cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-50 of 103 results. Next

A082841 a(n) = 4*a(n-1) - a(n-2) for n>1, a(0)=3, a(1)=9.

Original entry on oeis.org

3, 9, 33, 123, 459, 1713, 6393, 23859, 89043, 332313, 1240209, 4628523, 17273883, 64467009, 240594153, 897909603, 3351044259, 12506267433, 46674025473, 174189834459, 650085312363, 2426151414993, 9054520347609, 33791929975443
Offset: 0

Views

Author

Mario Catalani (mario.catalani(AT)unito.it), Apr 14 2003

Keywords

Comments

y-values in the solutions to 3*x^2+6 = y^2. - Sture Sjöstedt, Nov 25 2011
Positive values of x (or y) satisfying x^2 - 4*x*y + y^2 + 18 = 0. - Colin Barker, Feb 04 2014
Positive values of x (or y) satisfying x^2 - 14*x*y + y^2 + 288 = 0. - Colin Barker, Feb 16 2014

Crossrefs

First differences of A005320.
Cf. A001834.

Programs

  • GAP
    a:=[3,9];; for n in [3..30] do a[n]:=4*a[n-1]-a[n-2]; od; a; # G. C. Greubel, Feb 25 2019
  • Magma
    m:=30; R:=PowerSeriesRing(Integers(), m); Coefficients(R!( (3-6*x+3*x^2)/((1-x)*(1-4*x+x^2)) )); // G. C. Greubel, Feb 25 2019
    
  • Maple
    a:=proc(n) option remember; if n=0 then 3 elif n=1 then 9 else 4*a(n-1)-a(n-2); fi; end: seq(a(n), n=0..40); # Wesley Ivan Hurt, Jan 21 2017
  • Mathematica
    CoefficientList[Series[(3-6x+3x^2)/((1-x)(1-4x+x^2)), {x, 0, 25}], x]
    LinearRecurrence[{4,-1},{3,9},30] (* Harvey P. Dale, Aug 28 2019 *)
  • PARI
    my(x='x+O('x^30)); Vec((3-6*x+3*x^2)/((1-x)*(1-4*x+x^2))) \\ G. C. Greubel, Feb 25 2019
    
  • Sage
    ((3-6*x+3*x^2)/((1-x)*(1-4*x+x^2))).series(x, 30).coefficients(x, sparse=False) # G. C. Greubel, Feb 25 2019
    

Formula

G.f.: (3 -6*x +3*x^2)/((1-x)*(1-4*x+x^2)).
a(n) = sqrt(3/2)*(a^(n+1/2) + b^(n+1/2)), with a=2+sqrt(3) and b=2-sqrt(3).
a(n) = sqrt(3*(11 +12*A082840(n) +4*A082840(n)^2)).
a(n) = sqrt((3/2)*(A003500(2n+1) +2)).
a(n) - a(n-1) = 6*A001353(n).
a(n) == 3 (mod 6).
a(n) = 3 * A001835(n+1).
a(n) = 3*x(n) + 3*y(n) for x(n)= A001075(n) and y(n) = A001353(n) the solutions to x^2 - 3*y^2 = 1. - Greg Dresden and his Math 222 Linear Algebra class, Oct 05 2022

A238731 Riordan array ((1-2*x)/(1-3*x+x^2), x/(1-3*x+x^2)).

Original entry on oeis.org

1, 1, 1, 2, 4, 1, 5, 13, 7, 1, 13, 40, 33, 10, 1, 34, 120, 132, 62, 13, 1, 89, 354, 483, 308, 100, 16, 1, 233, 1031, 1671, 1345, 595, 147, 19, 1, 610, 2972, 5561, 5398, 3030, 1020, 203, 22, 1, 1597, 8495, 17984, 20410, 13893, 5943, 1610, 268, 25, 1, 4181
Offset: 0

Views

Author

Philippe Deléham, Mar 03 2014

Keywords

Comments

Unsigned version of A124037 and A126126.
Subtriangle of the triangle given by (0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, ...) DELTA (1, 0, 2, -2, 0, 0, 0, 0, 0, 0, 0, ...) where DELTA is the operator defined in A084938.
Row sums are A001075(n).
Diagonal sums are A133494(n).
Sum_{k=0..n} T(n,k)*x^k = A001519(n), A001075(n), A002320(n), A038723(n), A033889(n) for x = 0, 1, 2, 3, 4 respectively. - Philippe Deléham, Mar 05 2014

Examples

			Triangle begins:
1;
1, 1;
2, 4, 1;
5, 13, 7, 1;
13, 40, 33, 10, 1;
34, 120, 132, 62, 13, 1;
89, 354, 483, 308, 100, 16, 1;
233, 1031, 1671, 1345, 595, 147, 19, 1;...
Triangle (0, 1, 1, 1, 0, 0, 0, ...) DELTA (1, 0, 2, -2, 0, 0, ...) begins:
1;
0, 1;
0, 1, 1;
0, 2, 4, 1;
0, 5, 13, 7, 1;
0, 13, 40, 33, 10, 1;
0, 34, 120, 132, 62, 13, 1;
0, 89, 354, 483, 308, 100, 16, 1;
0, 233, 1031, 1671, 1345, 595, 147, 19, 1;...
		

Crossrefs

Programs

  • Mathematica
    (* The function RiordanArray is defined in A256893. *)
    RiordanArray[(1-2#)/(1-3#+#^2)&, x/(1-3#+#^2)&, 10] // Flatten (* Jean-François Alcover, Jul 16 2019 *)

Formula

T(n,k) = 3*T(n-1,k) + T(n-1,k-1) - T(n-2,k), T(0,0) = T(1,0) = T(1,1) = 1, T(n,k) = 0 if k<0 or if k>n.
G.f.: (1-2*x)/(1-(y+3)*x+x^2). - Philippe Deléham, Mar 05 2014

A204517 Square root of floor[A055859(n)/7].

Original entry on oeis.org

0, 0, 0, 1, 3, 6, 17, 48, 96, 271, 765, 1530, 4319, 12192, 24384, 68833, 194307, 388614, 1097009, 3096720, 6193440, 17483311, 49353213, 98706426, 278635967, 786554688, 1573109376, 4440692161, 12535521795, 25071043590, 70772438609, 199781794032, 399563588064
Offset: 1

Views

Author

M. F. Hasler, Jan 15 2012

Keywords

Crossrefs

See also A031149=sqrt(A023110) (base 10), A204502=sqrt(A204503) (base 9), A204514=sqrt(A055872) (base 8), A204516=sqrt(A055859) (base 7), A204518=sqrt(A055851) (base 6), A204520=sqrt(A055812) (base 5), A004275=sqrt(A055808) (base 4), A001075=sqrt(A055793) (base 3), A001541=sqrt(A055792) (base 2).

Programs

  • PARI
    b=7;for(n=1,2e9,issquare(n^2\b) & print1(sqrtint(n^2\b),","))
    
  • PARI
    A204517(n)=polcoeff((x^4 + 3*x^5 + 6*x^6 + x^7)/(1 - 16*x^3 + x^6+O(x^n)),n)

Formula

A204517(n) = sqrt(floor(A204516(n)^2/7)).
G.f. = (x^4 + 3*x^5 + 6*x^6 + x^7)/(1 - 16*x^3 + x^6)

A322836 Square array A(n,k), n >= 0, k >= 0, read by antidiagonals, where A(n,k) is Chebyshev polynomial of the first kind T_{n}(x), evaluated at x=k.

Original entry on oeis.org

1, 1, 0, 1, 1, -1, 1, 2, 1, 0, 1, 3, 7, 1, 1, 1, 4, 17, 26, 1, 0, 1, 5, 31, 99, 97, 1, -1, 1, 6, 49, 244, 577, 362, 1, 0, 1, 7, 71, 485, 1921, 3363, 1351, 1, 1, 1, 8, 97, 846, 4801, 15124, 19601, 5042, 1, 0, 1, 9, 127, 1351, 10081, 47525, 119071, 114243, 18817, 1, -1
Offset: 0

Views

Author

Seiichi Manyama, Dec 28 2018

Keywords

Examples

			Square array begins:
   1, 1,    1,     1,      1,      1,       1, ...
   0, 1,    2,     3,      4,      5,       6, ...
  -1, 1,    7,    17,     31,     49,      71, ...
   0, 1,   26,    99,    244,    485,     846, ...
   1, 1,   97,   577,   1921,   4801,   10081, ...
   0, 1,  362,  3363,  15124,  47525,  120126, ...
  -1, 1, 1351, 19601, 119071, 470449, 1431431, ...
		

Crossrefs

Mirror of A101124.
Main diagonal gives A115066.
Cf. A323182 (Chebyshev polynomial of the second kind).

Programs

  • Mathematica
    Table[ChebyshevT[n-k, k], {n, 0, 10}, {k, n, 0, -1}] // Flatten (* Amiram Eldar, Dec 28 2018 *)
  • PARI
    T(n,k) = polchebyshev(n,1,k);
    matrix(7, 7, n, k, T(n-1,k-1)) \\ Michel Marcus, Dec 28 2018
    
  • PARI
    T(n, k) = round(cos(n*acos(k)));\\ Seiichi Manyama, Mar 05 2021
    
  • PARI
    T(n, k) = if(n==0, 1, n*sum(j=0, n, (2*k-2)^j*binomial(n+j, 2*j)/(n+j))); \\ Seiichi Manyama, Mar 05 2021

Formula

A(0,k) = 1, A(1,k) = k and A(n,k) = 2 * k * A(n-1,k) - A(n-2,k) for n > 1.
A(n,k) = cos(n*arccos(k)). - Seiichi Manyama, Mar 05 2021
A(n,k) = n * Sum_{j=0..n} (2*k-2)^j * binomial(n+j,2*j)/(n+j) for n > 0. - Seiichi Manyama, Mar 05 2021

A011922 a(n) = 15*a(n-1) - 15*a(n-2) + a(n-3) with a(0)=1, a(1)=3, and a(2)=33.

Original entry on oeis.org

1, 3, 33, 451, 6273, 87363, 1216801, 16947843, 236052993, 3287794051, 45793063713, 637815097923, 8883618307201, 123732841202883, 1723376158533153, 24003533378261251, 334326091137124353, 4656561742541479683, 64857538304443591201, 903348974519668797123, 12582028104970919568513
Offset: 0

Views

Author

Mario Velucchi (mathchess(AT)velucchi.it)

Keywords

References

  • Mario Velucchi, Seeing couples, in Recreational and Educational Computing, to appear 1997.

Crossrefs

Programs

  • Magma
    I:=[1,3,33]; [n le 3 select I[n] else 15*Self(n-1)-15*Self(n-2)+Self(n-3): n in [1..17]]; // Bruno Berselli, Jul 09 2011
    
  • Maple
    a:= gfun:-rectoproc({a(n) = 15*a(n-1) - 15*a(n-2) + a(n-3), a(0)=1,a(1)=3,a(2)=33},a(n),remember):
    map(a,[$0..100]); # Robert Israel, Jul 02 2015
  • Mathematica
    RecurrenceTable[{a[n] == 15 a[n - 1] - 15 a[n - 2] + a[n - 3], a[0] == 1, a[1] == 3, a[2] == 33}, a, {n, 0, 15}] (* Michael De Vlieger, Jul 02 2015 *)
    LinearRecurrence[{15,-15,1},{1,3,33},30] (* Harvey P. Dale, Dec 04 2018 *)
  • Maxima
    a[0]:1$ a[1]:3$ a[2]:33$ a[n]:=15*a[n-1]-15*a[n-2]+a[n-3]$ makelist(a[n], n, 0, 16); /* Bruno Berselli, Jul 09 2011 */
    
  • PARI
    a(n)=([0,1,0; 0,0,1; 1,-15,15]^n*[1;3;33])[1,1] \\ Charles R Greathouse IV, Jul 02 2015

Formula

a(n) = (2+sqrt(1+((((2+sqrt(3))^(2*n)-(2-sqrt(3))^(2*n))^2)/4)))/3. [corrected by Francisco Salinas (franciscodesalinas(AT)hotmail.com), Dec 30 2001]
a(n) = ((7+4*sqrt(3))^n+(7-4*sqrt(3))^n+4)/6. - Bruno Berselli, Jul 09 2011
G.f.: (1-12*x+3*x^2)/ ((1-x) * (x^2-14*x+1)). - R. J. Mathar, Apr 15 2010
Sqrt(3) = 1 + Sum_{n>=1} 2/a(n) = 1 + 2/3 + 2/33 + ... - Gary W. Adamson, Jun 12 2003
a(n)^2 = A103974(n+1)^2 - (4*A007655(n+1))^2. - Paul D. Hanna, Mar 06 2005
a(n) = (A011943(n+1) + 2)/3. - Ralf Stephan, Aug 13 2013
a(n) = A001075(n)^2 - A001353(n)^2. - Richard R. Forberg, Aug 24 2013
E.g.f.: exp(x)*(2 + exp(6*x)*cosh(4*sqrt(3)*x))/3. - Stefano Spezia, Dec 11 2022

Extensions

Recurrence in definition by R. J. Mathar, Apr 15 2010

A071954 a(n) = 4*a(n-1) - a(n-2) - 4, with a(0) = 2, a(1) = 4.

Original entry on oeis.org

2, 4, 10, 32, 114, 420, 1562, 5824, 21730, 81092, 302634, 1129440, 4215122, 15731044, 58709050, 219105152, 817711554, 3051741060, 11389252682, 42505269664, 158631825970, 592022034212, 2209456310874, 8245803209280, 30773756526242, 114849222895684
Offset: 0

Views

Author

Lekraj Beedassy, Jun 25 2002

Keywords

Comments

a(n) gives the side of a cube having a square number of cubes in its two outermost layers, i.e., solutions p to the equation p^3 - (p - 4)^3 = q^2. The corresponding q is given by 4*A001075(n).

Examples

			G.f. = 2 + 4*x + 10*x^2 + 32*x^3 + 114*x^4 + 420*x^5 + 1562*x^6 + ...
		

References

  • M. E. Larsen, "Four Cubes" in Puzzler's Tribute, Ed. D. Wolfe & T. Rodgers, pp. 69-70, A. K. Peters, MA, 2002

Crossrefs

Equals A052530(n) + 2, n > 0.

Programs

  • GAP
    a:=[2,4,10];; for n in [4..30] do a[n]:=5*a[n-1]-5*a[n-2]+a[n-3]; od; a; # G. C. Greubel, Feb 25 2019
  • Haskell
    a071954 n = a071954_list !! n
    a071954_list = 2 : 4 : zipWith (-)
                   (map ((4 *) . pred) (tail a071954_list)) a071954_list
    -- Reinhard Zumkeller, Aug 11 2011
    
  • Magma
    I:=[2,4,10]; [n le 3 select I[n] else 5*Self(n-1) -5*Self(n-2) + Self(n-3): n in [1..30]]; // G. C. Greubel, Feb 25 2019
    
  • Mathematica
    a[n_]:= a[n] = 4*a[n-1] -a[n-2] -4; a[0]=2; a[1]=4; Table[a[n], {n,0,30}]
    LinearRecurrence[{5,-5,1},{2,4,10},30] (* Harvey P. Dale, May 05 2011 *)
  • PARI
    Vec((2-6*x)/(1-5*x+5*x^2-x^3)+O(x^30)) \\ Charles R Greathouse IV, Feb 09 2012
    
  • PARI
    {a(n) = my(w=quadgen(12)); simplify( 2 + ((2+w)^n - (2-w)^n) / w)}; /* Michael Somos, Nov 03 2016 */
    
  • Sage
    (2*(1-3*x)/((1-x)*(1-4*x+x^2))).series(x, 30).coefficients(x, sparse=False) # G. C. Greubel, Feb 25 2019
    

Formula

a(n) = 5*a(n-1) - 5*a(n-2) + a(n-3) for n > 2, with a(0) = 2, a(1) = 4, a(2) = 10.
G.f.: 2*(1 - 3*x)/((1-x)*(1 -4*x +x^2)). - Harvey P. Dale, May 05 2011
a(n) = (2 + (-(2 - sqrt(3))^n + (2 + sqrt(3))^n)/sqrt(3)). - Colin Barker, Nov 03 2016
A263942(n) = -a(-1-n) for all n in Z. - Michael Somos, Nov 03 2016
E.g.f.: (2/3)*(3*exp(x) + sqrt(3)*exp(2*x)*sinh(sqrt(3)*x)). - Franck Maminirina Ramaharo, Nov 14 2018
From G. C. Greubel, Feb 25 2019: (Start)
a(n) = 2*A072110(n).
a(n) = 2*(1 - (-i)^(n+1)*F(n, 4*i)), where i=sqrt(-1) and F(n,x) is the Fibonacci polynomial. (End)

Extensions

Edited by Robert G. Wilson v, Jun 27 2002

A077236 a(n) = 4*a(n-1) - a(n-2) with a(0) = 4 and a(1) = 11.

Original entry on oeis.org

4, 11, 40, 149, 556, 2075, 7744, 28901, 107860, 402539, 1502296, 5606645, 20924284, 78090491, 291437680, 1087660229, 4059203236, 15149152715, 56537407624, 211000477781, 787464503500, 2938857536219, 10967965641376
Offset: 0

Views

Author

Wolfdieter Lang, Nov 08 2002

Keywords

Comments

a(n)^2 - 3*b(n)^2 = 13, with the companion sequence b(n)= A054491(n).
Bisection (even part) of Chebyshev sequence with Diophantine property.
The odd part is A077235(n) with Diophantine companion A077234(n).

Examples

			11 = a(1) = sqrt(3*A054491(1)^2 + 13) = sqrt(3*6^2 + 13)= sqrt(121) = 11.
		

Crossrefs

Cf. A077238 (even and odd parts), A077235, A053120.

Programs

  • GAP
    a:=[4,11];; for n in [3..30] do a[n]:=4*a[n-1]-a[n-2]; od; a; # G. C. Greubel, Apr 28 2019
  • Magma
    R:=PowerSeriesRing(Integers(), 30); Coefficients(R!( (4-5*x)/(1-4*x+x^2) )); // G. C. Greubel, Apr 28 2019
    
  • Mathematica
    CoefficientList[Series[(4-5*x)/(1-4*x+x^2), {x,0,20}], x] (* or *) LinearRecurrence[{4,-1}, {4,11}, 30] (* G. C. Greubel, Apr 28 2019 *)
  • PARI
    my(x='x+O('x^30)); Vec((4-5*x)/(1-4*x+x^2)) \\ G. C. Greubel, Apr 28 2019
    
  • PARI
    a(n) = polchebyshev(n+1, 1, 2) + 2*polchebyshev(n, 1, 2); \\ Michel Marcus, Oct 13 2021
    
  • Sage
    ((4-5*x)/(1-4*x+x^2)).series(x, 30).coefficients(x, sparse=False) # G. C. Greubel, Apr 28 2019
    

Formula

a(n) = T(n+1,2) + 2*T(n,2), with T(n,x) Chebyshev's polynomials of the first kind, A053120. T(n,2) = A001075(n).
G.f.: (4-5*x)/(1-4*x+x^2).
From Al Hakanson (hawkuu(AT)gmail.com), Jul 06 2009: (Start)
a(n) = ((4+sqrt(3))*(2+sqrt(3))^n + (4-sqrt(3))*(2-sqrt(3))^n)/2. Offset 0.
a(n) = second binomial transform of 4,3,12,9,36. (End)
a(n) = (A054491(n+1) - A054491(n-1))/2 = sqrt(3*A054491(n-1)*A054491(n+1) + 52), n >= 1. - Klaus Purath, Oct 12 2021

Extensions

Edited by N. J. A. Sloane, Sep 07 2018, replacing old definition with simple formula from Philippe Deléham, Nov 16 2008

A204512 Square roots of [A055872/8]: Their square written in base 8, with some digit appended, is again a square.

Original entry on oeis.org

0, 0, 0, 1, 2, 6, 12, 35, 70, 204, 408, 1189, 2378, 6930, 13860, 40391, 80782, 235416, 470832, 1372105, 2744210, 7997214, 15994428, 46611179, 93222358, 271669860, 543339720, 1583407981, 3166815962, 9228778026, 18457556052, 53789260175, 107578520350
Offset: 1

Views

Author

M. F. Hasler, Jan 15 2012

Keywords

Comments

Base-8 analog of A031150. The square of the terms (= truncated squares A055872) are listed in A204504.

Crossrefs

See also A031149=sqrt(A023110) (base 10), A204502=sqrt(A204503) (base 9), A204514=sqrt(A055872) (base 8), A204516=sqrt(A055859) (base 7), A204518=sqrt(A055851) (base 6), A204520=sqrt(A055812) (base 5), A004275=sqrt(A055808) (base 4), A001075=sqrt(A055793) (base 3), A001541=sqrt(A055792) (base 2).

Programs

  • Mathematica
    CoefficientList[Series[(x^4 (1+2x))/(1-6x^2+x^4),{x,0,40}],x] (* Harvey P. Dale, Nov 30 2020 *)
  • PARI
    b=8;for(n=1,1e7,issquare(n^2\b) & print1(sqrtint(n^2\b)","))
    
  • PARI
    a(n)=polcoeff((2*x^5 + x^4)/(x^4 - 6*x^2 + 1+O(x^n)),n)

Formula

G.f. = x^4*(1 + 2*x)/(1 - 6*x^2 + x^4)

A001922 Numbers k such that 3*k^2 - 3*k + 1 is both a square (A000290) and a centered hexagonal number (A003215).

Original entry on oeis.org

1, 8, 105, 1456, 20273, 282360, 3932761, 54776288, 762935265, 10626317416, 148005508553, 2061450802320, 28712305723921, 399910829332568, 5570039304932025, 77580639439715776, 1080558912851088833, 15050244140475527880, 209622859053806301481
Offset: 0

Views

Author

Keywords

Comments

Also larger of two consecutive integers whose cubes differ by a square. Defined by a(n)^3 - (a(n) - 1)^3 = square.
Let m be the n-th ratio 2/1, 7/4, 26/15, 97/56, 362/209, ... Then a(n) = m*(2-m)/(m^2-3). The numerators 2, 7, 26, ... of m are A001075. The denominators 1, 4, 15, ... of m are A001353.
From Colin Barker, Jan 06 2015: (Start)
Also indices of centered triangular numbers (A005448) which are also centered square numbers (A001844).
Also indices of centered hexagonal numbers (A003215) which are also centered octagonal numbers (A016754).
Also positive integers x in the solutions to 3*x^2 - 4*y^2 - 3*x + 4*y = 0, the corresponding values of y being A156712.
(End)

Examples

			8 is in the sequence because 3*8^2 - 3*8 + 1 = 169 is a square and also a centered hexagonal number. - _Colin Barker_, Jan 07 2015
		

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Magma
    I:=[1, 8, 105]; [n le 3 select I[n] else 15*Self(n-1)-15*Self(n-2)+Self(n-3): n in [1..20]]; // Vincenzo Librandi, Apr 16 2012
    
  • Maple
    seq(simplify((1 +ChebyshevU(n,7) +ChebyshevU(n-1,7))/2), n=0..30); # G. C. Greubel, Oct 07 2022
  • Mathematica
    With[{s1=3+2Sqrt[3],s2=3-2Sqrt[3],t1=7+4Sqrt[3],t2=7-4Sqrt[3]}, Simplify[ Table[(s1 t1^n+s2 t2^n+6)/12,{n,0,20}]]] (* or *) LinearRecurrence[ {15,-15,1},{1,8,105},21] (* Harvey P. Dale, Aug 14 2011 *)
    CoefficientList[Series[(1-7*x)/(1-15*x+15*x^2-x^3),{x,0,30}],x] (* Vincenzo Librandi, Apr 16 2012 *)
  • PARI
    Vec((1-7*x)/(1-15*x+15*x^2-x^3) + O(x^100)) \\ Colin Barker, Jan 06 2015
    
  • SageMath
    [(1+chebyshev_U(n,7) +chebyshev_U(n-1,7))/2 for n in range(30)] # G. C. Greubel, Oct 07 2022

Formula

a(n) = 15*a(n-1) - 15*a(n-2) + a(n-3).
a(n) = (s1*t1^n + s2*t2^n + 6)/12 where s1 = 3 + 2*sqrt(3), s2 = 3 - 2*sqrt(3), t1 = 7 + 4*sqrt(3), t2 = 7 - 4*sqrt(3).
a(n) = A001075(n)*A001353(n+1).
G.f.: (1-7*x)/((1-x)*(1-14*x+x^2)). - Simon Plouffe (in his 1992 dissertation) and Colin Barker, Jan 01 2012
a(n) = A076139(n+1) - 7*A076139(n). - R. J. Mathar, Jul 14 2015
a(n) = (1/2)*(1 + ChebyshevU(n, 7) + ChebyshevU(n-1, 7)). G. C. Greubel, Oct 07 2022
a(n) = 1 - a(-1-n) = 1 + A001921(n) for all integers n. - Michael Somos, Jul 10 2025

Extensions

Additional comments from James R. Buddenhagen, Mar 04 2001
Name improved by Colin Barker, Jan 07 2015
Edited by Robert Israel, Feb 20 2017

A006235 Complexity of doubled cycle (regarding case n = 2 as a multigraph).

Original entry on oeis.org

1, 12, 75, 384, 1805, 8100, 35287, 150528, 632025, 2620860, 10759331, 43804800, 177105253, 711809364, 2846259375, 11330543616, 44929049777, 177540878700, 699402223099, 2747583822720, 10766828545725, 42095796462852, 164244726238343, 639620518118400, 2486558615814025
Offset: 1

Views

Author

Keywords

Comments

In plain English, a(n) is the number of spanning trees of the n-prism graph Y_n. - Eric W. Weisstein, Jul 15 2011
Also the number of spanning trees of the n-web graph. - Eric W. Weisstein, Jul 15 2011
Also the number of spanning trees of the n-dipyramidal graph. - Eric W. Weisstein, Jun 14 2018
Determinants of the spiral knots S(4,k,(1,-1,1)). a(k) = det(S(4,k,(1,-1,1))). These knots are also the weaving knots W(k,4) and the Turk's Head Links THK(4,k). - Ryan Stees, Dec 14 2014

Examples

			For k=3, b(3)=sqrt(6)b(2)-b(1)=6-1=5, so det(S(4,3,(1,-1,1)))=3*5^2=75.
		

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A006237. Apart from a(2) coincides with A072373. A row or column of A173958.

Programs

  • Maple
    A006235:=(1+2*z-10*z**2+2*z**3+z**4)/(z-1)**2/(z**2-4*z+1)**2; # conjectured (correctly) by Simon Plouffe in his 1992 dissertation
  • Mathematica
    LinearRecurrence[{10, -35, 52, -35, 10, -1}, {0, 1, 12, 75, 384, 1805}, 20]
    Table[1/2 (-2 + (2 - Sqrt[3])^n + (2 + Sqrt[3])^n) n, {n, 0, 20}] // Expand
    Table[n (ChebyshevT[n, 2] - 1), {n, 20}] (* Eric W. Weisstein, Mar 30 2017 *)
  • PARI
    a(n)=if(n<0,0,polcoeff(x*(1+2*x-10*x^2+2*x^3+x^4)/((1-x)*(1-4*x+x^2))^2+x*O(x^n),n))

Formula

a(n) = (1/2)*n*(-2 + (2 - sqrt(3))^n + (2 + Sqrt(3))^n) (Kreweras). - Eric W. Weisstein, Jul 15 2011
G.f.: x*(1+2*x-10*x^2+2*x^3+x^4)/((1-x)*(1-4*x+x^2))^2.
a(n) = 10*a(n-1)-35*a(n-2)+52*a(n-3)-35*a(n-4)+10*a(n-5)-a(n-6), n>5.
a(n) = (n/2)*A129743(n). - Woong Kook and Seung Kyoon Shin (andrewk(AT)math.uri.edu), Jan 13 2009
a(k) = det(S(4,k,(1,-1,1))) = k*b(k)^2, where b(1)=1, b(2)=sqrt(6), b(k)=sqrt(6)*b(k-1) - b(k-2) = b(2)*b(k-1) - b(k-2). - Ryan Stees, Dec 14 2014
a(n) = n*(A001075(n) - 1). - Eric W. Weisstein, Mar 30 2017
E.g.f.: exp(x)*x*(exp(x)*(2*cosh(sqrt(3)*x) + sqrt(3)*sinh(sqrt(3)*x)) - 1). - Stefano Spezia, May 05 2024

Extensions

More terms from Michael Somos, Jul 19 2002
Minor edits by N. J. A. Sloane, May 27 2012
Previous Showing 41-50 of 103 results. Next