1] - a[n - 2]; Table[ a[n], {n, 0, 15}] (* Robert G. Wilson v, Jan 30 2004 *)
Table[LucasL[6n], {n, 0, 18}] (* or *) CoefficientList[Series[2*(1 - 9*x)/(1 - 18*x + x^2), {x, 0, 17}], x] (* Indranil Ghosh, Mar 15 2017 *)
-
Vec(2*(1-9*x)/(1-18*x+x^2) + O(x^20)) \\ Colin Barker, Jan 24 2016
-
a(n) = if(n<2, 17^n + 1, 18*a(n - 1) - a(n - 2));
for(n=0, 17, print1(a(n),", ")) \\ Indranil Ghosh, Mar 15 2017
A001638
A Fielder sequence: a(n) = a(n-1) + a(n-3) + a(n-4), n >= 4.
Original entry on oeis.org
4, 1, 1, 4, 9, 11, 16, 29, 49, 76, 121, 199, 324, 521, 841, 1364, 2209, 3571, 5776, 9349, 15129, 24476, 39601, 64079, 103684, 167761, 271441, 439204, 710649, 1149851, 1860496, 3010349, 4870849, 7881196, 12752041, 20633239, 33385284, 54018521, 87403801
Offset: 0
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- T. D. Noe, Table of n, a(n) for n = 0..1000
- Daniel C. Fielder, Special integer sequences controlled by three parameters, Fibonacci Quarterly 6, 1968, 64-70.
- Fern Gossow, Lyndon-like cyclic sieving and Gauss congruence, arXiv:2410.05678 [math.CO], 2024. See p. 26.
- Middle European Math Olympiad 2010, Team Problem 3. Available online at the Art of Problem Solving. - _Joel B. Lewis_, Sep 12 2010
- Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
- Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992
- Eric Weisstein's World of Mathematics, Cycle Graph
- Eric Weisstein's World of Mathematics, Total Dominating Set
- Wikipedia, Companion matrix.
- A. V. Zarelua, On Matrix Analogs of Fermat's Little Theorem, Mathematical Notes, vol. 79, no. 6, 2006, pp. 783-796. Translated from Matematicheskie Zametki, vol. 79, no.
- 6, 2006, pp. 840-855.
- Index to sequences related to Olympiads.
- Index entries for linear recurrences with constant coefficients, signature (1,0,1,1).
-
I:=[4,1,1,4]; [n le 4 select I[n] else Self(n-1) + Self(n-3) + Self(n-4): n in [1..30]]; // G. C. Greubel, Jan 09 2018
-
A001638:=-(z+1)*(4*z**2-z+1)/(z**2+z-1)/(z**2+1); # conjectured by Simon Plouffe in his 1992 dissertation; gives sequence except for the initial 4
-
LinearRecurrence[{1, 0, 1, 1}, {4, 1, 1, 4}, 50] (* T. D. Noe, Aug 09 2012 *)
Table[LucasL[n] + 2 Cos[n Pi/2], {n, 0, 20}] (* Eric W. Weisstein, Apr 10 2018 *)
CoefficientList[Series[(-4 + 3 x + x^3)/(-1 + x + x^3 + x^4), {x, 0, 20}], x] (* Eric W. Weisstein, Apr 10 2018 *)
-
a(n)=if(n<0,0,fibonacci(n+1)+fibonacci(n-1)+simplify(I^n+(-I)^n))
-
a(n)=if(n<0,0,polsym((1+x-x^2)*(1+x^2),n)[n+1])
A015911
Numbers k such that 2^k mod k is odd.
Original entry on oeis.org
25, 45, 55, 91, 95, 99, 125, 135, 143, 153, 155, 161, 175, 187, 225, 235, 245, 247, 261, 273, 275, 279, 285, 289, 297, 319, 329, 333, 335, 355, 363, 369, 387, 391, 403, 407, 413, 423, 425, 429, 435, 437, 441, 459, 473, 477, 481, 483, 493, 507, 517, 525, 529
Offset: 1
-
q:= n-> is(2&^n mod n, odd):
select(q, [$1..1000])[]; # Alois P. Heinz, May 10 2021
-
Select[Range@532, OddQ@PowerMod[2, #, # ] &]
-
is(n)=lift(Mod(2,n)^n)%2 \\ Charles R Greathouse IV, May 31 2013
A064535
a(n) = (2^prime(n)-2)/prime(n); a(0) = 0 by convention.
Original entry on oeis.org
0, 1, 2, 6, 18, 186, 630, 7710, 27594, 364722, 18512790, 69273666, 3714566310, 53634713550, 204560302842, 2994414645858, 169947155749830, 9770521225481754, 37800705069076950, 2202596307308603178, 33256101992039755026, 129379903640264252430
Offset: 0
a(3) = 6, because prime(3) = 5, and (2^5 - 2)/5 = 30/5 = 6.
a(4) = 18, because prime(4) = 7, and (2^7 - 2)/7 = 126/7 = 18.
-
[0] cat [(2^NthPrime(n)-2)/NthPrime(n): n in [1..25]]; // Vincenzo Librandi, Sep 14 2018
-
A064535 := proc(n) ( 2^ithprime(n) - 2 )/ithprime(n); end;
-
Table[(2^Prime[n] - 2)/Prime[n], {n, 50}] (* Alonso del Arte, Apr 28 2013 *)
-
{ for (n=0, 100, if (n, a=(2^prime(n) - 2)/prime(n), a=0); write("b064535.txt", n, " ", a) ) } \\ Harry J. Smith, Sep 17 2009
A069051
Primes p such that p-1 divides 2^p-2.
Original entry on oeis.org
2, 3, 7, 19, 43, 127, 163, 379, 487, 883, 1459, 2647, 3079, 3943, 5419, 9199, 11827, 14407, 16759, 18523, 24967, 26407, 37339, 39367, 42463, 71443, 77659, 95923, 99079, 113779, 117307, 143263, 174763, 175447, 184843, 265483, 304039, 308827
Offset: 1
a(n)-1 form subsequence of
A014741; (a(n)-1)/2 for n>1 forms a subsequence of
A014945.
-
Filtered([1..350000],p->IsPrime(p) and (2^p-2) mod (p-1)=0); # Muniru A Asiru, Dec 03 2018
-
[p : p in PrimesUpTo(310000) | IsZero((2^p-2) mod (p-1))]; // Vincenzo Librandi, Dec 03 2018
-
Select[Prime[Range[10000]], Mod[2^# - 2, # - 1] == 0 &] (* T. D. Noe, Sep 19 2012 *)
Join[{2,3},Select[Prime[Range[30000]],PowerMod[2,#,#-1]==2&]] (* Harvey P. Dale, Apr 17 2022 *)
-
isA069051(p)=Mod(2,p-1)^p==2 && isprime(p); \\ Charles R Greathouse IV, Sep 19 2012
-
from sympy import prime
for n in range(1,350000):
if (2**prime(n)-2) % (prime(n)-1)==0:
print(prime(n)) # Stefano Spezia, Dec 07 2018
A170912
Write cos(x) = Product_{n >= 1} (1 + g_n*x^(2*n)); a(n) = numerator(g_n).
Original entry on oeis.org
-1, 1, 7, 131, 1843, 97261, 4683059, 1331727679, 568285777, 9521655609199, 175554688130609, 11334988388673161, 3457026400678609391, 6594042537777612027841, 249248595232521829462213, 268938575250382935485761673113, 3929672369519648081411955883, 4719016202742955262333630268611
Offset: 1
-1/2, 1/24, 7/360, 131/13440, 1843/453600, 97261/47900160, ...
- Giedrius Alkauskas, One curious proof of Fermat's little theorem, arXiv:0801.0805 [math.NT], 2008.
- Giedrius Alkauskas, A curious proof of Fermat's little theorem, Amer. Math. Monthly 116(4) (2009), 362-364.
- H. Gingold, H. W. Gould, and Michael E. Mays, Power Product Expansions, Utilitas Mathematica 34 (1988), 143-161.
- H. Gingold and A. Knopfmacher, Analytic properties of power product expansions, Canad. J. Math. 47 (1995), 1219-1239.
- W. Lang, Recurrences for the general problem.
-
t1:=cos(x);
L:=100;
t0:=series(t1,x,L):
g:=[]; M:=40; t2:=t0:
for n from 1 to M do
t3:=coeff(t2,x,n); t2:=series(t2/(1+t3*x^n),x,L); g:=[op(g),t3];
od:
g;
h:=[seq(g[2*n],n=1..nops(g)/2)];
h1:=map(numer,h);
h2:=map(denom,h);
-
A[m_, n_] :=
A[m, n] =
Which[m == 1, (-1)^n/(2*n)!, m > n >= 1, 0, True,
A[m - 1, n] - A[m - 1, m - 1]*A[m, n - m + 1]];
a[n_] := Numerator[A[n, n]];
a /@ Range[1, 55] (* Petros Hadjicostas, Oct 04 2019, courtesy of Jean-François Alcover *)
A170913
Write cos(x) = Product_{n>=1} (1 + g_n*x^(2*n)); a(n) = denominator(g_n).
Original entry on oeis.org
2, 24, 360, 13440, 453600, 47900160, 5448643200, 2988969984000, 3126159036000, 101370917007360000, 4390627842881280000, 552984315270266880000, 393839317506450816000000, 1465809349094778175488000000, 129517997955171415349760000000, 263130836933693530167218012160000000
Offset: 1
-1/2, 1/24, 7/360, 131/13440, 1843/453600, 97261/47900160, ...
- Giedrius Alkauskas, One curious proof of Fermat's little theorem, arXiv:0801.0805 [math.NT], 2008.
- Giedrius Alkauskas, A curious proof of Fermat's little theorem, Amer. Math. Monthly 116(4) (2009), 362-364.
- H. Gingold, H. W. Gould, and Michael E. Mays, Power Product Expansions, Utilitas Mathematica 34 (1988), 143-161.
- H. Gingold and A. Knopfmacher, Analytic properties of power product expansions, Canad. J. Math. 47 (1995), 1219-1239.
- W. Lang, Recurrences for the general problem.
-
t1:=cos(x);
L:=100;
t0:=series(t1, x, L):
g:=[]; M:=40; t2:=t0:
for n from 1 to M do
t3:=coeff(t2, x, n); t2:=series(t2/(1+t3*x^n), x, L); g:=[op(g), t3];
od:
g;
h:=[seq(g[2*n], n=1..nops(g)/2)];
h1:=map(numer, h);
h2:=map(denom, h);
-
A[m_, n_] :=
A[m, n] =
Which[m == 1, (-1)^n/(2*n)!, m > n >= 1, 0, True,
A[m - 1, n] - A[m - 1, m - 1]*A[m, n - m + 1]];
a[n_] := Denominator[A[n, n]];
a /@ Range[1, 55] (* Petros Hadjicostas, Oct 04 2019, courtesy of Jean-François Alcover *)
A353583
Numerators of coefficients c(n) in product expansion of 1 + tan x = Product_{k>=1} 1 + c(k)*x^k.
Original entry on oeis.org
1, 0, 1, -1, 7, -7, 199, -71, 484, -368, 187909, -610103, 2068657, -63614, 1530164189, -1715846683, 7628902283, -125125345078, 9521826231889, -17921564328719, 291162274608871, -47147385565688, 552647133893696333, -36898601487519532, 4761064630028162378
Offset: 1
1 + tan x = (1 + x)(1 + 1/3*x^3)(1 - 1/3*x^4/3)(1 + 7/15*x^5)(1 - 7/15*x^5)(...),
and this sequence lists the numerators of (1, 0, 1/3, -1/3, 7/15, -7/15, ...).
- Giedrius Alkauskas, One curious proof of Fermat's little theorem, arXiv:0801.0805 [math.NT], 2008.
- Giedrius Alkauskas, A curious proof of Fermat's little theorem, Amer. Math. Monthly 116(4) (2009), 362-364.
- Giedrius Alkauskas, Algebraic functions with Fermat property, eigenvalues of transfer operator and Riemann zeros, and other open problems, arXiv:1609.09842 [math.NT], 2016.
- H. Gingold, H. W. Gould, and Michael E. Mays, Power Product Expansions, Utilitas Mathematica 34 (1988), 143-161.
- H. Gingold and A. Knopfmacher, Analytic properties of power product expansions, Canad. J. Math. 47 (1995), 1219-1239.
- Wolfdieter Lang, Recurrences for the general problem.
Comments