cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 44 results. Next

A008545 Quadruple factorial numbers: Product_{k=0..n-1} (4*k + 3).

Original entry on oeis.org

1, 3, 21, 231, 3465, 65835, 1514205, 40883535, 1267389585, 44358635475, 1729986783525, 74389431691575, 3496303289504025, 178311467764705275, 9807130727058790125, 578620712896468617375, 36453104912477522894625, 2442358029135994033939875
Offset: 0

Views

Author

Joe Keane (jgk(AT)jgk.org)

Keywords

Comments

a(n-1), n >= 1, enumerates increasing plane (a.k.a. ordered) trees with n vertices (one of them a root labeled 1) with one version of a vertex with out-degree r = 0 (a leaf or a root) and each vertex with out-degree r >= 1 comes in binomial(r + 2, 2) types (like a binomial(r + 2, 2)-ary vertex). See the increasing tree comments under A001498. For example, a(1) = 3 from the three trees with n = 2 vertices (a root (out-degree r = 1, label 1) and a leaf (r = 0), label 2). There are three such trees because of the three types of out-degree r = 1 vertices. - Wolfdieter Lang, Oct 05 2007 [corrected by Karen A. Yeats, Jun 17 2013]
a(n) is the product of the positive integers less than or equal to 4n that have modulo 4 = 3. - Peter Luschny, Jun 23 2011

Examples

			G.f. = 1 + 3*x + 21*x^2 + 231*x^3 + 3465*x^4 + 65835*x^5 + 1514205*x^6 + ...
a(3) = sigma[4,3]^{3}_3 = 3*7*11 = 231. See the name. - _Wolfdieter Lang_, May 29 2017
		

Crossrefs

a(n)= A000369(n+1, 1) (first column of triangle).
Partial products of A004767.
Cf. A007696, A014601, A225471 (first column).

Programs

  • GAP
    List([0..20], n-> Product([0..n-1], k-> 4*k+3) ); # G. C. Greubel, Aug 18 2019
  • Haskell
    a008545 n = a008545_list !! n
    a008545_list = scanl (*) 1 a004767_list
    -- Reinhard Zumkeller, Oct 25 2013
    
  • Magma
    [1] cat [(&*[4*k+3: k in [0..n-1]]): n in [1..20]]; // G. C. Greubel, Aug 18 2019
    
  • Maple
    f := n->product( (4*k-1),k=0..n);
    A008545 := n -> mul(k, k = select(k-> k mod 4 = 3, [$1 .. 4*n])): seq(A008545(n), n=0..15); # Peter Luschny, Jun 23 2011
  • Mathematica
    FoldList[Times, 1, 4 Range[0, 20] + 3] (* Harvey P. Dale, Jan 19 2013 *)
    a[n_]:= Pochhammer[3/4, n] 4^n; (* Michael Somos, Jan 17 2014 *)
    a[n_]:= If[n < 0, 1 / Product[ -k, {k, 1, -4 n - 3, 4}], Product[k, {k, 3, 4 n - 1, 4}]]; (* Michael Somos, Jan 17 2014 *)
  • PARI
    a(n)=prod(k=0,n-1,4*k+3) \\ Charles R Greathouse IV, Jun 23 2011
    
  • PARI
    {a(n) = if( n<0, 1 / prod(k=1, -n, 3 - 4*k), prod(k=1, n, 4*k - 1))}; /* Michael Somos, Jan 17 2014 */
    
  • Sage
    [product(4*k+3 for k in (0..n-1)) for n in (0..20)] # G. C. Greubel, Aug 18 2019
    

Formula

a(n) = 3*A034176(n) = (4*n-1)(!^4), n >= 1, a(0) := 1.
E.g.f.: (1-4*x)^(-3/4).
a(n) ~ 2^(1/2)*Pi^(1/2)*Gamma(3/4)^(-1)*n^(1/4)*2^(2*n)*e^(-n)*n^n*{1 - 1/96*n^(-1) + ...}. - Joe Keane (jgk(AT)jgk.org), Nov 23 2001
G.f.: 1/(1 - 3x/(1 - 4x/(1 - 7x/(1 - 8x/(1 - 11x/(1 - 12x/(1 - 15x/(1 - 16x/(1 - 19x/(1 - 20x/(1 - 23x/(1 - 24x/(1 - ...))))))))))))) (continued fraction). - Paul Barry, Dec 03 2009
a(n) = (-1)^n*Sum_{k = 0..n} 4^k*s(n + 1, n + 1 - k), where s(n, k) are the Stirling numbers of the first kind, A048994. - Mircea Merca, May 03 2012
D-finite with recurrence: a(n) + (-4*n + 1)*a(n-1) = 0. - R. J. Mathar, Dec 04 2012
G.f.: 1/x - G(0)/(2*x), where G(k)= 1 + 1/(1 - x*(4*k-1)/(x*(4*k-1) + 1/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, Jun 04 2013
a(-n) = (-1)^n / A007696(n). - Michael Somos, Jan 17 2014
G.f.: 1/(1 - b(1)*x / (1 - b(2)*x / ...)) where b = A014601. - Michael Somos, Jan 17 2014
a(n) = 4^n * Gamma(n+3/4) / Gamma(3/4). - Vaclav Kotesovec, Jan 28 2015
G.f.: 1/(1 - 3*x - 12*x^2/(1 - 11*x - 56*x^2/(1 - 19*x - 132*x^2/(1 - 27*x - 240*x^2/(1 - ...))))) (Jacobi continued fraction). - Nikolaos Pantelidis, Feb 28 2020
Sum_{n>=0} 1/a(n) = 1 + exp(1/4)*(Gamma(3/4) - Gamma(3/4, 1/4))/sqrt(2). - Amiram Eldar, Dec 18 2022

A001497 Triangle of coefficients of Bessel polynomials (exponents in decreasing order).

Original entry on oeis.org

1, 1, 1, 3, 3, 1, 15, 15, 6, 1, 105, 105, 45, 10, 1, 945, 945, 420, 105, 15, 1, 10395, 10395, 4725, 1260, 210, 21, 1, 135135, 135135, 62370, 17325, 3150, 378, 28, 1, 2027025, 2027025, 945945, 270270, 51975, 6930, 630, 36, 1, 34459425, 34459425, 16216200, 4729725, 945945, 135135, 13860, 990, 45, 1
Offset: 0

Views

Author

Keywords

Comments

The (reverse) Bessel polynomials P(n,x):=Sum_{m=0..n} a(n,m)*x^m, the row polynomials, called Theta_n(x) in the Grosswald reference, solve x*(d^2/dx^2)P(n,x) - 2*(x+n)*(d/dx)P(n,x) + 2*n*P(n,x) = 0.
With the related Sheffer associated polynomials defined by Carlitz as
B(0,x) = 1
B(1,x) = x
B(2,x) = x + x^2
B(3,x) = 3 x + 3 x^2 + x^3
B(4,x) = 15 x + 15 x^2 + 6 x^3 + x^4
... (see Mathworld reference), then P(n,x) = 2^n * B(n,x/2) are the Sheffer polynomials described in A119274. - Tom Copeland, Feb 10 2008
Exponential Riordan array [1/sqrt(1-2x), 1-sqrt(1-2x)]. - Paul Barry, Jul 27 2010
From Vladimir Kruchinin, Mar 18 2011: (Start)
For B(n,k){...} the Bell polynomial of the second kind we have
B(n,k){f', f'', f''', ...} = T(n-1,k-1)*(1-2*x)^(k/2-n), where f(x) = 1-sqrt(1-2*x).
The expansions of the first few rows are:
1/sqrt(1-2*x);
1/(1-2*x)^(3/2), 1/(1-2*x);
3/(1-2*x)^(5/2), 3/(1-2*x)^2, 1/(1-2*x)^(3/2);
15/(1-2*x)^(7/2), 15/(1-2*x)^3, 6/(1-2*x)^(5/2), 1/(1-2*x)^2. (End)
Also the Bell transform of A001147 (whithout column 0 which is 1,0,0,...). For the definition of the Bell transform see A264428. - Peter Luschny, Jan 19 2016
Antidiagonals of A099174 are rows of this entry. Dividing each diagonal by its first element generates A054142. - Tom Copeland, Oct 04 2016
The row polynomials p_n(x) of A107102 are (-1)^n B_n(1-x), where B_n(x) are the modified Carlitz-Bessel polynomials above, e.g., (-1)^2 B_2(1-x) = (1-x) + (1-x)^2 = 2 - 3 x + x^2 = p_2(x). - Tom Copeland, Oct 10 2016
a(n-1,m-1) counts rooted unordered binary forests with n labeled leaves and m roots. - David desJardins, Feb 23 2019
From Jianing Song, Nov 29 2021: (Start)
The polynomials P_n(x) = Sum_{k=0..n} T(n,k)*x^k satisfy: P_n(x) - (d/dx)P_n(x) = x*P_{n-1}(x) for n >= 1.
{P(n,x)} are related to the Fourier transform of 1/(1+x^2)^(n+1) and x/(1+x^2)^(n+2):
(i) For n >= 0, real number t, we have Integral_{x=-oo..oo} exp(-i*t*x)/(1+x^2)^(n+1) dx = Pi/(2^n*n!) * P_n(|t|) * exp(-|t|);
(ii) For n >= 0, real number t, we have Integral_{x=-oo..oo} x*exp(-i*t*x)/(1+x^2)^(n+2) dx = Pi/(2^(n+1)*(n+1)!) * ((-t)*P_n(-|t|)) * exp(-|t|). (End)
Suppose that f(x) is an n-times differentiable function defined on (a,b) for 0 <= a < b <= +oo, then for n >= 1, the n-th derivative of f(sqrt(x)) on (a^2,b^2) is Sum_{k=1..n} ((-1)^(n-k)*T(n-1,k-1)*f^(k)(sqrt(x))) / (2^n*x^(n-(k/2))), where f^(k) is the k-th derivative of f. - Jianing Song, Nov 30 2023

Examples

			Triangle begins
        1,
        1,       1,
        3,       3,      1,
       15,      15,      6,      1,
      105,     105,     45,     10,     1,
      945,     945,    420,    105,    15,    1,
    10395,   10395,   4725,   1260,   210,   21,   1,
   135135,  135135,  62370,  17325,  3150,  378,  28,  1,
  2027025, 2027025, 945945, 270270, 51975, 6930, 630, 36, 1
Production matrix begins
       1,      1,
       2,      2,      1,
       6,      6,      3,     1,
      24,     24,     12,     4,     1,
     120,    120,     60,    20,     5,    1,
     720,    720,    360,   120,    30,    6,   1,
    5040,   5040,   2520,   840,   210,   42,   7,  1,
   40320,  40320,  20160,  6720,  1680,  336,  56,  8, 1,
  362880, 362880, 181440, 60480, 15120, 3024, 504, 72, 9, 1
This is the exponential Riordan array A094587, or [1/(1-x),x], beheaded.
- _Paul Barry_, Mar 18 2011
		

References

  • J. Riordan, Combinatorial Identities, Wiley, 1968, p. 77.

Crossrefs

Reflected version of A001498 which is considered the main entry.
Other versions of this same triangle are given in A144299, A111924 and A100861.
Row sums give A001515. a(n, 0)= A001147(n) (double factorials).
Cf. A104556 (matrix inverse). A039683, A122850.
Cf. A245066 (central terms).

Programs

  • Haskell
    a001497 n k = a001497_tabl !! n !! k
    a001497_row n = a001497_tabl !! n
    a001497_tabl = [1] : f [1] 1 where
       f xs z = ys : f ys (z + 2) where
         ys = zipWith (+) ([0] ++ xs) (zipWith (*) [z, z-1 ..] (xs ++ [0]))
    -- Reinhard Zumkeller, Jul 11 2014
    
  • Magma
    /* As triangle */ [[Factorial(2*n-k)/(Factorial(k)*Factorial(n-k)*2^(n-k)): k in [0..n]]: n in [0.. 15]]; // Vincenzo Librandi, Aug 12 2015
    
  • Maple
    f := proc(n) option remember; if n <=1 then (1+x)^n else expand((2*n-1)*x*f(n-1)+f(n-2)); fi; end;
    row := n -> seq(coeff(f(n), x, n - k), k = 0..n): seq(row(n), n = 0..9);
  • Mathematica
    m = 9; Flatten[ Table[(n + k)!/(2^k*k!*(n - k)!), {n, 0, m}, {k, n, 0, -1}]] (* Jean-François Alcover, Sep 20 2011 *)
    y[n_, x_] := Sqrt[2/(Pi*x)]*E^(1/x)*BesselK[-n-1/2, 1/x]; t[n_, k_] := Coefficient[y[n, x], x, k]; Table[t[n, k], {n, 0, 9}, {k, n, 0, -1}] // Flatten (* Jean-François Alcover, Mar 01 2013 *)
  • PARI
    T(k, n) = if(n>k||k<0||n<0,0,(2*k-n)!/(n!*(k-n)!*2^(k-n))) /* Ralf Stephan */
    
  • PARI
    {T(n, k) = if( k<0 || k>n, 0, binomial(n, k)*(2*n-k)!/2^(n-k)/n!)}; /* Michael Somos, Oct 03 2006 */
    
  • Sage
    # uses[bell_matrix from A264428]
    # Adds a column 1,0,0,0, ... at the left side of the triangle.
    bell_matrix(lambda n: A001147(n), 9) # Peter Luschny, Jan 19 2016

Formula

a(n, m) = (2*n-m)!/(m!*(n-m)!*2^(n-m)) if n >= m >= 0 else 0 (from Grosswald, p. 7).
a(n, m)= 0, n= m >= 0 (from Grosswald p. 23, (19)).
E.g.f. for m-th column: ((1-sqrt(1-2*x))^m)/(m!*sqrt(1-2*x)).
G.f.: 1/(1-xy-x/(1-xy-2x/(1-xy-3x/(1-xy-4x/(1-.... (continued fraction). - Paul Barry, Jan 29 2009
T(n,k) = if(k<=n, C(2n-k,2(n-k))*(2(n-k)-1)!!,0) = if(k<=n, C(2n-k,2(n-k))*A001147(n-k),0). - Paul Barry, Mar 18 2011
Row polynomials for n>=1 are given by 1/t*D^n(exp(x*t)) evaluated at x = 0, where D is the operator 1/(1-x)*d/dx. - Peter Bala, Nov 25 2011
The matrix product A039683*A008277 gives a signed version of this triangle. Dobinski-type formula for the row polynomials: R(n,x) = (-1)^n*exp(x)*Sum_{k = 0..inf} k*(k-2)*(k-4)*...*(k-2*(n-1))*(-x)^k/k!. Cf. A122850. - Peter Bala, Jun 23 2014

A000806 Bessel polynomial y_n(-1).

Original entry on oeis.org

1, 0, 1, -5, 36, -329, 3655, -47844, 721315, -12310199, 234615096, -4939227215, 113836841041, -2850860253240, 77087063678521, -2238375706930349, 69466733978519340, -2294640596998068569, 80381887628910919255, -2976424482866702081004, 116160936719430292078411
Offset: 0

Views

Author

Keywords

Comments

a(n) can be seen as a subset of the unordered pairings of the first 2n integers (A001147) with forbidden pairs (i,i+1) for all i in [1,2n-1] (all adjacent integers). The circular version of this constraint is A003436. - Olivier Gérard, Feb 08 2011
|a(n)| is the number of perfect matchings in the complement of P_{2n} where P_{2n} is the path graph on 2n vertices. - Andrew Howroyd, Mar 15 2016
The unsigned version of these numbers now has its own entry: see A278990. - N. J. A. Sloane, Dec 07 2016

Examples

			For n=3, the a(3) = 5 solutions are (14) (25) (36), (14) (26) (35), (15) (24) (36), (16) (24) (35), (13) (25) (46) excluding 10 other possible pairings.
G.f. = 1 + x^2 - 5*x^3 + 36*x^4 - 329*x^5 + 3655*x^6 - 47844*x^7 + ...
		

References

  • G. Kreweras and Y. Poupard, Sur les partitions en paires d'un ensemble fini totalement ordonné, Publications de l'Institut de Statistique de l'Université de Paris, 23 (1978), 57-74.
  • J. Riordan, Combinatorial Identities, Wiley, 1968, p. 77.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Polynomial coefficients are in A001498. Cf. A003436.

Programs

  • Magma
    I:=[0,1]; [1] cat [n le 2 select I[n] else (1-2*n)*Self(n-1)+Self(n-2): n in [1..30]]; // Vincenzo Librandi, Apr 19 2015
  • Maple
    A000806 := proc(n) option remember; if n<=1 then 1-n else (1-2*n)*procname(n-1)+procname(n-2); fi; end proc;
    a := n -> hypergeom([n+1,-n],[],1/2): seq(simplify(a(n)),n=0..20); # Peter Luschny, Nov 10 2016
  • Mathematica
    a[n_] := a[n] = (-2n+1)*a[n-1] + a[n-2]; a[0] = 1; a[1] = 0; Table[a[n], {n, 0, 19}] (* Jean-François Alcover, Nov 29 2011, after T. D. Noe *)
    Table[Sum[Binomial[n, i]*(2*n-i)!/2^(n-i)*(-1)^(n-i)/n!, {i, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Aug 07 2013 *)
    a[ n_] := With[ {m = If[ n<0, -n-1, n]}, (-1)^m (2 m - 1)!! Hypergeometric1F1[ -m, -2 m, -2] ]; (* Michael Somos, Jan 27 2014 *)
    a[ n_] := With[ {m = If[ n<0, -n-1, n]}, Sum[ (-1)^(m - i) (2 m - i)! / (2^(m - i) i! (m - i)!), {i, 0, m}] ]; (* Michael Somos, Jan 27 2014 *)
    a[ n_] := With[ {m = If[ n<0, -n-1, n]}, If[ m<1, 1, (-1)^m Numerator @ FromContinuedFraction[ Table[ (-1)^Quotient[k, 2] If[ OddQ[k], k, 1], {k, 2 m}] ] ] ]; (* Michael Somos, Jan 27 2014 *)
    Table[(-1)^n (2 n - 1)!! Hypergeometric1F1[-n, -2 n, -2], {n, 0, 20}] (* Eric W. Weisstein, Nov 14 2018 *)
  • PARI
    {a(n) = if( n<0, n = -n-1); sum(k=0, n, (2*n-k)! / (k! * (n-k)!) * (-1/2)^(n-k) )}; /* Michael Somos, Apr 02 2007 */
    
  • PARI
    {a(n) = local(A); if( n<0, n = -n-1); A = sqrt(1 + 2*x + x * O(x^n)); n! * polcoeff( exp(A-1) / A, n)}; /* Michael Somos, Apr 02 2007 */
    
  • PARI
    {a(n) = local(A); if( n<0, n = -n-1); n+=2; -(-1)^n * n! * polcoeff( serreverse( sum(k=1, n, k^(k-2)* x^k / k!, x * O(x^n))), n)}; /* Michael Somos, Apr 02 2007 */
    
  • PARI
    {a(n) = if( n<0, n=-n-1); contfracpnqn( vector( 2*n, k, (-1)^(k\2) * if( k%2, k, 1))) [1,1] }; /* Michael Somos, Jan 27 2014 */
    

Formula

E.g.f.: exp(sqrt(1 + 2*x) - 1) / sqrt(1 + 2*x). - Michael Somos, Feb 16 2002
D-finite with recurrence a(n) = (-2*n+1)*a(n-1) + a(n-2). - T. D. Noe, Oct 26 2006
If y = x + Sum_{k>1} A000272(k) * x^k/k!, then y = x + Sum{k>1} a(k-2) * (-y)^k/k!. - Michael Somos, Sep 07 2005
a(-1-n) = a(n). - Michael Somos, Apr 02 2007
a(n) = Sum_{m=0..n} A001498(n,m)*(-1)^m, n>=0 (alternating row sums of Bessel triangle).
E.g.f. for unsigned version: -exp(sqrt(1-2*x)-1). - Karol A. Penson, Mar 20 2010 [gives -1, 1, 0, 1, 5, 36, 329, ... ]
E.g.f. for unsigned version: 1/(sqrt(1-2*x))*exp(sqrt(1-2*x)-1). - Sergei N. Gladkovskii, Jul 03 2012
G.f.: 1/G(0) where G(k) = 1 - x + x*(2*k+1)/(1 - x + 2*x*(k+1)/G(k+1)); (continued fraction, 2-step). - Sergei N. Gladkovskii, Jul 10 2012
G.f.: 1+x/U(0) where U(k) = 1 - x + x*(k+1)/U(k+1) ; (continued fraction, Euler's 1st kind, 1-step). - Sergei N. Gladkovskii, Oct 06 2012
a(n) = BesselK[n+1/2,-1]/BesselK[5/2,-1]. - Vaclav Kotesovec, Aug 07 2013
|a(n)| ~ 2^(n+1/2)*n^n/exp(n+1). - Vaclav Kotesovec, Aug 07 2013
0 = a(n) * (a(n+2)) + a(n+1) * (-a(n+1) + 2*a(n+2) + a(n+3)) + a(n+2) * (-a(n+2)) for all n in Z. - Michael Somos, Jan 27 2014
a(n) = -i*(BesselK[3/2,1]*BesselI[n+3/2,-1] - BesselI[3/2,-1]*BesselK[n+3/2,1]), n>=0 for unsigned version - G. C. Greubel , Apr 19 2015
a(n) = hypergeom( [n+1, -n], [], 1/2). - Peter Luschny, Nov 10 2016
From G. C. Greubel, Aug 16 2017: (Start)
a(n) = (1/2)_{n} * (-2)^n * hypergeometric1f1(-n; -2*n; -2).
G.f.: (1/(1-t))*hypergeometric2f0(1, 1/2; -; -2*t/(1-t)^2). (End)

A060821 Triangle read by rows. T(n, k) are the coefficients of the Hermite polynomial of order n, for 0 <= k <= n.

Original entry on oeis.org

1, 0, 2, -2, 0, 4, 0, -12, 0, 8, 12, 0, -48, 0, 16, 0, 120, 0, -160, 0, 32, -120, 0, 720, 0, -480, 0, 64, 0, -1680, 0, 3360, 0, -1344, 0, 128, 1680, 0, -13440, 0, 13440, 0, -3584, 0, 256, 0, 30240, 0, -80640, 0, 48384, 0, -9216, 0, 512, -30240, 0, 302400, 0, -403200, 0, 161280, 0, -23040, 0, 1024
Offset: 0

Views

Author

Vladeta Jovovic, Apr 30 2001

Keywords

Comments

Exponential Riordan array [exp(-x^2), 2x]. - Paul Barry, Jan 22 2009

Examples

			[1], [0, 2], [ -2, 0, 4], [0, -12, 0, 8], [12, 0, -48, 0, 16], [0, 120, 0, -160, 0, 32], ... .
Thus H_0(x) = 1, H_1(x) = 2*x, H_2(x) = -2 + 4*x^2, H_3(x) = -12*x + 8*x^3, H_4(x) = 12 - 48*x^2 + 16*x^4, ...
Triangle starts:
     1;
     0,     2;
    -2,     0,      4;
     0,   -12,      0,      8;
    12,     0,    -48,      0,      16;
     0,   120,      0,   -160,       0,    32;
  -120,     0,    720,      0,    -480,     0,     64;
     0, -1680,      0,   3360,       0, -1344,      0,   128;
  1680,     0, -13440,      0,   13440,     0,  -3584,     0,    256;
     0, 30240,      0, -80640,       0, 48384,      0, -9216,      0, 512;
-30240,     0, 302400,      0, -403200,     0, 161280,     0, -23040,   0, 1024;
		

References

  • Jerome Spanier and Keith B. Oldham, "Atlas of Functions", Hemisphere Publishing Corp., 1987, chapter 24, equations 24:4:1 - 24:4:8 at page 219.

Crossrefs

Cf. A001814, A001816, A000321, A062267 (row sums).
Without initial zeros, same as A059343.

Programs

  • Maple
    with(orthopoly):for n from 0 to 10 do H(n,x):od;
    T := proc(n,m) if n-m >= 0 and n-m mod 2 = 0 then ((-1)^((n-m)/2))*(2^m)*n!/(m!*((n-m)/2)!) else 0 fi; end;
    # Alternative:
    T := proc(n,k) option remember; if k > n then 0 elif n = k then 2^n else
    (T(n, k+2)*(k+2)*(k+1))/(2*(k-n)) fi end:
    seq(print(seq(T(n, k), k = 0..n)), n = 0..10); # Peter Luschny, Jan 08 2023
  • Mathematica
    Flatten[ Table[ CoefficientList[ HermiteH[n, x], x], {n, 0, 10}]] (* Jean-François Alcover, Jan 18 2012 *)
  • PARI
    for(n=0,9,v=Vec(polhermite(n));forstep(i=n+1,1,-1,print1(v[i]", "))) \\ Charles R Greathouse IV, Jun 20 2012
    
  • Python
    from sympy import hermite, Poly, symbols
    x = symbols('x')
    def a(n): return Poly(hermite(n, x), x).all_coeffs()[::-1]
    for n in range(21): print(a(n)) # Indranil Ghosh, May 26 2017
    
  • Python
    def Trow(n: int) -> list[int]:
        row: list[int] = [0] * (n + 1); row[n] = 2**n
        for k in range(n - 2, -1, -2):
            row[k] = -(row[k + 2] * (k + 2) * (k + 1)) // (2 * (n - k))
        return row  # Peter Luschny, Jan 08 2023

Formula

T(n, k) = ((-1)^((n-k)/2))*(2^k)*n!/(k!*((n-k)/2)!) if n-k is even and >= 0, else 0.
E.g.f.: exp(-y^2 + 2*y*x).
From Paul Barry, Aug 28 2005: (Start)
T(n, k) = n!/(k!*2^((n-k)/2)((n-k)/2)!)2^((n+k)/2)cos(Pi*(n-k)/2)(1 + (-1)^(n+k))/2;
T(n, k) = A001498((n+k)/2, (n-k)/2)*cos(Pi*(n-k)/2)2^((n+k)/2)(1 + (-1)^(n+k))/2.
(End)
Row sums: A062267. - Derek Orr, Mar 12 2015
a(n*(n+3)/2) = a(A000096(n)) = 2^n. - Derek Orr, Mar 12 2015
Recurrence for fixed n: T(n, k) = -(k+2)*(k+1)/(2*(n-k)) * T(n, k+2), starting with T(n, n) = 2^n. - Ralf Stephan, Mar 26 2016
The m-th row consecutive nonzero entries in increasing order are (-1)^(c/2)*(c+b)!/(c/2)!b!*2^b with c = m, m-2, ..., 0 and b = m-c if m is even and with c = m-1, m-3, ..., 0 with b = m-c if m is odd. For the 10th row starting at a(55) the 6 consecutive nonzero entries in order are -30240,302400,-403200,161280,-23040,1024 given by c = 10,8,6,4,2,0 and b = 0,2,4,6,8,10. - Richard Turk, Aug 20 2017

A002119 Bessel polynomial y_n(-2).

Original entry on oeis.org

1, -1, 7, -71, 1001, -18089, 398959, -10391023, 312129649, -10622799089, 403978495031, -16977719590391, 781379079653017, -39085931702241241, 2111421691000680031, -122501544009741683039, 7597207150294985028449, -501538173463478753560673
Offset: 0

Views

Author

Keywords

Comments

Absolute values give denominators of successive convergents to e using continued fraction 1+2/(1+1/(6+1/(10+1/(14+1/(18+1/(22+1/26...)))))).
Absolute values give number of different arrangements of nonnegative integers on a set of n 6-sided dice such that the dice can add to any integer from 0 to 6^n-1. For example when n=2, there are 7 arrangements that can result in any total from 0 to 35. Cf. A273013. The number of sides on the dice only needs to be the product of two distinct primes, of which 6 is the first example. - Elliott Line, Jun 10 2016
Absolute values give number of Krasner factorizations of (x^(6^n)-1)/(x-1) into n polynomials p_i(x), i=1,2,...,n, satisfying p_i(1)=6. In these expressions 6 can be replaced with any product of two distinct primes (Krasner and Ranulac, 1937). - William P. Orrick, Jan 18 2023
Absolute values give number of pairs (s, b) where s is a covering of the 1 X 2n grid with 1 X 2 dimers and equal numbers of red and blue 1 X 1 monomers and b is a bijection between the red monomers and the blue monomers that does not map adjacent monomers to each other. Ilya Gutkovskiy's formula counts such pairs by an inclusion-exclusion argument. The correspondence with Elliott Line's dice problem is that a dimer corresponds to a die containing an arithmetic progression of length 6 and a pair (r, b(r)), where r is a red monomer and b(r) its image under b, corresponds to a die containing the sum of an arithmetic progression of length 2 and an arithmetic progression of length 3. - William P. Orrick, Jan 19 2023

Examples

			Example from _William P. Orrick_, Jan 19 2023: (Start)
For n=2 the Bessel polynomial is y_2(x) = 1 + 3x + 3x^2 which satisfies y_2(-2) = -7.
The |a(2)|=7 dice pairs are
  {{0,1,2,3,4,5}, {0,6,12,18,24,30}},
  {{0,1,2,18,19,20}, {0,3,6,9,12,15}},
  {{0,1,2,9,10,11}, {0,3,6,18,21,24}},
  {{0,1,6,7,12,13}, {0,2,4,18,20,22}},
  {{0,1,12,13,24,25}, {0,2,4,6,8,10}},
  {{0,1,2,6,7,8}, {0,3,12,15,24,27}},
  {{0,1,4,5,8,9}, {0,2,12,14,24,26}}.
The corresponding Krasner factorizations of (x^36-1)/(x-1) are
  {(x^6-1)/(x-1), (x^36-1)/(x^6-1)},
  {((x^36-1)/(x^18-1))*((x^3-1)/(x-1)), (x^18-1)/(x^3-1)},
  {((x^18-1)/(x^9-1))*((x^3-1)/(x-1)), ((x^36-1)/(x^18-1))*((x^9-1)/(x^3-1))},
  {((x^18-1)/(x^6-1))*((x^2-1)/(x-1)), ((x^36-1)/(x^18-1))*((x^6-1)/(x^2-1))},
  {((x^36-1)/(x^12-1))*((x^2-1)/(x-1)), (x^12-1)/(x^2-1)},
  {((x^12-1)/(x^6-1))*((x^3-1)/(x-1)), ((x^36-1)/(x^12-1))*((x^6-1)/(x^3-1))},
  {((x^12-1)/(x^4-1))*((x^2-1)/(x-1)), ((x^36-1)/(x^12-1))*((x^4-1)/(x^2-1))}.
The corresponding monomer-dimer configurations, with dimers, red monomers, and blue monomers represented by the symbols '=', 'R', and 'B', and bijections between red and blue monomers given as sets of ordered pairs, are
  (==, {}),
  (B=R, {(3,1)}),
  (BBRR, {(3,1),(4,2)}),
  (RBBR, {(1,3),(4,2)}),
  (R=B, {(1,3)}),
  (BRRB, {(2,4),(3,1)}),
  (RRBB, {(1,3),(2,4)}).
(End)
		

References

  • L. Euler, 1737.
  • J. Riordan, Combinatorial Identities, Wiley, 1968, p. 77.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

See also A033815.
Numerators of the convergents of e are A001517, which has a similar interpretation to a(n) in terms of monomer-dimer configurations, but omitting the restriction that adjacent monomers not be mapped to each other by the bijection.
Polynomial coefficients are in A001498.

Programs

  • Maple
    f:=proc(n) option remember; if n <= 1 then 1 else f(n-2)+(4*n-2)*f(n-1); fi; end;
    [seq(f(n), n=0..20)]; # This is for the unsigned version. - N. J. A. Sloane, May 09 2016
    seq(simplify((-1)^n*KummerU(-n, -2*n, -1)), n = 0..17); # Peter Luschny, May 10 2022
  • Mathematica
    Table[(-1)^k (2k)! Hypergeometric1F1[-k, -2k, -1]/k!, {k, 0, 10}] (* Vladimir Reshetnikov, Feb 16 2011 *)
    nxt[{n_,a_,b_}]:={n+1,b,a-2b(2n+1)}; NestList[nxt,{1,1,-1},20][[All,2]] (* Harvey P. Dale, Aug 18 2017 *)
  • PARI
    {a(n)= if(n<0, n=-n-1); sum(k=0, n, (2*n-k)!/ (k!*(n-k)!)* (-1)^(n-k) )} /* Michael Somos, Apr 02 2007 */
    
  • PARI
    {a(n)= local(A); if(n<0, n= -n-1); A= sqrt(1 +4*x +x*O(x^n)); n!*polcoeff( exp((A-1)/2)/A, n)} /* Michael Somos, Apr 02 2007 */
    
  • PARI
    {a(n)= local(A); if(n<0, n= -n-1); n+=2 ; for(k= 1, n, A+= x*O(x^k); A= truncate( (1+x)* exp(A) -1-A) ); A+= x*O(x^n); A-= A^2; -(-1)^n*n!* polcoeff( serreverse(A), n)} /* Michael Somos, Apr 02 2007 */
    
  • Sage
    A002119 = lambda n: hypergeometric([-n, n+1], [], 1)
    [simplify(A002119(n)) for n in (0..17)] # Peter Luschny, Oct 17 2014

Formula

D-finite with recurrence a(n) = -2(2n-1)*a(n-1) + a(n-2). - T. D. Noe, Oct 26 2006
If y = x + Sum_{k>=2} A005363(k)*x^k/k!, then y = x + Sum_{k>=2} a(k-2)(-y)^k/k!. - Michael Somos, Apr 02 2007
a(-n-1) = a(n). - Michael Somos, Apr 02 2007
a(n) = (1/n!)*Integral_{x>=-1} (-x*(1+x))^n*exp(-(1+x)). - Paul Barry, Apr 19 2010
G.f.: 1/Q(0), where Q(k) = 1 - x + 2*x*(k+1)/Q(k+1); (continued fraction). - Sergei N. Gladkovskii, May 17 2013
Expansion of exp(x) in powers of y = x*(1 + x): exp(x) = 1 + y - y^2/2! + 7*y^3/3! - 71*y^4/4! + 1001*y^5/5! - .... E.g.f.: (1/sqrt(4*x + 1))*exp(sqrt(4*x + 1)/2 - 1/2) = 1 - x + 7*x^2/2! - 71*x^3/3! + .... - Peter Bala, Dec 15 2013
a(n) = hypergeom([-n, n+1], [], 1). - Peter Luschny, Oct 17 2014
a(n) = sqrt(Pi/exp(1)) * BesselI(1/2+n, 1/2) + (-1)^n * BesselK(1/2+n, 1/2) / sqrt(exp(1)*Pi). - Vaclav Kotesovec, Jul 22 2015
a(n) ~ (-1)^n * 2^(2*n+1/2) * n^n / exp(n+1/2). - Vaclav Kotesovec, Jul 22 2015
From G. C. Greubel, Aug 16 2017: (Start)
G.f.: (1/(1-t))*hypergeometric2f0(1, 1/2; -; -4*t/(1-t)^2).
E.g.f.: (1+4*t)^(-1/2) * exp((sqrt(1+4*t) - 1)/2). (End)
a(n) = Sum_{k=0..n} (-1)^k*binomial(n,k)*binomial(n+k,k)*k!. - Ilya Gutkovskiy, Nov 24 2017
a(n) = (-1)^n*KummerU(-n, -2*n, -1). - Peter Luschny, May 10 2022

Extensions

More terms from Vladeta Jovovic, Apr 03 2000

A122848 Exponential Riordan array (1, x(1+x/2)).

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 0, 0, 3, 1, 0, 0, 3, 6, 1, 0, 0, 0, 15, 10, 1, 0, 0, 0, 15, 45, 15, 1, 0, 0, 0, 0, 105, 105, 21, 1, 0, 0, 0, 0, 105, 420, 210, 28, 1, 0, 0, 0, 0, 0, 945, 1260, 378, 36, 1, 0, 0, 0, 0, 0, 945, 4725, 3150, 630, 45, 1, 0, 0, 0, 0, 0, 0, 10395, 17325, 6930, 990, 55, 1, 0, 0
Offset: 0

Views

Author

Paul Barry, Sep 14 2006

Keywords

Comments

Entries are Bessel polynomial coefficients. Row sums are A000085. Diagonal sums are A122849. Inverse is A122850. Product of A007318 and A122848 gives A100862.
T(n,k) is the number of self-inverse permutations of {1,2,...,n} having exactly k cycles. - Geoffrey Critzer, May 08 2012
Bessel numbers of the second kind. For relations to the Hermite polynomials and the Catalan (A033184 and A009766) and Fibonacci (A011973, A098925, and A092865) matrices, see Yang and Qiao. - Tom Copeland, Dec 18 2013.
Also the inverse Bell transform of the double factorial of odd numbers Product_{k= 0..n-1} (2*k+1) (A001147). For the definition of the Bell transform see A264428 and for cross-references A265604. - Peter Luschny, Dec 31 2015

Examples

			Triangle begins:
    1
    0    1
    0    1    1
    0    0    3    1
    0    0    3    6    1
    0    0    0   15   10    1
    0    0    0   15   45   15    1
    0    0    0    0  105  105   21    1
    0    0    0    0  105  420  210   28    1
    0    0    0    0    0  945 1260  378   36    1
From _Gus Wiseman_, Jan 12 2021: (Start)
As noted above, a(n) is the number of set partitions of {1..n} into k singletons or pairs. This is also the number of set partitions of subsets of {1..n} into n - k pairs. In the first case, row n = 5 counts the following set partitions:
  {{1},{2,3},{4,5}}  {{1},{2},{3},{4,5}}  {{1},{2},{3},{4},{5}}
  {{1,2},{3},{4,5}}  {{1},{2},{3,4},{5}}
  {{1,2},{3,4},{5}}  {{1},{2,3},{4},{5}}
  {{1,2},{3,5},{4}}  {{1,2},{3},{4},{5}}
  {{1},{2,4},{3,5}}  {{1},{2},{3,5},{4}}
  {{1},{2,5},{3,4}}  {{1},{2,4},{3},{5}}
  {{1,3},{2},{4,5}}  {{1},{2,5},{3},{4}}
  {{1,3},{2,4},{5}}  {{1,3},{2},{4},{5}}
  {{1,3},{2,5},{4}}  {{1,4},{2},{3},{5}}
  {{1,4},{2},{3,5}}  {{1,5},{2},{3},{4}}
  {{1,4},{2,3},{5}}
  {{1,4},{2,5},{3}}
  {{1,5},{2},{3,4}}
  {{1,5},{2,3},{4}}
  {{1,5},{2,4},{3}}
In the second case, we have:
  {{1,2},{3,4}}  {{1,2}}  {}
  {{1,2},{3,5}}  {{1,3}}
  {{1,2},{4,5}}  {{1,4}}
  {{1,3},{2,4}}  {{1,5}}
  {{1,3},{2,5}}  {{2,3}}
  {{1,3},{4,5}}  {{2,4}}
  {{1,4},{2,3}}  {{2,5}}
  {{1,4},{2,5}}  {{3,4}}
  {{1,4},{3,5}}  {{3,5}}
  {{1,5},{2,3}}  {{4,5}}
  {{1,5},{2,4}}
  {{1,5},{3,4}}
  {{2,3},{4,5}}
  {{2,4},{3,5}}
  {{2,5},{3,4}}
(End)
		

Crossrefs

Row sums are A000085.
Column sums are A001515.
Same as A049403 but with a first column k = 0.
The same set partitions counted by number of pairs are A100861.
Reversing rows gives A111924 (without column k = 0).
A047884 counts standard Young tableaux by size and greatest row length.
A238123 counts standard Young tableaux by size and least row length.
A320663/A339888 count unlabeled multiset partitions into singletons/pairs.
A322661 counts labeled covering half-loop-graphs.
A339742 counts factorizations into distinct primes or squarefree semiprimes.

Programs

  • Maple
    # The function BellMatrix is defined in A264428.
    BellMatrix(n -> `if`(n<2,1,0), 9); # Peter Luschny, Jan 27 2016
  • Mathematica
    t[n_, k_] := k!*Binomial[n, k]/((2 k - n)!*2^(n - k)); Table[ t[n, k], {n, 0, 11}, {k, 0, n}] // Flatten
    (* Second program: *)
    rows = 12;
    t = Join[{1, 1}, Table[0, rows]];
    T[n_, k_] := BellY[n, k, t];
    Table[T[n, k], {n, 0, rows}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jun 23 2018,after Peter Luschny *)
    sbs[{}]:={{}};sbs[set:{i_,_}]:=Join@@Function[s,(Prepend[#1,s]&)/@sbs[Complement[set,s]]]/@Cases[Subsets[set],{i}|{i,_}];
    Table[Length[Select[sbs[Range[n]],Length[#]==k&]],{n,0,6},{k,0,n}] (* Gus Wiseman, Jan 12 2021 *)
  • PARI
    {T(n,k)=if(2*kn, 0, n!/(2*k-n)!/(n-k)!*2^(k-n))} /* Michael Somos, Oct 03 2006 */
    
  • Sage
    # uses[inverse_bell_transform from A265605]
    multifact_2_1 = lambda n: prod(2*k + 1 for k in (0..n-1))
    inverse_bell_matrix(multifact_2_1, 9) # Peter Luschny, Dec 31 2015

Formula

Number triangle T(n,k) = k!*C(n,k)/((2k-n)!*2^(n-k)).
T(n,k) = A001498(k,n-k). - Michael Somos, Oct 03 2006
E.g.f.: exp(y(x+x^2/2)). - Geoffrey Critzer, May 08 2012
Triangle equals the matrix product A008275*A039755. Equivalently, the n-th row polynomial R(n,x) is given by the Type B Dobinski formula R(n,x) = exp(-x/2)*Sum_{k>=0} P(n,2*k+1)*(x/2)^k/k!, where P(n,x) = x*(x-1)*...*(x-n+1) denotes the falling factorial polynomial. Cf. A113278. - Peter Bala, Jun 23 2014
From Daniel Checa, Aug 28 2022: (Start)
E.g.f. for the m-th column: (x^2/2+x)^m/m!.
T(n,k) = T(n-1,k-1) + (n-1)*T(n-2,k-1) for n>1 and k=1..n, T(0,0) = 1. (End)

A000369 Triangle of numbers related to triangle A049213; generalization of Stirling numbers of second kind A008277, Bessel triangle A001497.

Original entry on oeis.org

1, 3, 1, 21, 9, 1, 231, 111, 18, 1, 3465, 1785, 345, 30, 1, 65835, 35595, 7650, 825, 45, 1, 1514205, 848925, 196245, 24150, 1680, 63, 1, 40883535, 23586255, 5755050, 775845, 62790, 3066, 84, 1, 1267389585, 748471185, 190482705, 27478710
Offset: 1

Views

Author

Keywords

Comments

a(n,m) := S2p(-3; n,m), a member of a sequence of triangles including S2p(-1; n,m) := A001497(n-1,m-1) (Bessel triangle) and ((-1)^(n-m))*S2p(1; n,m) := A008277(n,m) (Stirling 2nd kind). a(n,1)= A008545(n-1).
a(n,m), n>=m>=1, enumerates unordered n-vertex m-forests composed of m increasing plane (aka ordered) trees, with one vertex of out-degree r=0 (leafs or a root) and each vertex with out-degree r>=1 comes in r+2 types (like for an (r+2)-ary vertex). Proof from the e.g.f. of the first column Y(z):=1-(1-4*x)^(1/4) and the F. Bergeron et al. reference given in A001498, eq. (8), Y'(z)= phi(Y(z)), Y(0)=0, with out-degree o.g.f. phi(w)=1/(1-w)^3. - Wolfdieter Lang, Oct 12 2007
Also the Bell transform of the quadruple factorial numbers Product_{k=0..n-1} (4*k+3) (A008545) adding 1,0,0,0,... as column 0. For the definition of the Bell transform see A264428 and for cross-references A265606. - Peter Luschny, Dec 31 2015

Examples

			Triangle begins:
  1;
  3, 1;
  21, 9, 1;
  231, 111, 18, 1;
  3465, 1785, 345, 30, 1; ...
Tree combinatorics for a(3,2)=9: there are three m=2 forests each with one tree a root (with out-degree r=0) and the other tree a root and a leaf coming in three versions (like for a 3-ary vertex). Each such forest can be labeled increasingly in three ways (like (1,(23)), (2,(13)) and (3,(12))) yielding 9 such forests. - _Wolfdieter Lang_, Oct 12 2007
		

Crossrefs

Row sums give A016036. Cf. A004747.
Columns include A008545.
Alternating row sums A132163.

Programs

Formula

a(n, m) = n!*A049213(n, m)/(m!*4^(n-m)); a(n+1, m) = (4*n-m)*a(n, m) + a(n, m-1), n >= m >= 1; a(n, m) := 0, n
E.g.f. of m-th column: ((1-(1-4*x)^(1/4))^m)/m!.
From Peter Bala, Jun 08 2016: (Start)
With offset 0, the e.g.f. is 1/(1 - 4*x)^(3/4)*exp(t*(1 - (1 - 4*x)^(1/4))) = 1 + (3 + t)*x + (21 + 9*t + t^2)*x^2/2! + ....
Thus with row and column numbering starting at 0, this triangle is the exponential Riordan array [d/dx(F(x)), F(x)], belonging to the Derivative subgroup of the exponential Riordan group, where F(x) = 1 - (1 - 4*x)^(1/4).
Row polynomial recurrence: R(n+1,t) = t*Sum_{k = 0..n} binomial(n,k)*A008545(k)*R(n-k,t) with R(0,t) = 1. (End)

A001518 Bessel polynomial y_n(3).

Original entry on oeis.org

1, 4, 37, 559, 11776, 318511, 10522639, 410701432, 18492087079, 943507142461, 53798399207356, 3390242657205889, 233980541746413697, 17551930873638233164, 1421940381306443299981, 123726365104534205331511, 11507973895102987539130504
Offset: 0

Keywords

References

  • J. Riordan, Combinatorial Identities, Wiley, 1968, p. 77.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Polynomial coefficients are in A001498.

Programs

  • Maple
    f:= gfun:-rectoproc({a(n)=3*(2*n-1)*a(n-1)+a(n-2),a(0)=1,a(1)=4},a(n),remember):
    map(f, [$0..60]); # Robert Israel, Aug 06 2015
  • Mathematica
    Table[Sum[(n+k)!*3^k/(2^k*(n-k)!*k!), {k,0,n}], {n,0,20}] (* Vaclav Kotesovec, Jul 22 2015 *)
  • PARI
    x='x+O('x^33); Vec(serlaplace(exp(1/3 - 1/3 * (1-6*x)^(1/2)) / (1-6*x)^(1/2))) \\ Gheorghe Coserea, Aug 04 2015

Formula

y_n(x) = Sum_{k=0..n} (n+k)!*(x/2)^k/((n-k)!*k!).
D-finite with recurrence a(n) = 3(2n-1)*a(n-1) + a(n-2). - T. D. Noe, Oct 26 2006
G.f.: 1/Q(0), where Q(k)= 1 - x - 3*x*(k+1)/Q(k+1); (continued fraction). - Sergei N. Gladkovskii, May 17 2013
a(n) = exp(1/3)*sqrt(2/(3*Pi))*BesselK(1/2+n,1/3). - Gerry Martens, Jul 22 2015
a(n) ~ sqrt(2) * 6^n * n^n / exp(n-1/3). - Vaclav Kotesovec, Jul 22 2015
E.g.f.: exp(1/3 - 1/3*(1-6*x)^(1/2)) / (1-6*x)^(1/2). (formula due to B. Salvy, see Plouffe link) - Gheorghe Coserea, Aug 06 2015
From G. C. Greubel, Aug 16 2017: (Start)
a(n) = (1/2)_{n} * 6^n * hypergeometric1f1(-n; -2*n; 2/3).
G.f.: (1/(1-t))*hypergeometric2f0(1, 1/2; -; 6*t/(1-t)^2). (End)

A163936 Triangle related to the o.g.f.s. of the right-hand columns of A130534 (E(x,m=1,n)).

Original entry on oeis.org

1, 1, 0, 2, 1, 0, 6, 8, 1, 0, 24, 58, 22, 1, 0, 120, 444, 328, 52, 1, 0, 720, 3708, 4400, 1452, 114, 1, 0, 5040, 33984, 58140, 32120, 5610, 240, 1, 0, 40320, 341136, 785304, 644020, 195800, 19950, 494, 1, 0, 362880, 3733920, 11026296, 12440064, 5765500, 1062500
Offset: 1

Author

Johannes W. Meijer, Aug 13 2009

Keywords

Comments

The asymptotic expansions of the higher-order exponential integral E(x,m=1,n) lead to triangle A130524, see A163931 for information on E(x,m,n). The o.g.f.s. of the right-hand columns of triangle A130534 have a nice structure: gf(p) = W1(z,p)/(1-z)^(2*p-1) with p = 1 for the first right-hand column, p = 2 for the second right-hand column, etc. The coefficients of the W1(z,p) polynomials lead to the triangle given above, n >= 1 and 1 <= m <= n. Our triangle is the same as A112007 with an extra right-hand column, see also the second Eulerian triangle A008517. The row sums of our triangle lead to A001147.
We observe that the row sums of the triangles A163936 (m=1), A163937 (m=2), A163938 (m=3) and A163939 (m=4) for z=1 lead to A001147, A001147 (minus a(0)), A001879 and A000457 which are the first four left-hand columns of the triangle of the Bessel coefficients A001497 or, if one wishes, the right-hand columns of A001498. We checked this phenomenon for a few more values of m and found that this pattern persists: m = 5 leads to A001880, m=6 to A001881, m=7 to A038121 and m=8 to A130563 which are the next left- (right-) hand columns of A001497 (A001498). An interesting phenomenon.
If one assumes the triangle not (1,1) based but (0,0) based, one has T(n, k) = E2(n, n-k), where E2(n, k) are the second-order Eulerian numbers A340556. - Peter Luschny, Feb 12 2021

Examples

			Triangle starts:
[ 1]      1;
[ 2]      1,       0;
[ 3]      2,       1,      0;
[ 4]      6,       8,      1,      0;
[ 5]     24,      58,     22,      1,      0;
[ 6]    120,     444,    328,     52,      1,     0;
[ 7]    720,    3708,   4400,   1452,    114,     1,   0;
[ 8]   5040,   33984,  58140,  32120,   5610,   240,   1,  0;
[ 9]  40320,  341136, 785304, 644020, 195800, 19950, 494,  1, 0;
The first few W1(z,p) polynomials are
W1(z,p=1) = 1/(1-z);
W1(z,p=2) = (1 + 0*z)/(1-z)^3;
W1(z,p=3) = (2 + 1*z + 0*z^2)/(1-z)^5;
W1(z,p=4) = (6 + 8*z + 1*z^2 + 0*z^3)/(1-z)^7.
		

Crossrefs

Row sums equal A001147.
A000142, A002538, A002539, A112008, A112485 are the first few left hand columns.
A000007, A000012, A005803(n+2), A004301, A006260 are the first few right hand columns.
Cf. A163931 (E(x,m,n)), A048994 (Stirling1) and A008517 (Euler).
Cf. A112007, A163937 (E(x,m=2,n)), A163938 (E(x,m=3,n)) and A163939 (E(x,m=4,n)).
Cf. A001497 (Bessel), A001498 (Bessel), A001147 (m=1), A001147 (m=2), A001879 (m=3) and A000457 (m=4), A001880 (m=5), A001881 (m=6) and A038121 (m=7).
Cf. A340556.

Programs

  • Maple
    with(combinat): a := proc(n, m): add((-1)^(n+k+1)*binomial(2*n-1, k)*stirling1(m+n-k-1, m-k), k=0..m-1) end: seq(seq(a(n, m), m=1..n), n=1..9);  # Johannes W. Meijer, revised Nov 27 2012
  • Mathematica
    Table[Sum[(-1)^(n + k + 1)*Binomial[2*n - 1, k]*StirlingS1[m + n - k - 1, m - k], {k, 0, m - 1}], {n, 1, 10}, {m, 1, n}] // Flatten (* G. C. Greubel, Aug 13 2017 *)
  • PARI
    for(n=1,10, for(m=1,n, print1(sum(k=0,m-1,(-1)^(n+k+1)* binomial(2*n-1,k)*stirling(m+n-k-1,m-k, 1)), ", "))) \\ G. C. Greubel, Aug 13 2017
    
  • PARI
    \\ assuming offset = 0:
    E2poly(n,x) = if(n == 0, 1, x*(x-1)^(2*n)*deriv((1-x)^(1-2*n)*E2poly(n-1,x)));
    { for(n = 0, 9, print(Vec(E2poly(n,x)))) } \\ Peter Luschny, Feb 12 2021

Formula

a(n, m) = Sum_{k=0..(m-1)} (-1)^(n+k+1)*binomial(2*n-1,k)*Stirling1(m+n-k-1,m-k), for 1 <= m <= n.
Assuming offset = 0 the T(n, k) are the coefficients of recursively defined polynomials. T(n, k) = [x^k] x^n*E2poly(n, 1/x), where E2poly(n, x) = x*(x - 1)^(2*n)*d_{x}((1 - x)^(1 - 2*n)*E2poly(n - 1, x))) for n >= 1 and E2poly(0, x) = 1. - Peter Luschny, Feb 12 2021

A079267 d(n,s) = number of perfect matchings on {1, 2, ..., n} with s short pairs.

Original entry on oeis.org

1, 0, 1, 1, 1, 1, 5, 6, 3, 1, 36, 41, 21, 6, 1, 329, 365, 185, 55, 10, 1, 3655, 3984, 2010, 610, 120, 15, 1, 47844, 51499, 25914, 7980, 1645, 231, 21, 1, 721315, 769159, 386407, 120274, 25585, 3850, 406, 28, 1, 12310199, 13031514, 6539679, 2052309, 446544, 70371, 8106, 666, 36, 1
Offset: 0

Author

Jeremy Martin (martin(AT)math.umn.edu), Feb 05 2003

Keywords

Comments

Read backwards, the n-th row of the triangle gives the Hilbert series of the variety of slopes determined by n points in the plane.
From Paul Barry, Nov 25 2009: (Start)
Reversal of coefficient array for the polynomials P(n,x) = Sum_{k=0..n} (C(n+k,2k)*(2k)!/(2^k*k!))*x^k*(1-x)^(n-k).
Note that P(n,x) = Sum_{k=0..n} A001498(n,k)*x^k*(1-x)^(n-k). (End)
Equivalent to the original definition: Triangle of fixed-point free involutions on [1..2n] (=A001147) by number of cycles with adjacent integers. - Olivier Gérard, Mar 23 2011
Conjecture: Asymptotically, the n-th row has a Poisson distribution with mean 1. - David Callan, Nov 11 2012
This is also the number of configurations of n indistinguishable pairs placed on the vertices of the ladder graph P_1 X P_2n (i.e., a path of length 2n) such that s such pairs are joined by an edge; equivalently the number of "s-domino" configurations in the game of memory played on a 1 X 2n rectangular array, see [Young]. - Donovan Young, Oct 23 2018

Examples

			Triangle begins:
   1
   0  1
   1  1  1
   5  6  3 1
  36 41 21 6 1
From _Paul Barry_, Nov 25 2009: (Start)
Production matrix begins
       0,      1,
       1,      1,      1,
       4,      4,      2,     1,
      18,     18,      9,     3,     1,
      96,     96,     48,    16,     4,    1,
     600,    600,    300,   100,    25,    5,   1,
    4320,   4320,   2160,   720,   180,   36,   6,  1,
   35280,  35280,  17640,  5880,  1470,  294,  49,  7, 1,
  322560, 322560, 161280, 53760, 13440, 2688, 448, 64, 8, 1
Complete this by adding top row (1,0,0,0,...) and take inverse: we obtain
   1,
   0,  1,
  -1, -1,  1,
  -2, -2, -2,  1,
  -3, -3, -3, -3,  1,
  -4, -4, -4, -4, -4,  1,
  -5, -5, -5, -5, -5, -5,  1,
  -6, -6, -6, -6, -6, -6, -6,  1,
  -7, -7, -7, -7, -7, -7, -7, -7,  1,
  -8, -8, -8, -8, -8, -8, -8, -8, -8,  1 (End)
The 6 involutions with no fixed point on [1..6] with only one 2-cycle with adjacent integers are ((1, 2), (3, 5), (4, 6)), ((1, 3), (2, 4), (5, 6)), ((1, 3), (2, 6), (4, 5)), ((1, 5), (2, 3), (4, 6)), ((1, 5), (2, 6), (3, 4)), and ((1, 6), (2, 5), (3, 4)).
		

References

  • G. Kreweras and Y. Poupard, Sur les partitions en paires d'un ensemble fini totalement ordonné, Publications de l'Institut de Statistique de l'Université de Paris, 23 (1978), 57-74.

Crossrefs

Row sums are A001147.
d(2n,n) gives A365744.

Programs

  • Maple
    d := (n,s) -> 1/s! * sum('((-1)^(h-s)*(2*n-h)!/(2^(n-h)*(n-h)!*(h-s)!))','h'=s..n):
    # alternative by R. J. Mathar, Aug 19 2022
    A079267 := proc(n,k)
        option remember ;
        if n =0 and k =0 then
            1;
        elif k > n or k < 0 then
            0;
        else
            procname(n-1,k-1)+(2*n-2-k)*procname(n-1,k)+(k+1)*procname(n-1,k+1) ;
        end if;
    end proc:
    seq(seq( A079267(n,k),k=0..n),n=0..13) ;
  • Mathematica
    nmax = 9; d[n_, s_] := (2^(s-n)*(2n-s)!* Hypergeometric1F1[s-n, s-2n, -2])/ (s!*(n-s)!); Flatten[ Table[d[n, s], {n, 0, nmax}, {s, 0, n}]] (* Jean-François Alcover, Oct 19 2011, after Maple *)
  • PARI
    {T(n, k) = 2^(k-n)*binomial(n,k)*hyperu(k-n, k-2*n, -2)};
    for(n=0,10, for(k=0,n, print1(round(T(n,k)), ", "))) \\ G. C. Greubel, Apr 10 2019
    
  • Sage
    [[2^(k-n)*binomial(n,k)*hypergeometric_U(k-n,k-2*n,-2).simplify_hypergeometric() for k in (0..n)] for n in (0..10)] # G. C. Greubel, Apr 10 2019

Formula

d(n, s) = (1/s!) * Sum_{h=s..n} (((-1)^(h-s)*(2*n-h)!/(2^(n-h)*(n-h)!*(h-s)!))).
E.g.f.: exp((x-1)*(1-sqrt(1-2*y)))/sqrt(1-2*y). - Vladeta Jovovic, Dec 15 2008

Extensions

Extra terms added by Paul Barry, Nov 25 2009
Previous Showing 11-20 of 44 results. Next