cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 180 results. Next

A084057 a(n) = 2*a(n-1) + 4*a(n-2), a(0)=1, a(1)=1.

Original entry on oeis.org

1, 1, 6, 16, 56, 176, 576, 1856, 6016, 19456, 62976, 203776, 659456, 2134016, 6905856, 22347776, 72318976, 234029056, 757334016, 2450784256, 7930904576, 25664946176, 83053510656, 268766806016, 869747654656, 2814562533376, 9108115685376, 29474481504256
Offset: 0

Views

Author

Paul Barry, May 10 2003

Keywords

Comments

Inverse binomial transform of A001077. Binomial transform of expansion of cosh(sqrt(5)*x) (1,0,5,0,25,...).
The same sequence may be obtained by the following process. Starting a priori with the fraction 1/1, the numerators of fractions built according to the rule: add top and bottom to get the new bottom, add top and 5 times the bottom to get the new top. The limit of the sequence of fractions is sqrt(5). - Cino Hilliard, Sep 25 2005
Numerators of fractions in the approximation of the square root of 5 satisfying: a(n) = (a(n-1)+c)/(a(n-1)+1), with c=5 and a(1)=1. For denominators see A063727. - Mark Dols, Jul 24 2009
Equals right border of triangle A143969. (1, 6, 16, 56, ...) = row sums of triangle A143969 and INVERT transform of (1, 5, 5, 5, ...). - Gary W. Adamson, Sep 06 2008
a(n) is the number of compositions of n when there are 1 type of 1 and 5 types of other natural numbers. - Milan Janjic, Aug 13 2010
From Gary W. Adamson, Jul 30 2016: (Start)
The sequence is case N=1 in an infinite set obtained by taking powers of the 2 X 2 matrix M = [(1,5); (1,N)], then extracting the upper left terms. The infinite set begins:
N=1 (A084057): 1, 6, 16, 56, 176, 576, 1856, ...
N=2 (A108306): 1, 6, 21, 81, 306, 1161, 4401, ...
N=3 (A164549): 1, 6, 26, 116, 516, 2296, 10216, ...
N=4 (A015449): 1, 6, 31, 161, 836, 4341, 22541, ...
N=5 (A000400): 1, 6, 36, 216, 1296, 7776, 46656, ...
N=6 (A049685): 1, 6, 41, 281, 1926, 13201, 90481, ...
N=7 (.......): 1, 6, 46, 356, 2756, 21336, 222712, ...
...
Sequences in the above set can be obtained by taking INVERT transforms of the following:
N=1 INVERT transform of (1, 5, 5, 5, 5, 5, ...
N=2 ..."......"......". (1, 5, 10, 20, 40, 80, ...
N=3 ..."......"......". (1, 5, 15, 45, 135, 405, ...
N=4 ..."......"......". (1, 5, 20, 80, 320, 1280, ...
...
with the pattern (1, 5, N*5, (N^2)*5, (N^3)*5, ...
It appears that the sequence generated from powers (n>0) of the matrix P = [(1,a); (1,b)], (a,b > 0), then extracting the upper left terms, is equal to the INVERT transform of the sequence starting: (1, a, b*a, (b^2)*a, (b^3)*a, ...). (End)

References

  • John Derbyshire, Prime Obsession, Joseph Henry Press, April 2004, see p. 16.

Crossrefs

a(n) = A087131(n)/2.
The following sequences (and others) belong to the same family: A001333, A000129, A026150, A002605, A046717, A015518, A084057, A063727, A002533, A002532, A083098, A083099, A083100, A015519.

Programs

  • Magma
    I:=[1,1]; [n le 2 select I[n] else 2*Self(n-1)+4*Self(n-2): n in [1..30]]; // Vincenzo Librandi, Jul 31 2016
  • Mathematica
    f[n_] := Simplify[((1 + Sqrt[5])^n + (1 - Sqrt[5])^n)/2]; Array[f, 28, 0] (* Or *)
    LinearRecurrence[{2, 4}, {1, 1}, 28] (* Robert G. Wilson v, Sep 18 2013 *)
    RecurrenceTable[{a[1] == 1, a[2] == 1, a[n] == 2 a[n-1] + 4 a[n-2]}, a, {n, 30}] (* Vincenzo Librandi, Jul 31 2016 *)
    Table[2^(n-1) LucasL[n], {n, 0, 20}] (* Vladimir Reshetnikov, Sep 19 2016 *)
  • PARI
    lucas(n)=fibonacci(n-1)+fibonacci(n+1)
    a(n)=lucas(n)/2*2^n \\ Charles R Greathouse IV, Sep 18 2013
    
  • Sage
    from sage.combinat.sloane_functions import recur_gen2b; it = recur_gen2b(1,1,2,4, lambda n: 0); [next(it) for i in range(1,26)] # Zerinvary Lajos, Jul 09 2008
    
  • Sage
    [lucas_number2(n,2,-4)/2 for n in range(0, 26)] # Zerinvary Lajos, Apr 30 2009
    

Formula

a(n) = ((1+sqrt(5))^n + (1-sqrt(5))^n)/2.
G.f.: (1-x) / (1-2*x-4*x^2).
E.g.f.: exp(x) * cosh(sqrt(5)*x).
a(2n+1) = 2*a(n)*a(n+1) - (-4)^n. - Mario Catalani (mario.catalani(AT)unito.it), Jun 13 2003
a(n) = Sum_{k=0..floor(n/2)} binomial(n, 2*k)*5^k . - Paul Barry, Jul 25 2004
a(n) = Sum_{k=0..n} A098158(n,k)*5^(n-k). - Philippe Deléham, Dec 26 2007
a(n) = 2^(n-1)*A000032(n). - Mark Dols, Jul 24 2009
If p(1)=1, and p(i)=5 for i>1, and if A is the Hessenberg matrix of order n defined by: A(i,j) = p(j-i+1) for i<=j, A(i,j):=-1, (i=j+1), and A(i,j):=0 otherwise, then, for n>=1, a(n)=det A. - Milan Janjic, Apr 29 2010
G.f.: G(0)/2, where G(k) = 1 + 1/(1 - x*(5*k-1)/(x*(5*k+4) - 1/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, May 26 2013
a(n) = A063727(n) - A063272(n-1). - R. J. Mathar, Jun 06 2019
a(n) = 1 + 5*A014335(n). - R. J. Mathar, Jun 06 2019
Sum_{n>=1} 1/a(n) = A269992. - Amiram Eldar, Feb 01 2021

A036561 Nicomachus triangle read by rows, T(n, k) = 2^(n - k)*3^k, for 0 <= k <= n.

Original entry on oeis.org

1, 2, 3, 4, 6, 9, 8, 12, 18, 27, 16, 24, 36, 54, 81, 32, 48, 72, 108, 162, 243, 64, 96, 144, 216, 324, 486, 729, 128, 192, 288, 432, 648, 972, 1458, 2187, 256, 384, 576, 864, 1296, 1944, 2916, 4374, 6561, 512, 768, 1152, 1728, 2592, 3888, 5832, 8748, 13122, 19683
Offset: 0

Views

Author

Keywords

Comments

The triangle pertaining to this sequence has the property that every row, every column and every diagonal contains a nontrivial geometric progression. More interestingly every line joining any two elements contains a nontrivial geometric progression. - Amarnath Murthy, Jan 02 2002
Kappraff states (pp. 148-149): "I shall refer to this as Nicomachus' table since an identical table of numbers appeared in the Arithmetic of Nicomachus of Gerasa (circa 150 A.D.)" The table was rediscovered during the Italian Renaissance by Leon Battista Alberti, who incorporated the numbers in dimensions of his buildings and in a system of musical proportions. Kappraff states "Therefore a room could exhibit a 4:6 or 6:9 ratio but not 4:9. This ensured that ratios of these lengths would embody musical ratios". - Gary W. Adamson, Aug 18 2003
After Nichomachus and Alberti several Renaissance authors described this table. See for instance Pierre de la Ramée in 1569 (facsimile of a page of his Arithmetic Treatise in Latin in the links section). - Olivier Gérard, Jul 04 2013
The triangle sums, see A180662 for their definitions, link Nicomachus's table with eleven different sequences, see the crossrefs. It is remarkable that these eleven sequences can be described with simple elegant formulas. The mirror of this triangle is A175840. - Johannes W. Meijer, Sep 22 2010
The diagonal sums Sum_{k} T(n - k, k) give A167762(n + 2). - Michael Somos, May 28 2012
Where d(n) is the divisor count function, then d(T(i,j)) = A003991, the rows of which sum to the tetrahedral numbers A000292(n+1). For example, the sum of the divisors of row 4 of this triangle (i = 4), gives d(16) + d(24) + d(36) + d(54) + d(81) = 5 + 8 + 9 + 8 + 5 = 35 = A000292(5). In fact, where p and q are distinct primes, the aforementioned relationship to the divisor function and tetrahedral numbers can be extended to any triangle of numbers in which the i-th row is of form {p^(i-j)*q^j, 0<=j<=i}; i >= 0 (e.g., A003593, A003595). - Raphie Frank, Nov 18 2012, corrected Dec 07 2012
Sequence (or tree) generated by these rules: 1 is in S, and if x is in S, then 2*x and 3*x are in S, and duplicates are deleted as they occur; see A232559. - Clark Kimberling, Nov 28 2013
Partial sums of rows produce Stirling numbers of the 2nd kind: A000392(n+2) = Sum_{m=1..(n^2+n)/2} a(m). - Fred Daniel Kline, Sep 22 2014
A permutation of A003586. - L. Edson Jeffery, Sep 22 2014
Form a word of length i by choosing a (possibly empty) word on alphabet {0,1} then concatenating a word of length j on alphabet {2,3,4}. T(i,j) is the number of such words. - Geoffrey Critzer, Jun 23 2016
Form of Zorach additive triangle (see A035312) where each number is sum of west and northwest numbers, with the additional condition that each number is GCD of the two numbers immediately below it. - Michel Lagneau, Dec 27 2018

Examples

			The start of the sequence as a triangular array read by rows:
   1
   2   3
   4   6   9
   8  12  18  27
  16  24  36  54  81
  32  48  72 108 162 243
  ...
The start of the sequence as a table T(n,k) n, k > 0:
    1    2    4    8   16   32 ...
    3    6   12   24   48   96 ...
    9   18   36   72  144  288 ...
   27   54  108  216  432  864 ...
   81  162  324  648 1296 2592 ...
  243  486  972 1944 3888 7776 ...
  ...
- _Boris Putievskiy_, Jan 08 2013
		

References

  • Jay Kappraff, Beyond Measure, World Scientific, 2002, p. 148.
  • Flora R. Levin, The Manual of Harmonics of Nicomachus the Pythagorean, Phanes Press, 1994, p. 114.

Crossrefs

Cf. A001047 (row sums), A000400 (central terms), A013620, A007318.
Triangle sums (see the comments): A001047 (Row1); A015441 (Row2); A005061 (Kn1, Kn4); A016133 (Kn2, Kn3); A016153 (Fi1, Fi2); A016140 (Ca1, Ca4); A180844 (Ca2, Ca3); A180845 (Gi1, Gi4); A180846 (Gi2, Gi3); A180847 (Ze1, Ze4); A016185 (Ze2, Ze3). - Johannes W. Meijer, Sep 22 2010, Sep 10 2011
Antidiagonal cumulative sum: A000392; square arrays cumulative sum: A160869. Antidiagonal products: 6^A000217; antidiagonal cumulative products: 6^A000292; square arrays products: 6^A005449; square array cumulative products: 6^A006002.

Programs

  • Haskell
    a036561 n k = a036561_tabf !! n !! k
    a036561_row n = a036561_tabf !! n
    a036561_tabf = iterate (\xs@(x:_) -> x * 2 : map (* 3) xs) [1]
    -- Reinhard Zumkeller, Jun 08 2013
    
  • Magma
    /* As triangle: */ [[(2^(i-j)*3^j)/3: j in [1..i]]: i in [1..10]]; // Vincenzo Librandi, Oct 17 2014
  • Maple
    A036561 := proc(n,k): 2^(n-k)*3^k end:
    seq(seq(A036561(n,k),k=0..n),n=0..9);
    T := proc(n,k) option remember: if k=0 then 2^n elif k>=1 then procname(n,k-1) + procname(n-1,k-1) fi: end: seq(seq(T(n,k),k=0..n),n=0..9);
    # Johannes W. Meijer, Sep 22 2010, Sep 10 2011
  • Mathematica
    Flatten[Table[ 2^(i-j) 3^j, {i, 0, 12}, {j, 0, i} ]] (* Flatten added by Harvey P. Dale, Jun 07 2011 *)
  • PARI
    for(i=0,9,for(j=0,i,print1(3^j<<(i-j)", "))) \\ Charles R Greathouse IV, Dec 22 2011
    
  • PARI
    {T(n, k) = if( k<0 || k>n, 0, 2^(n - k) * 3^k)} /* Michael Somos, May 28 2012 */
    

Formula

T(n,k) = A013620(n,k)/A007318(n,k). - Reinhard Zumkeller, May 14 2006
T(n,k) = T(n,k-1) + T(n-1,k-1) for n>=1 and 1<=k<=n with T(n,0) = 2^n for n>=0. - Johannes W. Meijer, Sep 22 2010
T(n,k) = 2^(k-1)*3^(n-1), n, k > 0 read by antidiagonals. - Boris Putievskiy, Jan 08 2013
a(n) = 2^(A004736(n)-1)*3^(A002260(n)-1), n > 0, or a(n) = 2^(j-1)*3^(i-1) n > 0, where i=n-t*(t+1)/2, j=(t*t+3*t+4)/2-n, t=floor[(-1+sqrt(8*n-7))/2]. - Boris Putievskiy, Jan 08 2013
G.f.: 1/((1-2x)(1-3yx)). - Geoffrey Critzer, Jun 23 2016
T(n,k) = (-1)^n * Sum_{q=0..n} (-1)^q * C(k+3*q, q) * C(n+2*q, n-q). - Marko Riedel, Jul 01 2024

A016129 Expansion of 1/((1-2*x)*(1-6*x)).

Original entry on oeis.org

1, 8, 52, 320, 1936, 11648, 69952, 419840, 2519296, 15116288, 90698752, 544194560, 3265171456, 19591036928, 117546237952, 705277460480, 4231664828416, 25389989101568, 152339934871552, 914039609753600, 5484237659570176, 32905425959518208, 197432555761303552
Offset: 0

Views

Author

Keywords

Crossrefs

Row sums of A100851.
Sequences with gf 1/((1-n*x)*(1-6*x)): A000400 (n=0), A003464 (n=1), this sequence (n=2), A016137 (n=3), A016149 (n=4), A005062 (n=5), A053469 (n=6), A016169 (n=7), A016170 (n=8), A016172 (n=9), A016173 (n=10), A016174 (n=11), A016175 (n=12).

Programs

Formula

a(n) = A071951(n+2, 2) = 9*(2*3)^(n-1) - (2*1)^(n-1) = (2^(n-1))*(3^(n+1)-1), n>=0. - Wolfdieter Lang, Nov 07 2003
From Lambert Klasen (lambert.klasen(AT)gmx.net), Feb 05 2005: (Start)
G.f.: 1/((1-2*x)*(1-6*x)).
E.g.f.: (-exp(2*x) + 3*exp(6*x))/2.
a(n) = (6^(n+1) - 2^(n+1))/4. (End)
a(n)^2 = A144843(n+1). - Philippe Deléham, Nov 26 2008
a(n) = 8*a(n-1) - 12*a(n-2). - Philippe Deléham, Jan 01 2009
a(n) = det(|ps(i+2,j+1)|, 1 <= i,j <= n), where ps(n,k) are Legendre-Stirling numbers of the first kind (A129467). - Mircea Merca, Apr 06 2013

A002533 a(n) = 2*a(n-1) + 5*a(n-2), with a(0) = a(1) = 1.

Original entry on oeis.org

1, 1, 7, 19, 73, 241, 847, 2899, 10033, 34561, 119287, 411379, 1419193, 4895281, 16886527, 58249459, 200931553, 693110401, 2390878567, 8247309139, 28449011113, 98134567921, 338514191407, 1167701222419, 4027973401873, 13894452915841, 47928772841047, 165329810261299
Offset: 0

Views

Author

Keywords

Comments

The same sequence may be obtained by the following process. Starting a priori with the fraction 1/1, the numerators of fractions built according to the rule: add top and bottom to get the new bottom, add top and 6 times the bottom to get the new top. The limit of the sequence of fractions is sqrt(6). - Cino Hilliard, Sep 25 2005
a(n), n>0 = term (1,1) in the n-th power of the 2 X 2 matrix [1,3; 2,1]. - Gary W. Adamson, Aug 06 2010
a(n) is the number of compositions of n when there are 1 type of 1 and 6 types of other natural numbers. - Milan Janjic, Aug 13 2010
Pisano period lengths: 1, 1, 1, 4, 4, 1, 24, 4, 3, 4, 120, 4, 56, 24, 4, 8, 288, 3, 18, 4, ... - R. J. Mathar, Aug 10 2012
a(k*m) is divisible by a(m) if k is odd. - Robert Israel, May 03 2024

References

  • John Derbyshire, Prime Obsession, Joseph Henry Press, April 2004, see p. 16.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • A. Tarn, Approximations to certain square roots and the series of numbers connected therewith, Mathematical Questions and Solutions from the Educational Times, 1 (1916), 8-12.

Crossrefs

The following sequences (and others) belong to the same family: A001333, A000129, A026150, A002605, A046717, A015518, A084057, A063727, A002533, A002532, A083098, A083099, A083100, A015519.

Programs

  • Magma
    [(1/2)*Floor((1+Sqrt(6))^n+(1-Sqrt(6))^n): n in [0..30]]; // Vincenzo Librandi, Aug 15 2011
    
  • Magma
    [n le 2 select 1 else 2*Self(n-1) + 5*Self(n-2): n in [1..30]]; // G. C. Greubel, Jan 08 2018
  • Maple
    A002533:=(-1+z)/(-1+2*z+5*z**2); # conjectured by Simon Plouffe in his 1992 dissertation
  • Mathematica
    f[n_] := Simplify[((1 + Sqrt[6])^n + (1 - Sqrt[6])^n)/2]; Array[f, 28, 0] (* Or *)
    LinearRecurrence[{2, 5}, {1, 1}, 28] (* Or *)
    Table[ MatrixPower[{{1, 2}, {3, 1}}, n][[1, 1]], {n, 0, 25}]
    (* Robert G. Wilson v, Sep 18 2013 *)
  • PARI
    a(n)=([0,1; 5,2]^n*[1;1])[1,1] \\ Charles R Greathouse IV, May 10 2016
    
  • PARI
    x='x+O('x^30); Vec((1-x)/(1-2*x-5*x^2)) \\ G. C. Greubel, Jan 08 2018
    
  • Sage
    [lucas_number2(n,2,-5)/2 for n in range(0, 21)] # Zerinvary Lajos, Apr 30 2009
    

Formula

a(n)/A002532(n), n>0, converges to sqrt(6). - Mario Catalani (mario.catalani(AT)unito.it), Apr 22 2003
From Mario Catalani (mario.catalani(AT)unito.it), May 03 2003: (Start)
G.f.: (1-x)/(1-2*x-5*x^2).
a(n) = (1/2)*((1+sqrt(6))^n + (1-sqrt(6))^n).
a(n)/A083694(n) converges to sqrt(3/2).
a(n)/A083695(n) converges to sqrt(2/3).
a(n) = a(n-1) + 3*A083694(n-1).
a(n) = a(n-1) + 2*A083695(n-1), n>0. (End)
Binomial transform of expansion of cosh(sqrt(6)*x) (A000400, with interpolated zeros). E.g.f.: exp(x)*cosh(sqrt(6)*x) - Paul Barry, May 09 2003
From Mario Catalani (mario.catalani(AT)unito.it), Jun 14 2003: (Start)
a(2*n+1) = 2*a(n)*a(n+1) - (-5)^n.
a(n)^2 - 6*A002532(n)^2 = (-5)^n. (End)
a(n) = Sum_{k=0..floor(n/2)} binomial(n, 2*k) * 6^k. - Paul Barry, Jul 25 2004
a(n) = Sum_{k=0..n} A098158(n,k)*6^(n-k). - Philippe Deléham, Dec 26 2007
If p(1)=1, and p(I)=6, for i>1, and if A is the Hessenberg matrix of order n defined by: A(i,j) = p(j-i+1) for i<=j, A(i,j)=-1 for i=j+1, and A(i,j)=0 otherwise. Then, for n>=1, a(n) = det A. - Milan Janjic, Apr 29 2010
G.f.: G(0)/2, where G(k) = 1 + 1/(1 - x*(6*k-1)/(x*(6*k+5) - 1/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, May 26 2013

A017341 a(n) = 10*n + 6.

Original entry on oeis.org

6, 16, 26, 36, 46, 56, 66, 76, 86, 96, 106, 116, 126, 136, 146, 156, 166, 176, 186, 196, 206, 216, 226, 236, 246, 256, 266, 276, 286, 296, 306, 316, 326, 336, 346, 356, 366, 376, 386, 396, 406, 416, 426, 436, 446, 456, 466, 476, 486, 496, 506, 516, 526, 536
Offset: 0

Views

Author

Keywords

Comments

Number of 4 X n binary matrices avoiding simultaneously the right angled numbered polyomino patterns (ranpp) (00;1), (01;0), (10;0) and (11;0). An occurrence of a ranpp (xy;z) in a matrix A=(a(i,j)) is a triple (a(i1,j1), a(i1,j2), a(i2,j1)) where i1Sergey Kitaev, Nov 11 2004
Numbers k such that k and (4^h)^k end with the same digit, where h > 0. - Bruno Berselli, Dec 13 2018

Crossrefs

Cf. A000400 (powers of 6), A008592, A016861, A016885, A017329.

Programs

Formula

a(n) = 2*a(n-1) - a(n-2) with n>1, a(0)=6, a(1)=16. - Vincenzo Librandi, May 29 2011
a(n) = (n+1)*A016861(n+1) - n*A016861(n). - Bruno Berselli, Jan 18 2013
From Stefano Spezia, May 31 2021: (Start)
G.f.: 2*(3 + 2*x)/(1 - x)^2.
E.g.f.: 2*(3 + 5*x)*exp(x). (End)
a(n) = 2*A016885(n) = A016861(2*n+1). - Elmo R. Oliveira, Apr 10 2025

A159991 Powers of 60: a(n) = 60^n.

Original entry on oeis.org

1, 60, 3600, 216000, 12960000, 777600000, 46656000000, 2799360000000, 167961600000000, 10077696000000000, 604661760000000000, 36279705600000000000, 2176782336000000000000, 130606940160000000000000, 7836416409600000000000000, 470184984576000000000000000
Offset: 0

Views

Author

Reinhard Zumkeller, May 01 2009

Keywords

Examples

			G.f. = 1 + 60*x + 3600*x^2 + 216000*x^3 + 12960000*x^4 + 77600000*x^5 + ... - _Michael Somos_, Jan 01 2019
		

Crossrefs

Programs

Formula

a(n) = A000400(n)*A011557(n) = A000351(n)*A001021(n) = A000302(n)*A001024(n) = A000244(n)*A009964(n). (Corrected by Robert B Fowler, Jan 25 2023)
From Muniru A Asiru, Nov 21 2018: (Start)
a(n) = 60^n.
a(n) = 60*a(n-1) for n > 0, a(0) = 1.
G.f.: 1/(1-60*x).
E.g.f: exp(60*x). (End)
a(n) = 1/a(-n) for all n in Z. - Michael Somos, Jan 01 2019

A256890 Triangle T(n,k) = t(n-k, k); t(n,m) = f(m)*t(n-1,m) + f(n)*t(n,m-1), where f(x) = x + 2.

Original entry on oeis.org

1, 2, 2, 4, 12, 4, 8, 52, 52, 8, 16, 196, 416, 196, 16, 32, 684, 2644, 2644, 684, 32, 64, 2276, 14680, 26440, 14680, 2276, 64, 128, 7340, 74652, 220280, 220280, 74652, 7340, 128, 256, 23172, 357328, 1623964, 2643360, 1623964, 357328, 23172, 256, 512, 72076, 1637860, 10978444, 27227908, 27227908, 10978444, 1637860, 72076, 512
Offset: 0

Views

Author

Dale Gerdemann, Apr 12 2015

Keywords

Comments

Related triangles may be found by varying the function f(x). If f(x) is a linear function, it can be parameterized as f(x) = a*x + b. With different values for a and b, the following triangles are obtained:
a\b 1.......2.......3.......4.......5.......6
The row sums of these, and similarly constructed number triangles, are shown in the following table:
a\b 1.......2.......3.......4.......5.......6.......7.......8.......9
The formula can be further generalized to: t(n,m) = f(m+s)*t(n-1,m) + f(n-s)*t(n,m-1), where f(x) = a*x + b. The following table specifies triangles with nonzero values for s (given after the slash).
a\b 0 1 2 3
-2 A130595/1
-1
0
With the absolute value, f(x) = |x|, one obtains A038221/3, A038234/4, A038247/5, A038260/6, A038273/7, A038286/8, A038299/9 (with value for s after the slash).
If f(x) = A000045(x) (Fibonacci) and s = 1, the result is A010048 (Fibonomial).
In the notation of Carlitz and Scoville, this is the triangle of generalized Eulerian numbers A(r, s | alpha, beta) with alpha = beta = 2. Also the array A(2,1,4) in the notation of Hwang et al. (see page 31). - Peter Bala, Dec 27 2019

Examples

			Array, t(n, k), begins as:
   1,    2,      4,        8,        16,         32,          64, ...;
   2,   12,     52,      196,       684,       2276,        7340, ...;
   4,   52,    416,     2644,     14680,      74652,      357328, ...;
   8,  196,   2644,    26440,    220280,    1623964,    10978444, ...;
  16,  684,  14680,   220280,   2643360,   27227908,   251195000, ...;
  32, 2276,  74652,  1623964,  27227908,  381190712,  4677894984, ...;
  64, 7340, 357328, 10978444, 251195000, 4677894984, 74846319744, ...;
Triangle, T(n, k), begins as:
    1;
    2,     2;
    4,    12,      4;
    8,    52,     52,       8;
   16,   196,    416,     196,      16;
   32,   684,   2644,    2644,     684,      32;
   64,  2276,  14680,   26440,   14680,    2276,     64;
  128,  7340,  74652,  220280,  220280,   74652,   7340,   128;
  256, 23172, 357328, 1623964, 2643360, 1623964, 357328, 23172,   256;
		

Crossrefs

Programs

  • Magma
    A256890:= func< n,k | (&+[(-1)^(k-j)*Binomial(j+3,j)*Binomial(n+4,k-j)*(j+2)^n: j in [0..k]]) >;
    [A256890(n,k): k in [0..n], n in [0..10]]; // G. C. Greubel, Oct 18 2022
    
  • Mathematica
    Table[Sum[(-1)^(k-j)*Binomial[j+3, j] Binomial[n+4, k-j] (j+2)^n, {j,0,k}], {n,0, 9}, {k,0,n}]//Flatten (* Michael De Vlieger, Dec 27 2019 *)
  • PARI
    t(n,m) = if ((n<0) || (m<0), 0, if ((n==0) && (m==0), 1, (m+2)*t(n-1, m) + (n+2)*t(n, m-1)));
    tabl(nn) = {for (n=0, nn, for (k=0, n, print1(t(n-k, k), ", ");); print(););} \\ Michel Marcus, Apr 14 2015
    
  • SageMath
    def A256890(n,k): return sum((-1)^(k-j)*Binomial(j+3,j)*Binomial(n+4,k-j)*(j+2)^n for j in range(k+1))
    flatten([[A256890(n,k) for k in range(n+1)] for n in range(11)]) # G. C. Greubel, Oct 18 2022

Formula

T(n,k) = t(n-k, k); t(0,0) = 1, t(n,m) = 0 if n < 0 or m < 0 else t(n,m) = f(m)*t(n-1,m) + f(n)*t(n,m-1), where f(x) = x + 2.
Sum_{k=0..n} T(n, k) = A001715(n).
T(n,k) = Sum_{j = 0..k} (-1)^(k-j)*binomial(j+3,j)*binomial(n+4,k-j)*(j+2)^n. - Peter Bala, Dec 27 2019
Modified rule of Pascal: T(0,0) = 1, T(n,k) = 0 if k < 0 or k > n else T(n,k) = f(n-k) * T(n-1,k-1) + f(k) * T(n-1,k), where f(x) = x + 2. - Georg Fischer, Nov 11 2021
From G. C. Greubel, Oct 18 2022: (Start)
T(n, n-k) = T(n, k).
T(n, 0) = A000079(n). (End)

A003992 Square array read by upwards antidiagonals: T(n,k) = n^k for n >= 0, k >= 0.

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 1, 2, 1, 0, 1, 3, 4, 1, 0, 1, 4, 9, 8, 1, 0, 1, 5, 16, 27, 16, 1, 0, 1, 6, 25, 64, 81, 32, 1, 0, 1, 7, 36, 125, 256, 243, 64, 1, 0, 1, 8, 49, 216, 625, 1024, 729, 128, 1, 0, 1, 9, 64, 343, 1296, 3125, 4096, 2187, 256, 1, 0, 1, 10, 81, 512, 2401, 7776, 15625, 16384, 6561, 512, 1, 0
Offset: 0

Views

Author

Keywords

Comments

If the array is transposed, T(n,k) is the number of oriented rows of n colors using up to k different colors. The formula would be T(n,k) = [n==0] + [n>0]*k^n. The generating function for column k would be 1/(1-k*x). For T(3,2)=8, the rows are AAA, AAB, ABA, ABB, BAA, BAB, BBA, and BBB. - Robert A. Russell, Nov 08 2018
T(n,k) is the number of multichains of length n from {} to [k] in the Boolean lattice B_k. - Geoffrey Critzer, Apr 03 2020

Examples

			Rows begin:
[1, 0,  0,   0,    0,     0,      0,      0, ...],
[1, 1,  1,   1,    1,     1,      1,      1, ...],
[1, 2,  4,   8,   16,    32,     64,    128, ...],
[1, 3,  9,  27,   81,   243,    729,   2187, ...],
[1, 4, 16,  64,  256,  1024,   4096,  16384, ...],
[1, 5, 25, 125,  625,  3125,  15625,  78125, ...],
[1, 6, 36, 216, 1296,  7776,  46656, 279936, ...],
[1, 7, 49, 343, 2401, 16807, 117649, 823543, ...], ...
		

Crossrefs

Main diagonal is A000312. Other diagonals include A000169, A007778, A000272, A008788. Antidiagonal sums are in A026898.
Cf. A099555.
Transpose is A004248. See A051128, A095884, A009999 for other versions.
Cf. A277504 (unoriented), A293500 (chiral).

Programs

  • Magma
    [[(n-k)^k: k in [0..n]]: n in [0..10]]; // G. C. Greubel, Nov 08 2018
  • Mathematica
    Table[If[k == 0, 1, (n - k)^k], {n, 0, 11}, {k, 0, n}]//Flatten
  • PARI
    T(n,k) = (n-k)^k \\ Charles R Greathouse IV, Feb 07 2017
    

Formula

E.g.f.: Sum T(n,k)*x^n*y^k/k! = 1/(1-x*exp(y)). - Paul D. Hanna, Oct 22 2004
E.g.f.: Sum T(n,k)*x^n/n!*y^k/k! = e^(x*e^y). - Franklin T. Adams-Watters, Jun 23 2006

Extensions

More terms from David W. Wilson
Edited by Paul D. Hanna, Oct 22 2004

A062838 Cubes of squarefree numbers.

Original entry on oeis.org

1, 8, 27, 125, 216, 343, 1000, 1331, 2197, 2744, 3375, 4913, 6859, 9261, 10648, 12167, 17576, 24389, 27000, 29791, 35937, 39304, 42875, 50653, 54872, 59319, 68921, 74088, 79507, 97336, 103823, 132651, 148877, 166375, 185193, 195112, 205379, 226981, 238328
Offset: 1

Views

Author

Jason Earls, Jul 21 2001

Keywords

Comments

Cubefull numbers (A036966) all of whose nonunitary divisors are not cubefull (A362147). - Amiram Eldar, May 13 2023

Crossrefs

Other powers of squarefree numbers: A005117(1), A062503(2), A113849(4), A072774(all).
A329332 column 3 in ascending order.

Programs

  • Mathematica
    Select[Range[70], SquareFreeQ]^3 (* Harvey P. Dale, Jul 20 2011 *)
  • PARI
    for(n=1,35, if(issquarefree(n),print(n*n^2)))
    
  • PARI
    a(n) = my(m, c); if(n<=1, n==1, c=1; m=1; while(cAltug Alkan, Dec 03 2015
    
  • Python
    from math import isqrt
    from sympy import mobius
    def A062838(n):
        def f(x): return n+x-sum(mobius(k)*(x//k**2) for k in range(1, isqrt(x)+1))
        m, k = n, f(n)
        while m != k: m, k = k, f(k)
        return m**3 # Chai Wah Wu, Sep 11 2024

Formula

A055229(a(n)) = A005117(n) and A055229(m) < A005117(n) for m < a(n). - Reinhard Zumkeller, Apr 09 2010
a(n) = A005117(n)^3. - R. J. Mathar, Dec 03 2015
{a(n)} = {A225546(A000400(n)) : n >= 0}, where {a(n)} denotes the set of integers in the sequence. - Peter Munn, Oct 31 2019
Sum_{n>=1} 1/a(n) = zeta(3)/zeta(6) = 945*zeta(3)/Pi^6 (A157289). - Amiram Eldar, May 22 2020

Extensions

More terms from Dean Hickerson, Jul 24 2001
More terms from Vladimir Joseph Stephan Orlovsky, Aug 15 2008

A329332 Table of powers of squarefree numbers, powers of A019565(n) in increasing order in row n. Square array A(n,k) n >= 0, k >= 0 read by descending antidiagonals.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 4, 3, 1, 1, 8, 9, 6, 1, 1, 16, 27, 36, 5, 1, 1, 32, 81, 216, 25, 10, 1, 1, 64, 243, 1296, 125, 100, 15, 1, 1, 128, 729, 7776, 625, 1000, 225, 30, 1, 1, 256, 2187, 46656, 3125, 10000, 3375, 900, 7, 1, 1, 512, 6561, 279936, 15625, 100000, 50625, 27000, 49, 14
Offset: 0

Views

Author

Peter Munn, Nov 10 2019

Keywords

Comments

The A019565 row order gives the table neat relationships with A003961, A003987, A059897, A225546, A319075 and A329050. See the formula section.
Transposition of this table, that is reflection about its main diagonal, has subtle symmetries. For example, consider the unique factorization of a number into powers of distinct primes. This can be restated as factorization into numbers from rows 2^n (n >= 0) with no more than one from each row. Reflecting about the main diagonal, this factorization becomes factorization (of a related number) into numbers from columns 2^k (k >= 0) with no more than one from each column. This is also unique and is factorization into powers of squarefree numbers with distinct exponents that are powers of two. See the example section.

Examples

			Square array A(n,k) begins:
n\k |  0   1     2      3        4          5           6             7
----+------------------------------------------------------------------
   0|  1   1     1      1        1          1           1             1
   1|  1   2     4      8       16         32          64           128
   2|  1   3     9     27       81        243         729          2187
   3|  1   6    36    216     1296       7776       46656        279936
   4|  1   5    25    125      625       3125       15625         78125
   5|  1  10   100   1000    10000     100000     1000000      10000000
   6|  1  15   225   3375    50625     759375    11390625     170859375
   7|  1  30   900  27000   810000   24300000   729000000   21870000000
   8|  1   7    49    343     2401      16807      117649        823543
   9|  1  14   196   2744    38416     537824     7529536     105413504
  10|  1  21   441   9261   194481    4084101    85766121    1801088541
  11|  1  42  1764  74088  3111696  130691232  5489031744  230539333248
  12|  1  35  1225  42875  1500625   52521875  1838265625   64339296875
Reflection of factorization about the main diagonal: (Start)
The canonical (prime power) factorization of 864 is 2^5 * 3^3 = 32 * 27. Reflecting the factors about the main diagonal of the table gives us 10 * 36 = 10^1 * 6^2 = 360. This is the unique factorization of 360 into powers of squarefree numbers with distinct exponents that are powers of two.
Reflection about the main diagonal is given by the self-inverse function A225546(.). Clearly, all positive integers are in the domain of A225546, whether or not they appear in the table. It is valid to start from 360, observe that A225546(360) = 864, then use 864 to derive 360's factorization into appropriate powers of squarefree numbers as above.
(End)
		

Crossrefs

The range of values is A072774.
Rows (abbreviated list): A000079(1), A000244(2), A000400(3), A000351(4), A011557(5), A001024(6), A009974(7), A000420(8), A001023(9), A009965(10), A001020(16), A001022(32), A001026(64).
A019565 is column 1, A334110 is column 2, and columns that are sorted in increasing order (some without the 1) are: A005117(1), A062503(2), A062838(3), A113849(4), A113850(5), A113851(6), A113852(7).
Other subtables: A182944, A319075, A329050.
Re-ordered subtable of A297845, A306697, A329329.
A000290, A003961, A003987, A059897 and A225546 are used to express relationships between terms of this sequence.
Cf. A285322.

Formula

A(n,k) = A019565(n)^k.
A(k,n) = A225546(A(n,k)).
A(n,2k) = A000290(A(n,k)) = A(n,k)^2.
A(2n,k) = A003961(A(n,k)).
A(n,2k+1) = A(n,2k) * A(n,1).
A(2n+1,k) = A(2n,k) * A(1,k).
A(A003987(n,m), k) = A059897(A(n,k), A(m,k)).
A(n, A003987(m,k)) = A059897(A(n,m), A(n,k)).
A(2^n,k) = A319075(k,n+1).
A(2^n, 2^k) = A329050(n,k).
A(n,k) = A297845(A(n,1), A(1,k)) = A306697(A(n,1), A(1,k)), = A329329(A(n,1), A(1,k)).
Sum_{n>=0} 1/A(n,k) = zeta(k)/zeta(2*k), for k >= 2. - Amiram Eldar, Dec 03 2022
Previous Showing 11-20 of 180 results. Next