A082841
a(n) = 4*a(n-1) - a(n-2) for n>1, a(0)=3, a(1)=9.
Original entry on oeis.org
3, 9, 33, 123, 459, 1713, 6393, 23859, 89043, 332313, 1240209, 4628523, 17273883, 64467009, 240594153, 897909603, 3351044259, 12506267433, 46674025473, 174189834459, 650085312363, 2426151414993, 9054520347609, 33791929975443
Offset: 0
Mario Catalani (mario.catalani(AT)unito.it), Apr 14 2003
-
a:=[3,9];; for n in [3..30] do a[n]:=4*a[n-1]-a[n-2]; od; a; # G. C. Greubel, Feb 25 2019
-
m:=30; R:=PowerSeriesRing(Integers(), m); Coefficients(R!( (3-6*x+3*x^2)/((1-x)*(1-4*x+x^2)) )); // G. C. Greubel, Feb 25 2019
-
a:=proc(n) option remember; if n=0 then 3 elif n=1 then 9 else 4*a(n-1)-a(n-2); fi; end: seq(a(n), n=0..40); # Wesley Ivan Hurt, Jan 21 2017
-
CoefficientList[Series[(3-6x+3x^2)/((1-x)(1-4x+x^2)), {x, 0, 25}], x]
LinearRecurrence[{4,-1},{3,9},30] (* Harvey P. Dale, Aug 28 2019 *)
-
my(x='x+O('x^30)); Vec((3-6*x+3*x^2)/((1-x)*(1-4*x+x^2))) \\ G. C. Greubel, Feb 25 2019
-
((3-6*x+3*x^2)/((1-x)*(1-4*x+x^2))).series(x, 30).coefficients(x, sparse=False) # G. C. Greubel, Feb 25 2019
A238731
Riordan array ((1-2*x)/(1-3*x+x^2), x/(1-3*x+x^2)).
Original entry on oeis.org
1, 1, 1, 2, 4, 1, 5, 13, 7, 1, 13, 40, 33, 10, 1, 34, 120, 132, 62, 13, 1, 89, 354, 483, 308, 100, 16, 1, 233, 1031, 1671, 1345, 595, 147, 19, 1, 610, 2972, 5561, 5398, 3030, 1020, 203, 22, 1, 1597, 8495, 17984, 20410, 13893, 5943, 1610, 268, 25, 1, 4181
Offset: 0
Triangle begins:
1;
1, 1;
2, 4, 1;
5, 13, 7, 1;
13, 40, 33, 10, 1;
34, 120, 132, 62, 13, 1;
89, 354, 483, 308, 100, 16, 1;
233, 1031, 1671, 1345, 595, 147, 19, 1;...
Triangle (0, 1, 1, 1, 0, 0, 0, ...) DELTA (1, 0, 2, -2, 0, 0, ...) begins:
1;
0, 1;
0, 1, 1;
0, 2, 4, 1;
0, 5, 13, 7, 1;
0, 13, 40, 33, 10, 1;
0, 34, 120, 132, 62, 13, 1;
0, 89, 354, 483, 308, 100, 16, 1;
0, 233, 1031, 1671, 1345, 595, 147, 19, 1;...
-
(* The function RiordanArray is defined in A256893. *)
RiordanArray[(1-2#)/(1-3#+#^2)&, x/(1-3#+#^2)&, 10] // Flatten (* Jean-François Alcover, Jul 16 2019 *)
A204517
Square root of floor[A055859(n)/7].
Original entry on oeis.org
0, 0, 0, 1, 3, 6, 17, 48, 96, 271, 765, 1530, 4319, 12192, 24384, 68833, 194307, 388614, 1097009, 3096720, 6193440, 17483311, 49353213, 98706426, 278635967, 786554688, 1573109376, 4440692161, 12535521795, 25071043590, 70772438609, 199781794032, 399563588064
Offset: 1
-
b=7;for(n=1,2e9,issquare(n^2\b) & print1(sqrtint(n^2\b),","))
-
A204517(n)=polcoeff((x^4 + 3*x^5 + 6*x^6 + x^7)/(1 - 16*x^3 + x^6+O(x^n)),n)
A322836
Square array A(n,k), n >= 0, k >= 0, read by antidiagonals, where A(n,k) is Chebyshev polynomial of the first kind T_{n}(x), evaluated at x=k.
Original entry on oeis.org
1, 1, 0, 1, 1, -1, 1, 2, 1, 0, 1, 3, 7, 1, 1, 1, 4, 17, 26, 1, 0, 1, 5, 31, 99, 97, 1, -1, 1, 6, 49, 244, 577, 362, 1, 0, 1, 7, 71, 485, 1921, 3363, 1351, 1, 1, 1, 8, 97, 846, 4801, 15124, 19601, 5042, 1, 0, 1, 9, 127, 1351, 10081, 47525, 119071, 114243, 18817, 1, -1
Offset: 0
Square array begins:
1, 1, 1, 1, 1, 1, 1, ...
0, 1, 2, 3, 4, 5, 6, ...
-1, 1, 7, 17, 31, 49, 71, ...
0, 1, 26, 99, 244, 485, 846, ...
1, 1, 97, 577, 1921, 4801, 10081, ...
0, 1, 362, 3363, 15124, 47525, 120126, ...
-1, 1, 1351, 19601, 119071, 470449, 1431431, ...
Columns 0-20 give
A056594,
A000012,
A001075,
A001541,
A001091,
A001079,
A023038,
A011943(n+1),
A001081,
A023039,
A001085,
A077422,
A077424,
A097308,
A097310,
A068203,
A322888,
A056771,
A322889,
A078986,
A322890.
Rows 0-10 give
A000012,
A001477,
A056220,
A144129,
A144130,
A243131,
A243132,
A243133,
A243134,
A243135,
A243136.
Cf.
A323182 (Chebyshev polynomial of the second kind).
-
Table[ChebyshevT[n-k, k], {n, 0, 10}, {k, n, 0, -1}] // Flatten (* Amiram Eldar, Dec 28 2018 *)
-
T(n,k) = polchebyshev(n,1,k);
matrix(7, 7, n, k, T(n-1,k-1)) \\ Michel Marcus, Dec 28 2018
-
T(n, k) = round(cos(n*acos(k)));\\ Seiichi Manyama, Mar 05 2021
-
T(n, k) = if(n==0, 1, n*sum(j=0, n, (2*k-2)^j*binomial(n+j, 2*j)/(n+j))); \\ Seiichi Manyama, Mar 05 2021
A011922
a(n) = 15*a(n-1) - 15*a(n-2) + a(n-3) with a(0)=1, a(1)=3, and a(2)=33.
Original entry on oeis.org
1, 3, 33, 451, 6273, 87363, 1216801, 16947843, 236052993, 3287794051, 45793063713, 637815097923, 8883618307201, 123732841202883, 1723376158533153, 24003533378261251, 334326091137124353, 4656561742541479683, 64857538304443591201, 903348974519668797123, 12582028104970919568513
Offset: 0
Mario Velucchi (mathchess(AT)velucchi.it)
- Mario Velucchi, Seeing couples, in Recreational and Educational Computing, to appear 1997.
- Vincenzo Librandi, Table of n, a(n) for n = 0..100
- Christian Aebi and Grant Cairns, Lattice Equable Parallelograms, arXiv:2006.07566 [math.NT], 2020.
- Hacène Belbachir, Soumeya Merwa Tebtoub, and László Németh, Ellipse Chains and Associated Sequences, J. Int. Seq., Vol. 23 (2020), Article 20.8.5.
- Yurii S. Bystryk, Vitalii L. Denysenko, and Volodymyr I. Ostryk, Lune and Lens Sequences, ResearchGate preprint, 2024. See pp. 31, 56.
- Z. Franusic, On the Extension of the Diophantine Pair {1,3} in Z[surd d], J. Int. Seq. 13 (2010) # 10.9.6.
- Giovanni Lucca, Circle Chains Inscribed in Symmetrical Lenses and Integer Sequences, Forum Geometricorum, Volume 16 (2016) 419-427.
- Index entries for linear recurrences with constant coefficients, signature (15,-15,1).
-
I:=[1,3,33]; [n le 3 select I[n] else 15*Self(n-1)-15*Self(n-2)+Self(n-3): n in [1..17]]; // Bruno Berselli, Jul 09 2011
-
a:= gfun:-rectoproc({a(n) = 15*a(n-1) - 15*a(n-2) + a(n-3), a(0)=1,a(1)=3,a(2)=33},a(n),remember):
map(a,[$0..100]); # Robert Israel, Jul 02 2015
-
RecurrenceTable[{a[n] == 15 a[n - 1] - 15 a[n - 2] + a[n - 3], a[0] == 1, a[1] == 3, a[2] == 33}, a, {n, 0, 15}] (* Michael De Vlieger, Jul 02 2015 *)
LinearRecurrence[{15,-15,1},{1,3,33},30] (* Harvey P. Dale, Dec 04 2018 *)
-
a[0]:1$ a[1]:3$ a[2]:33$ a[n]:=15*a[n-1]-15*a[n-2]+a[n-3]$ makelist(a[n], n, 0, 16); /* Bruno Berselli, Jul 09 2011 */
-
a(n)=([0,1,0; 0,0,1; 1,-15,15]^n*[1;3;33])[1,1] \\ Charles R Greathouse IV, Jul 02 2015
A071954
a(n) = 4*a(n-1) - a(n-2) - 4, with a(0) = 2, a(1) = 4.
Original entry on oeis.org
2, 4, 10, 32, 114, 420, 1562, 5824, 21730, 81092, 302634, 1129440, 4215122, 15731044, 58709050, 219105152, 817711554, 3051741060, 11389252682, 42505269664, 158631825970, 592022034212, 2209456310874, 8245803209280, 30773756526242, 114849222895684
Offset: 0
G.f. = 2 + 4*x + 10*x^2 + 32*x^3 + 114*x^4 + 420*x^5 + 1562*x^6 + ...
- M. E. Larsen, "Four Cubes" in Puzzler's Tribute, Ed. D. Wolfe & T. Rodgers, pp. 69-70, A. K. Peters, MA, 2002
-
a:=[2,4,10];; for n in [4..30] do a[n]:=5*a[n-1]-5*a[n-2]+a[n-3]; od; a; # G. C. Greubel, Feb 25 2019
-
a071954 n = a071954_list !! n
a071954_list = 2 : 4 : zipWith (-)
(map ((4 *) . pred) (tail a071954_list)) a071954_list
-- Reinhard Zumkeller, Aug 11 2011
-
I:=[2,4,10]; [n le 3 select I[n] else 5*Self(n-1) -5*Self(n-2) + Self(n-3): n in [1..30]]; // G. C. Greubel, Feb 25 2019
-
a[n_]:= a[n] = 4*a[n-1] -a[n-2] -4; a[0]=2; a[1]=4; Table[a[n], {n,0,30}]
LinearRecurrence[{5,-5,1},{2,4,10},30] (* Harvey P. Dale, May 05 2011 *)
-
Vec((2-6*x)/(1-5*x+5*x^2-x^3)+O(x^30)) \\ Charles R Greathouse IV, Feb 09 2012
-
{a(n) = my(w=quadgen(12)); simplify( 2 + ((2+w)^n - (2-w)^n) / w)}; /* Michael Somos, Nov 03 2016 */
-
(2*(1-3*x)/((1-x)*(1-4*x+x^2))).series(x, 30).coefficients(x, sparse=False) # G. C. Greubel, Feb 25 2019
A077236
a(n) = 4*a(n-1) - a(n-2) with a(0) = 4 and a(1) = 11.
Original entry on oeis.org
4, 11, 40, 149, 556, 2075, 7744, 28901, 107860, 402539, 1502296, 5606645, 20924284, 78090491, 291437680, 1087660229, 4059203236, 15149152715, 56537407624, 211000477781, 787464503500, 2938857536219, 10967965641376
Offset: 0
11 = a(1) = sqrt(3*A054491(1)^2 + 13) = sqrt(3*6^2 + 13)= sqrt(121) = 11.
- Luigi Cerlienco, Maurice Mignotte, and F. Piras, Suites récurrentes linéaires: Propriétés algébriques et arithmétiques, L'Enseignement Math., 33 (1987), 67-108. See Example 2, page 93.
- Tanya Khovanova, Recursive Sequences
- Index entries for sequences related to Chebyshev polynomials.
- Index entries for linear recurrences with constant coefficients, signature (4,-1).
-
a:=[4,11];; for n in [3..30] do a[n]:=4*a[n-1]-a[n-2]; od; a; # G. C. Greubel, Apr 28 2019
-
R:=PowerSeriesRing(Integers(), 30); Coefficients(R!( (4-5*x)/(1-4*x+x^2) )); // G. C. Greubel, Apr 28 2019
-
CoefficientList[Series[(4-5*x)/(1-4*x+x^2), {x,0,20}], x] (* or *) LinearRecurrence[{4,-1}, {4,11}, 30] (* G. C. Greubel, Apr 28 2019 *)
-
my(x='x+O('x^30)); Vec((4-5*x)/(1-4*x+x^2)) \\ G. C. Greubel, Apr 28 2019
-
a(n) = polchebyshev(n+1, 1, 2) + 2*polchebyshev(n, 1, 2); \\ Michel Marcus, Oct 13 2021
-
((4-5*x)/(1-4*x+x^2)).series(x, 30).coefficients(x, sparse=False) # G. C. Greubel, Apr 28 2019
A204512
Square roots of [A055872/8]: Their square written in base 8, with some digit appended, is again a square.
Original entry on oeis.org
0, 0, 0, 1, 2, 6, 12, 35, 70, 204, 408, 1189, 2378, 6930, 13860, 40391, 80782, 235416, 470832, 1372105, 2744210, 7997214, 15994428, 46611179, 93222358, 271669860, 543339720, 1583407981, 3166815962, 9228778026, 18457556052, 53789260175, 107578520350
Offset: 1
-
CoefficientList[Series[(x^4 (1+2x))/(1-6x^2+x^4),{x,0,40}],x] (* Harvey P. Dale, Nov 30 2020 *)
-
b=8;for(n=1,1e7,issquare(n^2\b) & print1(sqrtint(n^2\b)","))
-
a(n)=polcoeff((2*x^5 + x^4)/(x^4 - 6*x^2 + 1+O(x^n)),n)
A001922
Numbers k such that 3*k^2 - 3*k + 1 is both a square (A000290) and a centered hexagonal number (A003215).
Original entry on oeis.org
1, 8, 105, 1456, 20273, 282360, 3932761, 54776288, 762935265, 10626317416, 148005508553, 2061450802320, 28712305723921, 399910829332568, 5570039304932025, 77580639439715776, 1080558912851088833, 15050244140475527880, 209622859053806301481
Offset: 0
8 is in the sequence because 3*8^2 - 3*8 + 1 = 169 is a square and also a centered hexagonal number. - _Colin Barker_, Jan 07 2015
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Vincenzo Librandi, Table of n, a(n) for n = 0..800
- J. Brenner and E. P. Starke, Problem E702, Amer. Math. Monthly, 53 (1946), 465.
- Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
- Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992
- Sociedad Magic Penny Patagonia, Leonardo en Patagonia
- Index entries for linear recurrences with constant coefficients, signature (15,-15,1).
-
I:=[1, 8, 105]; [n le 3 select I[n] else 15*Self(n-1)-15*Self(n-2)+Self(n-3): n in [1..20]]; // Vincenzo Librandi, Apr 16 2012
-
seq(simplify((1 +ChebyshevU(n,7) +ChebyshevU(n-1,7))/2), n=0..30); # G. C. Greubel, Oct 07 2022
-
With[{s1=3+2Sqrt[3],s2=3-2Sqrt[3],t1=7+4Sqrt[3],t2=7-4Sqrt[3]}, Simplify[ Table[(s1 t1^n+s2 t2^n+6)/12,{n,0,20}]]] (* or *) LinearRecurrence[ {15,-15,1},{1,8,105},21] (* Harvey P. Dale, Aug 14 2011 *)
CoefficientList[Series[(1-7*x)/(1-15*x+15*x^2-x^3),{x,0,30}],x] (* Vincenzo Librandi, Apr 16 2012 *)
-
Vec((1-7*x)/(1-15*x+15*x^2-x^3) + O(x^100)) \\ Colin Barker, Jan 06 2015
-
[(1+chebyshev_U(n,7) +chebyshev_U(n-1,7))/2 for n in range(30)] # G. C. Greubel, Oct 07 2022
A006235
Complexity of doubled cycle (regarding case n = 2 as a multigraph).
Original entry on oeis.org
1, 12, 75, 384, 1805, 8100, 35287, 150528, 632025, 2620860, 10759331, 43804800, 177105253, 711809364, 2846259375, 11330543616, 44929049777, 177540878700, 699402223099, 2747583822720, 10766828545725, 42095796462852, 164244726238343, 639620518118400, 2486558615814025
Offset: 1
For k=3, b(3)=sqrt(6)b(2)-b(1)=6-1=5, so det(S(4,3,(1,-1,1)))=3*5^2=75.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- T. D. Noe, Table of n, a(n) for n = 1..200
- Zbigniew R. Bogdanowicz, The number of spanning trees in a superprism, Discrete Math. Lett. 13 (2024) 66-73. See p. 66.
- N. Brothers, S. Evans, L. Taalman, L. Van Wyk, D. Witczak, and C. Yarnall, Spiral knots, Missouri J. of Math. Sci., 22 (2010).
- M. DeLong, M. Russell, and J. Schrock, Colorability and determinants of T(m,n,r,s) twisted torus knots for n equiv. +/-1(mod m), Involve, Vol. 8 (2015), No. 3, 361-384.
- N. Dowdall, T. Mattman, K. Meek, and P. Solis, On the Harary-Kauffman conjecture and turk's head knots, arxiv 0811.0044 [math.GT], 2008.
- A. A. Jagers, A note on the number of spanning trees in a prism graph, Int. J. Comput. Math., Vol. 24, 1988 (Issue 2), pp. 151-154.
- Seong Ju Kim, R. Stees, and L. Taalman, Sequences of Spiral Knot Determinants, Journal of Integer Sequences, Vol. 19 (2016), #16.1.4.
- D. E. Knuth, Letter to N. J. A. Sloane, Oct. 1994
- Germain Kreweras, Complexité et circuits Eulériens dans les sommes tensorielles de graphes, J. Combin. Theory, B 24 (1978), 202-212.
- L. Oesper, p-Colorings of Weaving Knots, Undergraduate Thesis, Pomona College, 2005.
- Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
- Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992
- Ryan Stees, Sequences of Spiral Knot Determinants, Senior Honors Projects, Paper 84, James Madison Univ., May 2016.
- Eric Weisstein's World of Mathematics, Dipyramidal Graph
- Eric Weisstein's World of Mathematics, Prism Graph
- Eric Weisstein's World of Mathematics, Spanning Tree
- Eric Weisstein's World of Mathematics, Web Graph
- Index entries for linear recurrences with constant coefficients, signature (10,-35,52,-35,10,-1).
-
A006235:=(1+2*z-10*z**2+2*z**3+z**4)/(z-1)**2/(z**2-4*z+1)**2; # conjectured (correctly) by Simon Plouffe in his 1992 dissertation
-
LinearRecurrence[{10, -35, 52, -35, 10, -1}, {0, 1, 12, 75, 384, 1805}, 20]
Table[1/2 (-2 + (2 - Sqrt[3])^n + (2 + Sqrt[3])^n) n, {n, 0, 20}] // Expand
Table[n (ChebyshevT[n, 2] - 1), {n, 20}] (* Eric W. Weisstein, Mar 30 2017 *)
-
a(n)=if(n<0,0,polcoeff(x*(1+2*x-10*x^2+2*x^3+x^4)/((1-x)*(1-4*x+x^2))^2+x*O(x^n),n))
Comments