cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 47 results. Next

A109754 Matrix defined by: a(i,0) = 0, a(i,j) = i*Fibonacci(j-1) + Fibonacci(j), for j > 0; read by ascending antidiagonals.

Original entry on oeis.org

0, 0, 1, 0, 1, 1, 0, 1, 2, 2, 0, 1, 3, 3, 3, 0, 1, 4, 4, 5, 5, 0, 1, 5, 5, 7, 8, 8, 0, 1, 6, 6, 9, 11, 13, 13, 0, 1, 7, 7, 11, 14, 18, 21, 21, 0, 1, 8, 8, 13, 17, 23, 29, 34, 34, 0, 1, 9, 9, 15, 20, 28, 37, 47, 55, 55, 0, 1, 10, 10, 17, 23, 33, 45, 60, 76, 89, 89
Offset: 0

Views

Author

Ross La Haye, Aug 11 2005; corrected Apr 14 2006

Keywords

Comments

Lower triangular version is at A117501. - Ross La Haye, Apr 12 2006

Examples

			Table starts:
[0] 0, 1,  1,  2,  3,  5,  8, 13,  21,  34, ...
[1] 0, 1,  2,  3,  5,  8, 13, 21,  34,  55, ...
[2] 0, 1,  3,  4,  7, 11, 18, 29,  47,  76, ...
[3] 0, 1,  4,  5,  9, 14, 23, 37,  60,  97, ...
[4] 0, 1,  5,  6, 11, 17, 28, 45,  73, 118, ...
[5] 0, 1,  6,  7, 13, 20, 33, 53,  86, 139, ...
[6] 0, 1,  7,  8, 15, 23, 38, 61,  99, 160, ...
[7] 0, 1,  8,  9, 17, 26, 43, 69, 112, 181, ...
[8] 0, 1,  9, 10, 19, 29, 48, 77, 125, 202, ...
[9] 0, 1, 10, 11, 21, 32, 53, 85, 138, 223, ...
		

Crossrefs

Rows: A000045(j); A000045(j+1), for j > 0; A000032(j), for j > 0; A000285(j-1), for j > 0; A022095(j-1), for j > 0; A022096(j-1), for j > 0; A022097(j-1), for j > 0. Diagonals: a(i, i) = A094588(i); a(i, i+1) = A007502(i+1); a(i, i+2) = A088209(i); Sum[a(i-j, j), {j=0...i}] = A104161(i). a(i, j) = A101220(i, 0, j).
Rows 7 - 19: A022098(j-1), for j > 0; A022099(j-1), for j > 0; A022100(j-1), for j > 0; A022101(j-1), for j > 0; A022102(j-1), for j > 0; A022103(j-1), for j > 0; A022104(j-1), for j > 0; A022106(j-1), for j > 0; A022107(j-1), for j > 0; A022108(j-1), for j > 0; A022109(j-1), for j > 0; A022110(j-1), for j > 0.
a(2^i-2, j+1) = A118654(i, j), for i > 0.
Cf. A117501.

Programs

  • Maple
    A := (n, k) -> ifelse(k = 0, 0,
          n*combinat:-fibonacci(k-1) + combinat:-fibonacci(k)):
    seq(seq(A(n - k, k), k = 0..n), n = 0..6); # Peter Luschny, May 28 2022
  • Mathematica
    T[n_, 0]:= 0; T[n_, 1]:= 1; T[n_, 2]:= n - 1; T[n_, 3]:= n - 1; T[n_, n_]:= Fibonacci[n]; T[n_, k_]:= T[n, k] = T[n - 1, k - 1] + T[n - 2, k - 2]; Table[T[n, k], {n, 0, 15}, {k, 0, n}] (* G. C. Greubel, Jan 07 2017 *)

Formula

a(i, 0) = 0, a(i, j) = i*Fibonacci(j-1) + Fibonacci(j), for j > 0.
a(i, 0) = 0, a(i, 1) = 1, a(i, 2) = i+1, a(i, j) = a(i, j-1) + a(i, j-2), for j > 2.
G.f.: (x*(1 + ix))/(1 - x - x^2).
Sum_{j=0..i+1} a(i-j+1, j) - Sum_{j=0..i} a(i-j, j) = A001595(i). - Ross La Haye, Jun 03 2006

Extensions

More terms from G. C. Greubel, Jan 07 2017

A160009 Numbers that are the product of distinct Fibonacci numbers.

Original entry on oeis.org

0, 1, 2, 3, 5, 6, 8, 10, 13, 15, 16, 21, 24, 26, 30, 34, 39, 40, 42, 48, 55, 63, 65, 68, 78, 80, 89, 102, 104, 105, 110, 120, 126, 130, 144, 165, 168, 170, 178, 195, 204, 208, 210, 233, 240, 267, 272, 273, 275, 288, 312, 315, 330, 336, 340, 377, 390, 432, 440, 442, 445
Offset: 1

Views

Author

T. D. Noe, Apr 29 2009

Keywords

Comments

Starts the same as A049862, the product of two distinct Fibonacci numbers. This sequence has an infinite number of consecutive terms that are consecutive numbers (such as 15 and 16) because fib(k)*fib(k+3) and fib(k+1)*fib(k+2) differ by one for all k >= 0.
It follows from Carmichael's theorem that if u and v are finite sets of Fibonacci numbers such that (product of all the numbers in u) = (product of all the numbers in v), then u = v. The same holds for many other 2nd order linear recurrence sequences with constant coefficients. In the following guide to related "distinct product sequences", W = Wythoff array, A035513:
base sequence distinct-product sequence
A000045 (Fibonacci) A160009
A000032 (Lucas, without 2) A274280
A000032 (Lucas, with 2) A274281
A000285 (1,4,5,...) A274282
A022095 (1,5,6,...) A274283
A006355 (2,4,6,...) A274284
A013655 (2,5,7,...) A274285
A022086 (3,6,9,...) A274191
row 2 of W: (4,7,11,...) A274286
row 3 of W: (6,10,16,...) A274287
row 4 of W: (9,15,24,...) A274288
- Clark Kimberling, Jun 17 2016

Crossrefs

Programs

  • Mathematica
    s={1}; nn=30; f=Fibonacci[2+Range[nn]]; Do[s=Union[s,Select[s*f[[i]],#<=f[[nn]]&]], {i,nn}]; s=Prepend[s,0]

A001060 a(n) = a(n-1) + a(n-2) with a(0)=2, a(1)=5. Sometimes called the Evangelist Sequence.

Original entry on oeis.org

2, 5, 7, 12, 19, 31, 50, 81, 131, 212, 343, 555, 898, 1453, 2351, 3804, 6155, 9959, 16114, 26073, 42187, 68260, 110447, 178707, 289154, 467861, 757015, 1224876, 1981891, 3206767, 5188658, 8395425, 13584083, 21979508, 35563591, 57543099, 93106690, 150649789
Offset: 0

Views

Author

Keywords

Comments

Literally the same as A013655(n+1), since A001060(-1) = A013655(0) = 3. - Eric W. Weisstein, Jun 30 2017
Used by the Sofia Gubaidulina and other composers. - Ian Stewart, Jun 07 2012
From a(2) on, sums of five consecutive Fibonacci numbers; the subset of primes is essentially in A153892. - R. J. Mathar, Mar 24 2010
Pisano period lengths: 1, 3, 8, 6, 20, 24, 16, 12, 24, 60, 10, 24, 28, 48, 40, 24, 36, 24, 18, 60, ... (is this A001175?). - R. J. Mathar, Aug 10 2012
Also the number of independent vertex sets and vertex covers in the (n+1)-pan graph. - Eric W. Weisstein, Jun 30 2017
From Wajdi Maaloul, Jun 10 2022: (Start)
For n > 0, a(n) is the number of ways to tile the figure below with squares and dominoes (a strip of length n+1 that contains a vertical strip of height 3 in its second tile). For instance, a(4) is the number of ways to tile this figure (of length 5) with squares and dominoes.
_
|_|
||_______
|||_|||_|
(End)

References

  • R. V. Jean, Mathematical Approach to Pattern and Form in Plant Growth, Wiley, 1984. See p. 5.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Apart from initial term, same as A013655.

Programs

  • GAP
    F:=Fibonacci;; List([0..40], n-> F(n+4) - F(n-1) ); # G. C. Greubel, Sep 19 2019
  • Magma
    I:=[2,5]; [n le 2 select I[n] else Self(n-1)+Self(n-2): n in [1..50]]; // Vincenzo Librandi, Jan 16 2012
    
  • Magma
    a0:=2; a1:=5; [GeneralizedFibonacciNumber(a0, a1, n): n in [0..35]]; // Bruno Berselli, Feb 12 2013
    
  • Maple
    with(combinat): a:= n-> 2*fibonacci(n)+fibonacci(n+3): seq(a(n), n=0..40); # Zerinvary Lajos, Oct 05 2007
    A001060:=-(2+3*z)/(-1+z+z**2); # conjectured by Simon Plouffe in his 1992 dissertation
  • Mathematica
    Table[Fibonacci[n+4] -Fibonacci[n-1], {n, 0, 50}] (* Vladimir Joseph Stephan Orlovsky, Nov 23 2009 *)
    LinearRecurrence[{1,1}, {2,5}, 50] (* Vincenzo Librandi, Jan 16 2012 *)
    Table[Fibonacci[n+2] + LucasL[n+1], {n, 0, 40}] (* Eric W. Weisstein, Jun 30 2017 *)
    CoefficientList[Series[(2+3x)/(1-x-x^2), {x, 0, 40}], x] (* Eric W. Weisstein, Sep 22 2017 *)
  • PARI
    a(n)=6*fibonacci(n)+fibonacci(n-3) \\ Charles R Greathouse IV, Jul 14 2017
    
  • PARI
    a(n)=([0,1; 1,1]^n*[2;5])[1,1] \\ Charles R Greathouse IV, Jul 14 2017
    
  • Sage
    f=fibonacci; [f(n+4) - f(n-1) for n in (0..40)] # G. C. Greubel, Sep 19 2019
    

Formula

a(n) = 2*Fibonacci(n) + Fibonacci(n+3). - Zerinvary Lajos, Oct 05 2007
a(n) = Fibonacci(n+4) - Fibonacci(n-1) for n >= 1. - Ian Stewart, Jun 07 2012
a(n) = Fibonacci(n) + 2*Fibonacci(n+2) = 5*Fibonacci(n) + 2*Fibonacci(n-1). The ratio r(n) := a(n+2)/a(n) satisfies the recurrence r(n+1) = (2*r(n) - 1)/(r(n) - 1). If M denotes the 2 X 2 matrix [2, -1; 1, -1] then [a(n+2), a(n)] = M^n[2, -1]. - Peter Bala, Dec 06 2013
a(n) = 6*F(n) + F(n-3), for F(n)=A000045. - J. M. Bergot, Jul 14 2017
a(n) = -(-1)^n*A000285(-2-n) = -(-1)^n*A104449(-1-n) for all n in Z. - Michael Somos, Oct 28 2018
E.g.f.: 2*exp(x/2)*(5*cosh(sqrt(5)*x/2) + 4*sqrt(5)*sinh(sqrt(5)*x/2))/5. - Stefano Spezia, May 26 2025

Extensions

More terms from James Sellers, May 04 2000

A095660 Pascal (1,3) triangle.

Original entry on oeis.org

3, 1, 3, 1, 4, 3, 1, 5, 7, 3, 1, 6, 12, 10, 3, 1, 7, 18, 22, 13, 3, 1, 8, 25, 40, 35, 16, 3, 1, 9, 33, 65, 75, 51, 19, 3, 1, 10, 42, 98, 140, 126, 70, 22, 3, 1, 11, 52, 140, 238, 266, 196, 92, 25, 3, 1, 12, 63, 192, 378, 504, 462, 288, 117, 28, 3, 1, 13, 75, 255, 570, 882, 966, 750, 405, 145, 31, 3
Offset: 0

Views

Author

Wolfdieter Lang, May 21 2004

Keywords

Comments

This is the third member, q=3, in the family of (1,q) Pascal triangles: A007318 (Pascal (q=1)), A029635 (q=2) (but with T(0,0)=2, not 1).
This is an example of a Riordan triangle (see A053121 for a comment and the 1991 Shapiro et al. reference on the Riordan group) with o.g.f. of column no. m of the type g(x)*(x*f(x))^m with f(0)=1. Therefore the o.g.f. for the row polynomials p(n,x) = Sum_{m=0..n} T(n,m)*x^m is G(z,x) = g(z)/(1-x*z*f(z)). Here: g(x) = (3-2*x)/(1-x), f(x) = 1/(1-x), hence G(z,x) = (3-2*z)/(1-(1+x)*z).
The SW-NE diagonals give Sum_{k=0..ceiling((n-1)/2)} T(n-1-k,k) = A000285(n-2), n>=2, with n=1 value 3. Observation by Paul Barry, Apr 29 2004. Proof via recursion relations and comparison of inputs.
Central terms: T(2*n,n) = A028329(n) = A100320(n) for n > 0, A028329 are the central terms of triangle A028326. - Reinhard Zumkeller, Apr 08 2012
Let P be Pascal's triangle, A007318 and R the Riordan array, A097805. Then Pascal triangle (1,q) = ((q-1) * R) + P. Example: Pascal triangle (1,3) = (2 * R) + P. - Gary W. Adamson, Sep 12 2015

Examples

			Triangle starts:
  3;
  1,  3;
  1,  4,  3;
  1,  5,  7,   3;
  1,  6, 12,  10,   3;
  1,  7, 18,  22,  13,   3;
  1,  8, 25,  40,  35,  16,   3;
  1,  9, 33,  65,  75,  51,  19,   3;
  1, 10, 42,  98, 140, 126,  70,  22,   3;
  1, 11, 52, 140, 238, 266, 196,  92,  25,   3;
  1, 12, 63, 192, 378, 504, 462, 288, 117,  28,  3;
  1, 13, 75, 255, 570, 882, 966, 750, 405, 145, 31, 3;
		

Crossrefs

Row sums: A000079(n+1), n>=1, 3 if n=0. Alternating row sums are [3, -2, followed by 0's].
Column sequences (without leading zeros) give for m=1..9 with n>=0: A000027(n+3), A055998(n+1), A006503(n+1), A095661, A000574, A095662, A095663, A095664, A095665.
Cf. A097805.

Programs

  • Haskell
    a095660 n k = a095660_tabl !! n !! k
    a095660_row n = a095660_tabl !! n
    a095660_tabl = [3] : iterate
       (\row -> zipWith (+) ([0] ++ row) (row ++ [0])) [1,3]
    -- Reinhard Zumkeller, Apr 08 2012
    
  • Magma
    A095660:= func< n,k | n eq 0 select 3 else (1+2*k/n)*Binomial(n,k) >;
    [A095660(n,k): k in [0..n], n in [1..12]]; // G. C. Greubel, May 02 2021
    
  • Maple
    T(n,k):=piecewise(n=0,3,0Mircea Merca, Apr 08 2012
  • Mathematica
    {3}~Join~Table[(1 + 2 k/n) Binomial[n, k], {n, 11}, {k, 0, n}] // Flatten (* Michael De Vlieger, Sep 14 2015 *)
  • Sage
    def A095660(n,k): return 3 if n==0 else (1+2*k/n)*binomial(n,k)
    flatten([[A095660(n,k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, May 02 2021

Formula

Recursion: T(n, m)=0 if m>n, T(0, 0)= 3; T(n, 0)=1 if n>=1; T(n, m) = T(n-1, m) + T(n-1, m-1).
G.f. column m (without leading zeros): (3-2*x)/(1-x)^(m+1), m>=0.
T(n,k) = (1+2*k/n) * binomial(n,k), for n>0. - Mircea Merca, Apr 08 2012
Closed-form formula for arbitrary left and right borders of Pascal like triangle see A228196. - Boris Putievskiy, Aug 19 2013

A093561 (4,1) Pascal triangle.

Original entry on oeis.org

1, 4, 1, 4, 5, 1, 4, 9, 6, 1, 4, 13, 15, 7, 1, 4, 17, 28, 22, 8, 1, 4, 21, 45, 50, 30, 9, 1, 4, 25, 66, 95, 80, 39, 10, 1, 4, 29, 91, 161, 175, 119, 49, 11, 1, 4, 33, 120, 252, 336, 294, 168, 60, 12, 1, 4, 37, 153, 372, 588, 630, 462, 228, 72, 13, 1, 4, 41, 190, 525, 960, 1218
Offset: 0

Views

Author

Wolfdieter Lang, Apr 22 2004

Keywords

Comments

The array F(4;n,m) gives in the columns m >= 1 the figurate numbers based on A016813, including the hexagonal numbers A000384 (see the W. Lang link).
This is the fourth member, d=4, in the family of triangles of figurate numbers, called (d,1) Pascal triangles: A007318 (Pascal), A029653 and A093560, for d=1..3.
This is an example of a Riordan triangle (see A093560 for a comment and A053121 for a comment and the 1991 Shapiro et al. reference on the Riordan group). Therefore the o.g.f. for the row polynomials p(n,x) = Sum_{m=0..n} a(n,m)*x^m is G(z,x) = (1+3*z)/(1-(1+x)*z).
The SW-NE diagonals give A000285(n-1) = Sum_{k=0..ceiling((n-1)/2)} a(n-1-k,k), n >= 1, with n=0 value 3. Observation by Paul Barry, Apr 29 2004. Proof via recursion relations and comparison of inputs.
For a closed-form formula for generalized Pascal's triangle see A228576. - Boris Putievskiy, Sep 09 2013
The n-th row polynomial is (4 + x)*(1 + x)^(n-1) for n >= 1. More generally, the n-th row polynomial of the Riordan array ( (1-a*x)/(1-b*x), x/(1-b*x) ) is (b - a + x)*(b + x)^(n-1) for n >= 1. - Peter Bala, Mar 02 2018

Examples

			Triangle begins
  [1];
  [4, 1];
  [4, 5, 1];
  [4, 9, 6, 1];
  ...
		

References

  • Kurt Hawlitschek, Johann Faulhaber 1580-1635, Veroeffentlichung der Stadtbibliothek Ulm, Band 18, Ulm, Germany, 1995, Ch. 2.1.4. Figurierte Zahlen.
  • Ivo Schneider, Johannes Faulhaber 1580-1635, Birkhäuser, Basel, Boston, Berlin, 1993, ch.5, pp. 109-122.

Crossrefs

Cf. Row sums: A020714(n-1), n>=1, 1 for n=0, alternating row sums are 1 for n=0, 3 for n=2 and 0 otherwise.
Columns m=1..9: A016813, A000384 (hexagonal), A002412, A002417, A034263, A051947, A050483, A052181, A055843.

Programs

  • Haskell
    a093561 n k = a093561_tabl !! n !! k
    a093561_row n = a093561_tabl !! n
    a093561_tabl = [1] : iterate
                   (\row -> zipWith (+) ([0] ++ row) (row ++ [0])) [4, 1]
    -- Reinhard Zumkeller, Aug 31 2014
    
  • Python
    from math import comb, isqrt
    def A093561(n): return comb(r:=(m:=isqrt(k:=n+1<<1))-(k<=m*(m+1)),a:=n-comb(r+1,2))*(r+3*(r-a))//r if n else 1 # Chai Wah Wu, Nov 12 2024

Formula

a(n, m) = F(4;n-m, m) for 0<= m <= n, otherwise 0, with F(4;0, 0)=1, F(4;n, 0)=4 if n>=1 and F(4;n, m) = (4*n+m)*binomial(n+m-1, m-1)/m if m>=1.
Recursion: a(n, m)=0 if m>n, a(0, 0)= 1; a(n, 0)=4 if n>=1; a(n, m)= a(n-1, m) + a(n-1, m-1).
G.f. row m (without leading zeros): (1+3*x)/(1-x)^(m+1), m>=0.
T(n, k) = C(n, k) + 3*C(n-1, k). - Philippe Deléham, Aug 28 2005
exp(x) * e.g.f. for row n = e.g.f. for diagonal n. For example, for n = 3 we have exp(x)*(4 + 9*x + 6*x^2/2! + x^3/3!) = 4 + 13*x + 28*x^2/2! + 50*x^3/3! + 80*x^4/4! + .... The same property holds more generally for Riordan arrays of the form ( f(x), x/(1 - x) ). - Peter Bala, Dec 22 2014

A104449 Fibonacci sequence with initial values a(0) = 3 and a(1) = 1.

Original entry on oeis.org

3, 1, 4, 5, 9, 14, 23, 37, 60, 97, 157, 254, 411, 665, 1076, 1741, 2817, 4558, 7375, 11933, 19308, 31241, 50549, 81790, 132339, 214129, 346468, 560597, 907065, 1467662, 2374727, 3842389, 6217116, 10059505, 16276621, 26336126, 42612747, 68948873, 111561620
Offset: 0

Views

Author

Casey Mongoven, Mar 08 2005

Keywords

Comments

The old name was: The Pibonacci numbers (a Fibonacci-type sequence): each term is the sum of the two previous terms.
The 6th row in the Wythoff array begins with the 6th term of the sequence (14, 23, 37, 60, 97, 157, ...). a(n) = f(n-3) + f(n+2) for the Fibonacci numbers f(n) = f(n-1) + f(n-2); f(0) = 0, f(1) = 1.
(a(2*k), a(2*k+1)) give for k >= 0 the proper positive solutions of one of two families (or classes) of solutions (x, y) of the indefinite binary quadratic form x^2 + x*y - y^2 of discriminant 5 representing 11. The other family of such solutions is given by (x2, y2) = (b(2*k), b(2*k+1)) with b = A013655. See the formula in terms of Chebyshev S polynomials S(n, 3) = A001906(n+1) below, which follows from the fundamental solution (3, 1) by applying positive powers of the automorphic matrix given in a comment in A013655. See also A089270 with the Alfred Brousseau link with D = 11. - Wolfdieter Lang, May 28 2019

References

  • V. E. Hoggatt, Jr., Fibonacci and Lucas Numbers. Houghton, Boston, MA, 1969.

Crossrefs

Cf. Other Fibonacci-type sequences: A000045, A000032, A013655. Other related sequences: A001906, A013655, A089270, A103343, A103344.
Wythoff array: A035513.
Essentially the same as A000285.

Programs

  • GAP
    a:=[3,1];; for n in [3..40] do a[n]:=a[n-1]+a[n-2]; od; a; # G. C. Greubel, May 29 2019
  • Magma
    [Fibonacci(n-1) + Lucas(n): n in [0..40]]; // G. C. Greubel, May 29 2019
    
  • Maple
    a:=n->3*fibonacci(n-1)+fibonacci(n): seq(a(n), n=0..40); # Zerinvary Lajos, Oct 05 2007
  • Mathematica
    LinearRecurrence[{1,1},{3,1},40] (* Harvey P. Dale, May 23 2014 *)
  • PARI
    a(n)=3*fibonacci(n-1)+fibonacci(n) \\ Charles R Greathouse IV, Jun 05 2011
    
  • Sage
    ((3-2*x)/(1-x-x^2)).series(x, 40).coefficients(x, sparse=False) # G. C. Greubel, May 29 2019
    

Formula

a(n) = a(n-1) + a(n-2) with a(0) = 3, a(1) = 1.
a(n) = 3*Fibonacci(n-1) + Fibonacci(n). - Zerinvary Lajos, Oct 05 2007
G.f.: (3-2*x)/(1-x-x^2). - Philippe Deléham, Nov 19 2008
a(n) = ( (3*sqrt(5)-1)*((1+sqrt(5))/2)^n + (3*sqrt(5)+1)*((1-sqrt(5) )/2)^n )/(2*sqrt(5)). - Bogart B. Strauss, Jul 19 2013
Bisection: a(2*k) = 4*S(k-1, 3) - 3*S(k-2, 3), a(2*k+1) = 2*S(k-1, 3) + S(k, 3) for k >= 0, with the Chebyshev S(n, 3) polynomials from A001906(n+1) for n >= -1. - Wolfdieter Lang, May 28 2019
a(n) = Fibonacci(n-1) + Lucas(n). - G. C. Greubel, May 29 2019
a(3n + 4)/a(3n + 1) = continued fraction 4,4,4,...,4,9 (that's n 4's followed by a single 9). - Greg Dresden and Shaoxiong Yuan, Jul 16 2019
E.g.f.: (exp((1/2)*(1 - sqrt(5))*x)*(1 + 3*sqrt(5) + (- 1 + 3*sqrt(5))*exp(sqrt(5)*x)))/(2*sqrt(5)). - Stefano Spezia, Jul 18 2019

Extensions

Name changed by Wolfdieter Lang, Jun 17 2019

A090888 Matrix defined by a(n,k) = 3^n*Fibonacci(k) - 2^n*Fibonacci(k-2), read by antidiagonals.

Original entry on oeis.org

1, 2, 0, 4, 1, 1, 8, 5, 3, 1, 16, 19, 9, 4, 2, 32, 65, 27, 14, 7, 3, 64, 211, 81, 46, 23, 11, 5, 128, 665, 243, 146, 73, 37, 18, 8, 256, 2059, 729, 454, 227, 119, 60, 29, 13, 512, 6305, 2187, 1394, 697, 373, 192, 97, 47, 21, 1024, 19171, 6561, 4246, 2123, 1151, 600, 311
Offset: 0

Views

Author

Ross La Haye, Feb 12 2004; revised Sep 24 2004, Sep 10 2005

Keywords

Comments

a(0,k) = A000045(k-1); a(1,k) = A000032(k); a(2,k) = A000285(k+1).
a(n,1) = a(n-1,1) + a(n-1,3) for n > 0; a(n,1) = A001047(n) = 2^(2n) - A083324(n); a(n,2) = A000244(n) = 2^(2n) - A005061(n); a(n,3) = 2a(n-1,4) for n > 0; a(n,3) = A027649(n); a(n,4) = A083313(n+1); a(n,5) = A084171(n+1).
Sum[a(n-k,k), {k,0,n}] = A098703(n+1), antidiagonal sums.
Let R, S and T be binary relations on the power set P(A) of a set A having n = |A| elements such that for every element x, y of P(A), xRy if x is a subset of y or y is a subset of x, xSy if x is a subset of y and xTy if x is a proper subset of y. Then a(n,3) = |R|, a(n,2) = |S| and a(n,1) = |T|. Note that a binary relation W on P(A) can be defined also such that for every element x, y of P(A) xWy if x is a proper subset of y and there are no z in P(A) such that x is a proper subset of z and z is a proper subset of y. A090802(n,1) = |W|. Also, a(n,0) = |P(A)|.

Examples

			   1    0    1    1    2    3    5    8    13    21    34
   2    1    3    4    7   11   18   29    47    76   123
   4    5    9   14   23   37   60   97   157   254   411
   8   19   27   46   73  119  192  311   503   814  1317
  16   65   81  146  227  373  600  973  1573  2546  4119
  32  211  243  454  697 1151 1848 2999  4847  7846 12693
  64  665  729 1394 2123 3517 5640 9157 14797 23954 38751
a(5,3) = 454 because Fibonacci(3) = 2, Fibonacci(1) = 1 and (2 * 3^5) - (1 * 2^5) = 454.
		

Programs

  • Mathematica
    Table[3^(n - k) Fibonacci@ k - 2^(n - k) Fibonacci[k - 2], {n, 0, 10}, {k, 0, n}] // Flatten (* Michael De Vlieger, Nov 28 2015 *)

Formula

a(n, k) = 3^n*Fibonacci(k) - 2^n*Fibonacci(k-2).
a(n, 0) = 2^n, a(n, 1) = 3^n - 2^n, a(n, k) = a(n, k-1) + a(n, k-2) for k > 1.
a(0, k) = Fibonacci(k-1), a(1, k) = Lucas(k), a(n, k) = 5a(n-1, k) - 6a(n-2, k) for n > 1.
O.g.f. (by rows) = (-2^n + (2^(n+1) - 3^n)x)/(-1+x+x^2). - Ross La Haye, Mar 30 2006
a(n,1) - a(n,0) = A003063(n+1). - Ross La Haye, Jun 22 2007
Binomial transform (by columns) of A118654. - Ross La Haye, Jun 22 2007

Extensions

More terms from Ray Chandler, Oct 27 2004

A216226 Square array T, read by antidiagonals: T(n,k) = 0 if n-k>=1 or if k-n>=4, T(0,0) = T(0,1) = T(0,2) = T(0,3) = 1, T(n,k) = T(n-1,k) + T(n,k-1).

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 1, 2, 0, 0, 0, 3, 2, 0, 0, 0, 3, 5, 0, 0, 0, 0, 0, 8, 5, 0, 0, 0, 0, 0, 8, 13, 0, 0, 0, 0, 0, 0, 0, 21, 13, 0, 0, 0, 0, 0, 0, 0, 21, 34, 0, 0, 0, 0, 0, 0, 0, 0, 0, 55, 34, 0, 0, 0, 0, 0
Offset: 0

Views

Author

Philippe Deléham, Mar 13 2013

Keywords

Examples

			Square array begins:
1, 1, 1, 1,  0,  0,  0,   0,   0, 0, ... row n=0
0, 1, 2, 3,  3,  0,  0,   0,   0, 0, ... row n=1
0, 0, 2, 5,  8,  8,  0,   0,   0, 0, ... row n=2
0, 0, 0, 5, 13, 21, 21,   0,   0, 0, ... row n=3
0, 0, 0, 0, 13, 34, 55,  55,   0, 0, ... row n=4
0, 0, 0, 0,  0, 34, 89, 144, 144, 0, ... row n=5
...
		

Crossrefs

Cf. A000045 (Fibonacci numbers), A000285, A001519, A001906, A068914

Formula

T(n,n) = A000045(2*n-1) = A001519(n).
T(n,n+1) = A000045(2*n+1) = A001519(n+1).
T(n,n+2) = T(n,n+3) = A000045(2*n+2) = A001906(n+1).
Sum_{k, 0<=k<=n} T(n-k,k) = A000045(n+1).
Sum_{k, k>=0} T(n,k) = A000285(2*n+1).
Sum_{n, n>=0} T(n,k) = A000285(2*k-2), k>=2.

A054486 Expansion of (1+2*x)/(1-3*x+x^2).

Original entry on oeis.org

1, 5, 14, 37, 97, 254, 665, 1741, 4558, 11933, 31241, 81790, 214129, 560597, 1467662, 3842389, 10059505, 26336126, 68948873, 180510493, 472582606, 1237237325, 3239129369, 8480150782, 22201322977, 58123818149, 152170131470, 398386576261, 1042989597313
Offset: 0

Views

Author

Barry E. Williams, May 06 2000

Keywords

Comments

Binomial transform of A000285. - R. J. Mathar, Oct 26 2011

Examples

			G.f. = 1 + 5*x + 14*x^2 + 37*x^3 + 97*x^4 + 254*x^5 + 665*x^6 + 1741*x^7 + ...
		

References

  • A. H. Beiler, Recreations in the Theory of Numbers, Dover, N.Y., 1964, pp. 122-125, 194-196.

Crossrefs

Programs

  • GAP
    F:=Fibonacci;; List([0..30], n-> F(2*n+2) +2*F(2*n) ); # G. C. Greubel, Nov 08 2019
  • Magma
    R:=PowerSeriesRing(Integers(), 30); Coefficients(R!( (1+2*x)/(1-3*x+x^2)) ); // Marius A. Burtea, Nov 05 2019
    
  • Magma
    a:=[1,5]; [n le 2 select a[n] else 3*Self(n-1)-Self(n-2): n in [1..30]]; // Marius A. Burtea, Nov 05 2019
    
  • Maple
    with(combinat); f:=fibonacci; seq(f(2*n+2)+2*f(2*n), n=0..30); # G. C. Greubel, Nov 08 2019
  • Mathematica
    CoefficientList[Series[(2*z+1)/(z^2-3*z+1), {z, 0, 30}], z] (* Vladimir Joseph Stephan Orlovsky, Jul 15 2011 *)
    a[ n_]:= 3 Fibonacci[2n] + Fibonacci[2n+1]; (* Michael Somos, Mar 17 2015 *)
    LinearRecurrence[{3,-1},{1,5},40] (* Harvey P. Dale, Apr 24 2019 *)
  • PARI
    Vec((1+2*x)/(1-3*x+x^2)+O(x^99)) \\ Charles R Greathouse IV, Jul 15 2011
    
  • PARI
    {a(n) = 3*fibonacci(2*n) + fibonacci(2*n+1)}; /* Michael Somos, Mar 17 2015 */
    
  • Sage
    f=fibonacci; [f(2*n+2) +2*f(2*n) for n in (0..30)] # G. C. Greubel, Nov 08 2019
    

Formula

a(n) = 3*a(n-1) - a(n-2), a(0)=1, a(1)=5.
a(n) = (5*(((3+sqrt(5))/2)^n - ((3-sqrt(5))/2)^n) - (((3+sqrt(5))/2)^(n-1) - ((3-sqrt(5))/2)^(n-1)))/sqrt(5).
a(n) + 7*A001519(n) = A005248(n). - Creighton Dement, Oct 30 2004
a(n) = Lucas(2*n+1) + Fibonacci(2*n) = A002878(n) + A001906(n) = A025169(n-1) + A001906(n+1).
a(n) = (-1)^n*Sum_{k = 0..n} A238731(n,k)*(-6)^k. - Philippe Deléham, Mar 05 2014
0 = -11 + a(n)^2 - 3*a(n)*a(n+1) + a(n+1)^2 for all n in Z. - Michael Somos, Mar 17 2015
a(n) = -2*F(n)^2 + 6*F(n)*F(n+1) + F(n+1)^2 for all n in Z where F = Fibonacci. - Michael Somos, Mar 17 2015
a(n) = 3*F(2*n) + F(2*n+1) for all n in Z where F = Fibonacci. - Michael Somos, Mar 17 2015
a(n) = -A100545(-2-n) for all n in Z. - Michael Somos, Mar 17 2015
a(n) = A000285(2*n) = A228208(2*n+1) = A104449(2*n+1) for all n in Z. - Michael Somos, Mar 17 2015
From Klaus Purath, Nov 05 2019: (Start)
a(n) = (a(n-m) + a(n+m))/Lucas(2*m), m <= n.
a(n) = sum of 2*m+1 consecutive terms starting with a(n-m) divided by Lucas(2*m+1), m <= n.
a(n) = alternating sum of 2*m+1 consecutive terms starting with a(n-m) divided by Fibonacci(2*m+1), m <= n.
a(n) + a(n+1) = sum of 2*m+2 consecutive terms starting with a(n-m) divided by Fibonacci(2*m+2), m <= n.
a(n) + a(n+1) = (a(n-m) + a(n+m+1))/Fibonacci(2*m+1), m <= n.
The following formulas are extended to negative indexes:
a(n) = 3*Fibonacci(2*n+1) - Fibonacci(2*n-3).
a(n) = (Fibonacci(2*n+5) - 3* Fibonacci(2*n-1))/2.
a(n) = (4*Lucas(2*n+2) - Lucas(2*n-4))/5.
a(n) = Fibonacci(2*n+5) - 4*Fibonacci(2*n+1).
a(n) = (5*Fibonacci(2*n+5) - Fibonacci(2*n-7))/12. (End)
E.g.f.: exp(-(1/2)*(-3+sqrt(5))*x)*(-7 + sqrt(5) + (7 + sqrt(5))*exp(sqrt(5)*x))/(2*sqrt(5)). - Stefano Spezia, Nov 19 2019
a(n) = 3*n + 1 + Sum_{k=1..n} k*a(n-k). - Yu Xiao, Jun 20 2020

Extensions

"a(1)=5", not "a(0)=5" from Dan Nielsen (nielsed(AT)uah.edu), Sep 10 2009

A332938 Indices of the primitive rows of the Wythoff array (A035513); see Comments.

Original entry on oeis.org

1, 2, 6, 7, 8, 10, 11, 12, 14, 17, 18, 20, 21, 23, 24, 26, 27, 30, 32, 33, 36, 37, 38, 39, 40, 42, 44, 46, 48, 49, 50, 53, 54, 59, 60, 62, 63, 64, 65, 66, 68, 69, 70, 72, 74, 75, 76, 79, 80, 81, 84, 85, 86, 88, 90, 92, 94, 95, 98, 100, 101, 102, 104, 107
Offset: 1

Views

Author

Clark Kimberling, Mar 03 2020

Keywords

Comments

In a row of the Wythoff array, either every two consecutive terms are relatively prime or else no two consecutive terms are relatively prime. In the first case, we call the row primitive; otherwise, the row is an integer multiple of a tail of a preceding row. Conjectures: the maximal number of consecutive primitive rows is 5, and the limiting proportion of primitive rows exists and is approximately 0.608.

Examples

			The Wythoff array begins:
   1    2    3    5    8   13   21   34   55   89  144 ...
   4    7   11   18   29   47   76  123  199  322  521 ...
   6   10   16   26   42   68  110  178  288  466  754 ...
   9   15   24   39   63  102  165  267  432  699 1131 ...
  12   20   32   52   84  136  220  356  576  932 1508 ...
  14   23   37   60   97  157  254  411  665 1076 1741 ...
  17   28   45   73  118  191  309  500  809 1309 2118 ...
  19   31   50   81  131  212  343  555  898 1453 2351 ...
  22   36   58   94  152  246  398  644 1042 1686 2728 ...
Row 1: A000045 (Fibonacci numbers, a primitive row)
Row 2: A000032 (Lucas numbers, primitive)
Row 3: 2 times a tail of row 1
Row 4: 3 times a tail of row 1
Row 5  4 times a tail of row 1
Row 6:  essentially A000285, primitive
Row 7:  essentially A022095, primitive
Row 8:  essentially A013655, primitive
Row 9:  2 times a tail of row 2
Thus first five terms of (a(n)) are 1,2,6,7,8.
		

Crossrefs

Programs

  • Mathematica
    W[n_, k_] := Fibonacci[k + 1] Floor[n*GoldenRatio] + (n - 1) Fibonacci[k]; (* A035513 *)
    t = Table[GCD[W[n, 1], W[n, 2]], {n, 1, 160}]  (* A332937 *)
    Flatten[Position[t, 1]]  (* A332938 *)
Previous Showing 11-20 of 47 results. Next