A075114
Perfect powers n such that 2n + 1 is a perfect power; the value of y^b in the solution of the Diophantine equation x^a - 2y^b = 1.
Original entry on oeis.org
4, 121, 144, 4900, 166464, 5654884, 192099600, 6525731524, 221682772224, 7530688524100, 255821727047184, 8690408031080164, 295218051329678400, 10028723337177985444, 340681375412721826704
Offset: 1
Cf.
A117547 (square root of terms).
-
pp = Select[ Range[10^8], Apply[ GCD, Last[ Transpose[ FactorInteger[ # ]]]] > 1 & ]; Select[pp, Apply[GCD, Last[ Transpose[ FactorInteger[2# + 1]]]] > 1 & ]
lim=10^14; lst={}; k=2; While[n=Floor[lim^(1/k)]; n>1, lst=Join[lst,Range[2,n]^k]; k++ ]; lst=Union[lst]; Intersection[lst,(lst-1)/2] (*T. D. Noe, Mar 29 2006 *)
A120861
Fixed-k dispersion for Q = 8: Square array D(g,h) (g, h >= 1), read by ascending antidiagonals.
Original entry on oeis.org
1, 2, 7, 3, 12, 41, 4, 19, 70, 239, 5, 24, 111, 408, 1393, 6, 31, 140, 647, 2378, 8119, 8, 36, 181, 816, 3771, 13860, 47321, 9, 48, 210, 1055, 4756, 21979, 80782, 275807, 10, 53, 280, 1224, 6149, 27720, 128103, 470832, 1607521, 11, 60, 309, 1632, 7134
Offset: 1
Northwest corner:
1, 7, 41, 239, 1393, 8119, 47321, ...
2, 12, 70, 408, 2378, 13860, 80782, ...
3, 19, 111, 647, 3771, 21979, 128103, ...
4, 24, 140, 816, 4756, 27720, 161564, ...
5, 31, 181, 1055, 6149, 35839, 208885, ...
6, 36, 210, 1224, 7134, 41580, 242346, ...
... [Edited by _Petros Hadjicostas_, Jul 07 2020]
Cf.
A087056,
A087059,
A120858,
A120859,
A120860,
A120862,
A120863,
A336109 (first column),
A002315 (first row),
A001542 (2nd row),
A253811 (3rd row).
-
f(n) = 3*n + 2*sqrtint(2*n^2) + 2;
unused(listus) = {my(v=vecsort(Vec(listus))); for (i=1, vecmax(v), if (!vecsearch(v, i), return (i)););};
D(nb) = {my(m = matrix(nb, nb), t); my(listus = List); for (g=1, nb, if (g==1, t = 1, t = unused(listus)); m[g,1]=t; listput(listus, t); t = f(t); m[g,2]=t; listput(listus, t); for (h=3, nb, t = 6*m[g,h-1] - m[g,h-2]; m[g, h] = t; listput(listus, t););); m;}; \\ Michel Marcus, Jul 08 2020
A182189
a(n) = 6*a(n-1) - a(n-2) - 4 with n > 1, a(0)=1, a(1)=3.
Original entry on oeis.org
1, 3, 13, 71, 409, 2379, 13861, 80783, 470833, 2744211, 15994429, 93222359, 543339721, 3166815963, 18457556053, 107578520351, 627013566049, 3654502875939, 21300003689581, 124145519261543, 723573111879673, 4217293152016491, 24580185800219269, 143263821649299119
Offset: 0
-
I:=[1,3]; [n le 2 select I[n] else 6*Self(n-1)-Self(n-2)-4: n in [1..41]]; // Bruno Berselli, Jun 07 2012
-
m = -11;n = -1; c = 0;
list3 = Reap[While[c < 22, t = 6 n - m - 4; Sow[t];m = n; n = t;c++]][[2,1]]
CoefficientList[Series[(1-4*x-x^2)/((1-x)*(1-6*x+x^2)),{x,0,40}],x] (* Vincenzo Librandi, Jul 26 2012 *)
1 + Fibonacci[2*Range[0, 40], 2] (* G. C. Greubel, May 24 2021 *)
-
my(x='x+O('x^40)); Vec((1-4*x-x^2)/((1-x)*(1-6*x+x^2))) \\ Altug Alkan, Dec 30 2017
-
[1 + lucas_number1(2*n,2,-1) for n in (0..40)] # G. C. Greubel, May 24 2021
Original entry on oeis.org
0, 12, 420, 14280, 485112, 16479540, 559819260, 19017375312, 646030941360, 21946034630940, 745519146510612, 25325704946729880, 860328449042305320, 29225841562491651012, 992818284675673829100, 33726595837410418538400, 1145711440187278556476512
Offset: 0
a(1) = 12 = 2(2*3) = 3*4, a(2) = 420 = 2(14*15) = 20*21.
- Reinhard Zumkeller, Table of n, a(n) for n = 0..255
- Nikola Adžaga, Andrej Dujella, Dijana Kreso, Petra Tadić, On Diophantine m-tuples and D(n)-sets, 2018.
- Index entries for linear recurrences with constant coefficients, signature (35,-35,1).
-
m:=30; R:=PowerSeriesRing(Integers(), m); [0] cat Coefficients(R!(12*x/((1-x)*(x^2-34*x+1)))); // G. C. Greubel, Jul 15 2018
-
2*Table[ Floor[(Sqrt[2] + 1)^(4n + 2)/32], {n, 0, 20} ] (* Ray Chandler, Nov 10 2004, copied incorrect program from A029549, revised Jul 09 2015 *)
RecurrenceTable[{a[n+3] == 35 a[n+2] - 35 a[n+1] + a[n], a[1] == 0, a[2] == 12, a[3] == 420}, a, {n, 1, 10}] (* Ron Knott, Nov 25 2013 *)
LinearRecurrence[{35, -35, 1}, {0, 12, 420}, 25] (* T. D. Noe, Nov 25 2013 *)
Table[(LucasL[4*n+2, 2] - 6)/16, {n,0,30}] (* G. C. Greubel, Jul 15 2018 *)
-
concat(0, Vec(12*x/((1-x)*(1-34*x+x^2)) + O(x^20))) \\ Colin Barker, Mar 02 2016
-
{a=1+sqrt(2); b=1-sqrt(2); Q(n) = a^n + b^n};
for(n=0, 30, print1(round((Q(4*n+2) - 6)/16), ", ")) \\ G. C. Greubel, Jul 15 2018
Corrected by Bill Lam (bill_lam(AT)myrealbox.com), Feb 27 2006
A228564
Largest odd divisor of n^2 + 1.
Original entry on oeis.org
1, 1, 5, 5, 17, 13, 37, 25, 65, 41, 101, 61, 145, 85, 197, 113, 257, 145, 325, 181, 401, 221, 485, 265, 577, 313, 677, 365, 785, 421, 901, 481, 1025, 545, 1157, 613, 1297, 685, 1445, 761, 1601, 841, 1765, 925, 1937, 1013, 2117, 1105, 2305, 1201, 2501, 1301, 2705
Offset: 0
A002522(3) = 3^2+1 = 10 => a(3) = 10/2 = 5.
-
for n = 0 to 45 : t=n^2+1
x: if not t mod 2 then t=t/2 : goto x
print str$(t);", "; : next n
print
end
-
List([0..60],n->NumeratorRat((n^2+1)/(n+1))); # Muniru A Asiru, Feb 20 2019
-
[(n^2+1)*(3+(-1)^n)/4: n in [0..60]]; // Bruno Berselli, Aug 26 2013
-
[Denominator(2*n^2/(n^2+1)): n in [0..60]]; // Vincenzo Librandi, Aug 19 2014
-
lod:= t -> t/2^padic:-ordp(t,2):
seq(lod(n^2+1),n=0..60); # Robert Israel, Aug 19 2014
-
Table[(n^2 + 1) (3 + (-1)^n)/4, {n, 0, 60}] (* Bruno Berselli, Aug 26 2013 *)
-
a(n)=if(n<2,n>0,m=n\4;[4*a(2*m)-3,2*a(2*m)+4*m-1,4*a(2*m)+16*m+1,2*a(2*m)+12*m+3][(n%4)+1]) \\ Ralf Stephan, Aug 26 2013
-
a(n)=(n^2+1)/2^valuation(n^2+1,2) \\ Ralf Stephan, Aug 26 2013
-
[(n^2+1)*(3+(-1)^n)/4 for n in (0..60)] # G. C. Greubel, Feb 20 2019
A082639
Numbers k such that 2*k*(k+2) is a square.
Original entry on oeis.org
0, 2, 16, 98, 576, 3362, 19600, 114242, 665856, 3880898, 22619536, 131836322, 768398400, 4478554082, 26102926096, 152139002498, 886731088896, 5168247530882, 30122754096400, 175568277047522, 1023286908188736
Offset: 1
-
a[0] = 0; a[1] = 2; a[n_] := a[n] = 6a[n - 1] - a[n - 2] + 4; Table[ a[n], {n, 0, 20}]
LinearRecurrence[{7,-7,1},{0,2,16},30] (* Harvey P. Dale, Nov 21 2015 *)
A125651
Numbers k such that A125650(k) is a perfect square.
Original entry on oeis.org
1, 3, 24, 147, 864, 5043, 29400, 171363, 998784, 5821347, 33929304, 197754483, 1152597600, 6717831123, 39154389144, 228208503747, 1330096633344, 7752371296323, 45184131144600, 263352415571283, 1534930362283104, 8946229758127347, 52142448186480984
Offset: 1
a(2)=3 because A125650(3)=9=3^2; a(3)=24 because A125650(24)=81=9^2.
-
I:=[1, 3, 24, 147]; [n le 4 select I[n] else 7*Self(n-1)-7*Self(n-2)+Self(n-3): n in [1..30]]; // Vincenzo Librandi, May 21 2012
-
Join[{1},LinearRecurrence[{7,-7,1},{3,24,147},35]] (* or *) CoefficientList[Series[(-1+x(4+(-10+x)x))/((-1+x)(1+(-6+x) x)),{x,0,35}],x] (* Harvey P. Dale, May 15 2011 *)
A202299
y-values in the solution to x^2 - 18*y^2 = 1.
Original entry on oeis.org
0, 4, 136, 4620, 156944, 5331476, 181113240, 6152518684, 209004522016, 7100001229860, 241191037293224, 8193395266739756, 278334248031858480, 9455171037816448564, 321197481037727392696, 10911259184244914903100
Offset: 1
- Vincenzo Librandi, Table of n, a(n) for n = 1..200
- Hacène Belbachir, Soumeya Merwa Tebtoub, and László Németh, Ellipse Chains and Associated Sequences, J. Int. Seq., Vol. 23 (2020), Article 20.8.5.
- Index entries for linear recurrences with constant coefficients, signature (34,-1).
-
I:=[0, 4]; [n le 2 select I[n] else 34*Self(n-1)-Self(n-2): n in [1..20]];
-
LinearRecurrence[{34,-1},{0,4},30]
With[{c=6*Sqrt[2]},Table[((17-2c)^n-(17+2c)^n)/-c,{n,0,20}]]//Simplify (* Harvey P. Dale, Dec 16 2024 *)
-
makelist(expand(((3+2*sqrt(2))^(2*n-2)-(3-2*sqrt(2))^(2*n-2))/(6*sqrt(2))), n, 1, 16); /* _Bruno Berselli, Dec 19 2011 */
A215936
a(n) = -2*a(n-1) + a(n-2) for n > 2, with a(0) = a(1) = 1, a(2) = 0.
Original entry on oeis.org
1, 1, 0, 1, -2, 5, -12, 29, -70, 169, -408, 985, -2378, 5741, -13860, 33461, -80782, 195025, -470832, 1136689, -2744210, 6625109, -15994428, 38613965, -93222358, 225058681, -543339720, 1311738121, -3166815962, 7645370045, -18457556052, 44560482149
Offset: 0
G.f. = 1 + x + x^3 - 2*x^4 + 5*x^5 - 12*x^6 + 29*x^7 - 70*x^8 + 169*x^9 - 408*x^10 + ...
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- M. C. Firengiz and A. Dil, Generalized Euler-Seidel method for second order recurrence relations, Notes on Number Theory and Discrete Mathematics, Vol. 20, 2014, No. 4, 21-32.
- Index entries for linear recurrences with constant coefficients, signature (-2,1).
-
[1,1] cat [n le 2 select (n-1) else -2*Self(n-1)+Self(n-2): n in [1..35] ]; // Vincenzo Librandi, Sep 09 2013
-
CoefficientList[Series[(1 + 3 x + x^2)/(1 + 2 x - x^2), {x, 0, 40}], x] (* Vincenzo Librandi, Sep 09 2013 *)
a[ n_] := With[ {m = If[ n < 1, 1 - n, n], s = If[ n < 1, (-1)^n, 1]}, s SeriesCoefficient[ x (1 + 2 x) / (1 + 2 x - x^2), {x, 0, m}]]; (* Michael Somos, Mar 19 2019 *)
-
{a(n) = my(m=n, s=1); if(n<1, m=1-n; s=(-1)^n); s * polcoeff( x * (1 + 2*x) / (1 + 2*x - x^2) + x * O(x^m), m)}; /* Michael Somos, Mar 19 2019 */
A220185
Numbers n such that n^2 + n(n+1) is an oblong number (A002378).
Original entry on oeis.org
0, 10, 348, 11830, 401880, 13652098, 463769460, 15754509550, 535189555248, 18180690368890, 617608282987020, 20980500931189798, 712719423377466120, 24211479893902658290, 822477596969312915748, 27940026817062736477150, 949138434183163727307360
Offset: 1
-
#include
#include
typedef unsigned long long U64;
U64 rootPronic(U64 a) {
U64 sr = 1L<<31, s, b;
if (a < sr*(sr+1)) {
sr>>=1;
while (a < sr*(sr+1)) sr>>=1;
}
for (b = sr>>1; b; b>>=1) {
s = sr+b;
if (a >= s*(s+1)) sr = s;
}
return sr;
}
int main() {
U64 a, n, r, t;
for (n=0; n < (1L<<31); n++) {
a = (n*(n+1)) + n*n;
t = rootPronic(a);
if (a == t*(t+1)) printf("%llu\n", n);
}
}
-
[Floor(((1+Sqrt(2))^(4*n-3)+(1-Sqrt(2))^(4*n-3)-2)/8): n in [1..20]]; // Vincenzo Librandi, Sep 08 2015
-
f:= gfun:-rectoproc({a(n)=35*(a(n-1)-a(n-2))+a(n-3),a(1)=0,a(2)=10,a(3)=348},a(n),remember):
map(f, [$1..50]); # Robert Israel, Sep 06 2015
-
LinearRecurrence[{35, - 35, 1}, {0, 10, 348}, 20] (* Vincenzo Librandi, Sep 06 2015 *)
-
concat(0, Vec(2*x^2*(5-x)/((1-x)*(1-34*x+x^2))+O(x^100))) \\ Colin Barker, Dec 10 2014
Comments