cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 71-80 of 215 results. Next

A027473 Second column of A027466.

Original entry on oeis.org

1, 14, 147, 1372, 12005, 100842, 823543, 6588344, 51883209, 403536070, 3107227739, 23727920916, 179936733613, 1356446145698, 10173346092735, 75960984159088, 564959819683217, 4187349251769726, 30939858360298531, 227977903707462860, 1675637592249852021, 12288009009832248154
Offset: 1

Views

Author

Keywords

References

  • A. H. Beiler, Recreations in the Theory of Numbers, Dover, N.Y., 1964, pp. 194-196.

Crossrefs

Programs

Formula

a(n) = n*7^(n-1).
a(n) = 14*a(n-1) - 49*a(n-2) with a(1) = 1, a(2) = 14.
a(n) = A003415(7^n). - Bruno Berselli, Oct 22 2013
From Amiram Eldar, Oct 28 2020: (Start)
Sum_{n>=1} 1/a(n) = 7*log(7/6).
Sum_{n>=1} (-1)^(n+1)/a(n) = 7*log(8/7). (End)
From Stefano Spezia, May 05 2024: (Start)
G.f.: x/(1 - 7*x)^2.
E.g.f.: x*exp(7*x). (End)

Extensions

More terms from Larry Reeves (larryr(AT)acm.org), May 29 2001
Offset changed from 2 to 1 by Vincenzo Librandi, Jun 06 2011

A050143 A(n,k) = Sum_{h=0..n-1, m=0..k} A(h,m) for n >= 1 and k >= 1, with A(n,0) = 1 for n >= 0 and A(0,k) = 0 for k >= 1; square array A, read by descending antidiagonals.

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 0, 1, 3, 1, 0, 1, 4, 7, 1, 0, 1, 5, 12, 15, 1, 0, 1, 6, 18, 32, 31, 1, 0, 1, 7, 25, 56, 80, 63, 1, 0, 1, 8, 33, 88, 160, 192, 127, 1, 0, 1, 9, 42, 129, 280, 432, 448, 255, 1, 0, 1, 10, 52, 180, 450, 832, 1120, 1024, 511, 1
Offset: 1

Views

Author

Keywords

Comments

The triangular version of this square array is defined by T(n,k) = A(k,n-k) for 0 <= k <= n. Conversely, A(n,k) = T(n+k,n) for n,k >= 0. We have [o.g.f of T](x,y) = [o.g.f. of A](x*y, x) and [o.g.f. of A](x,y) = [o.g.f. of T](y,x/y). - Petros Hadjicostas, Feb 11 2021
Formatted as a triangular array with offset (0,8), it is [0, 1, 0, -1, 1, 0, 0, 0, 0, 0, ...] DELTA [1, 0, 1, 1, 0, 0, 0, 0, ...], where DELTA is the operator defined in A084938. - Philippe Deléham, Nov 05 2006
The sum of the first two columns [of the rectangular array] gives the powers of 2; that is, Sum_{j=0..1} A(i,j) = 2^i, i >= 0. On the other hand, for i >= 1 and j >= 2, A(i,j) is the number of lattice paths of i-1 upsteps (1,1) and j-1 downsteps (1,-1) in which each downstep-free vertex is colored red or blue. A downstep-free vertex is one not incident with a downstep. For example, dots indicate the downstep-free vertices in the path .U.U.UDU.UDDU., and with i = j = 2, A(2,2) = 4 counts UD, *UD, DU, DU*, where asterisks indicate the red vertices. - David Callan, Aug 27 2011

Examples

			Square array A(n,k) (with rows n >= 0 and columns k >= 0) begins:
  1,   0,   0,    0,    0,    0,    0,     0,     0,     0, ...
  1,   1,   1,    1,    1,    1,    1,     1,     1,     1, ...
  1,   3,   4,    5,    6,    7,    8,     9,    10,    11, ...
  1,   7,  12,   18,   25,   33,   42,    52,    63,    75, ...
  1,  15,  32,   56,   88,  129,  180,   242,   316,   403, ...
  1,  31,  80,  160,  280,  450,  681,   985,  1375,  1865, ...
  1,  63, 192,  432,  832, 1452, 2364,  3653,  5418,  7773, ...
  1, 127, 448, 1120, 2352, 4424, 7700, 12642, 19825, 29953, ...
  ...
If we read the above square array by descending antidiagonals, we get the following triangular array T(n,k) (with rows n >= 0 and columns 0 <= k <= n):
   1;
   0, 1;
   0, 1, 1;
   0, 1, 3,  1;
   0, 1, 4,  7,   1;
   0, 1, 5, 12,  15,   1;
   0, 1, 6, 18,  32,  31,   1;
   0, 1, 7, 25,  56,  80,  63,   1;
   0, 1, 8, 33,  88, 160, 192, 127,   1;
   0, 1, 9, 42, 129, 280, 432, 448, 255, 1;
   ...
		

Crossrefs

Antidiagonal sums are odd-indexed Fibonacci numbers (A001519).
Signed alternating antidiagonal sums are Fibonacci(n)-2, as in A001911.
Cf. A000225, A001792, A050147, A050148, A055807 (mirror array of triangle), A084938.

Programs

  • Mathematica
    T[n_, k_] := If[n == k, 1, JacobiP[k - 1, 1, n - 2*k - 1, 3]];
    Table[T[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Peter Luschny, Nov 25 2021 *)

Formula

Formulas for the square array (A(n,k): n,k >= 0):
A(n,1) = -1 + 2^n = A000225(n) for n >= 1.
A(n+2,2) = 4*A001792(n) for n >= 0.
From Petros Hadjicostas, Feb 11 2021: (Start)
Recurrence: A(n,k) = 2*A(n-1,k) + A(n,k-1) - A(n-1,k-1) for n >= 1 and k >= 2; with A(n,0) = 1 for n >= 0, A(0,k) = 0 for k >= 1, and A(n,1) = -1 + 2^n for n >= 1.
Bivariate o.g.f.: Sum_{n,k>=0} A(n,k)*x^n*y^k = (1 - 2*x)*(1 - y)/((1 - x)*(1 - 2*x - y + x*y)).
A(n,k) = Sum_{s=1..n} binomial(n,s)*binomial(s+k-2,k-1) for n >= 0 and k >= 1. (It can be proved by using a partial fraction decomposition on the bivariate o.g.f. above.)
A(n,k) = n*hypergeom([-n + 1, k], [2], -1) for n >= 0 and k >= 1. (End)
Formulas for the triangular array (T(n,k): 0 <= k <= n):
Sum_{k=0..n} T(n,k) = Fibonacci(2*n-1) = A001519(n) with Fibonacci(-1) = 1.
Sum_{k=0..n} (-1)^(n+k-1)*T(n,k) = Fibonacci(n+1) - 2 = A001911(n-2) with A001911(-2) = A001911(-1) = -1.
T(n,k) = A055807(n,n-k) for 0 <= k <= n.
From Petros Hadjicostas, Feb 12 2021: (Start)
Recurrence: T(n,k) = 2*T(n-1,k-1) + T(n-1,k) - T(n-2,k-1) for n >= 3 and 1 <= k <= n-2; with T(n,n) = 1 for n >= 0, T(n,0) = 0 for n >= 1, and T(n+1, n) = 2^n - 1 for n >= 1.
Bivariate o.g.f: Sum_{n,k>=0} T(n,k)*x^n*y^k = (1 - x)*(1 - 2*x*y)/((1 - x*y)*(1 - x - 2*x*y + x^2*y)).
T(n,k) = Sum_{s=1..k} binomial(k,s)*binomial(s+n-k-2, s-1) = k*hypergeom([-k+1, n-k], [2], -1) for n >= 1 and 0 <= k <= n - 1. (End)
T(n, k) = JacobiP(k - 1, 1, n - 2*k - 1, 3) n >= 0 and 0 <= k < n. - Peter Luschny, Nov 25 2021

Extensions

Various sections edited by Petros Hadjicostas, Feb 12 2021

A053540 a(n) = n*9^(n-1).

Original entry on oeis.org

1, 18, 243, 2916, 32805, 354294, 3720087, 38263752, 387420489, 3874204890, 38354628411, 376572715308, 3671583974253, 35586121596606, 343151886824415, 3294258113514384, 31501343210481297, 300189270593998242, 2851798070642983299, 27017034353459841780
Offset: 1

Views

Author

Barry E. Williams, Jan 15 2000

Keywords

Crossrefs

Related to computing A023052.

Programs

Formula

From Colin Barker, Oct 17 2012: (Start)
a(n) = 18*a(n-1) - 81*a(n-2).
G.f.: x/(1-9*x)^2. (End)
E.g.f.: x*exp(9*x). - G. C. Greubel, May 16 2019
From Amiram Eldar, Oct 28 2020: (Start)
Sum_{n>=1} 1/a(n) = 9*log(9/8).
Sum_{n>=1} (-1)^(n+1)/a(n) = 9*log(10/9). (End)

Extensions

More terms from Larry Reeves (larryr(AT)acm.org), May 29 2001
Edited by N. J. A. Sloane at the suggestion of Reinhard Zumkeller, Sep 16 2007

A055587 Triangle with columns built from row sums of the partial row sums triangles obtained from Pascal's triangle A007318. Essentially A049600 formatted differently.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 4, 3, 1, 1, 8, 8, 4, 1, 1, 16, 20, 13, 5, 1, 1, 32, 48, 38, 19, 6, 1, 1, 64, 112, 104, 63, 26, 7, 1, 1, 128, 256, 272, 192, 96, 34, 8, 1, 1, 256, 576, 688, 552, 321, 138, 43, 9, 1, 1, 512, 1280, 1696, 1520, 1002, 501, 190, 53, 10, 1, 1, 1024, 2816, 4096
Offset: 0

Views

Author

Wolfdieter Lang, May 30 2000

Keywords

Comments

In the language of the Shapiro et al. reference (given in A053121) such a lower triangular (ordinary) convolution array, considered as matrix, belongs to the Riordan-group. The G.f. for the row polynomials p(n,x) (increasing powers of x) is 1/((1-z)*(1-x*z*(1-z)/(1-2*z))).
Column m (without leading zeros) is obtained from convolution of A000012 (powers of 1) with m-fold convoluted A011782.

Examples

			{1}; {1, 1}; {1, 2, 1}; {1, 4, 3, 1}; {1, 8, 8, 4, 1}; ...
Fourth row polynomial (n=3): p(3,x)= 1+4*x+3*x^2+x^3
		

Crossrefs

Cf. A049600, column sequences are A000012 (powers of 1), A000079 (powers of 2), A001792, A049611, A049612, A055589, A055852-5 for m=0..9, row sums: A055588.

Programs

  • Mathematica
    t[n_, k_] := Hypergeometric2F1[k, k-n, 1, -1]; Table[t[n, k], {n, 0, 11}, {k, 0, n}] // Flatten (* Jean-François Alcover, Mar 05 2014, after Paul D. Hanna *)
  • PARI
    {T(n,k) = if( n<0 || k<0, 0, polcoeff( polcoeff( 1 / ((1 - z) * (1 - x*z * (1 - z) / (1 - 2*z) + z * O(z^n) + x * O(x^k))), k), n))}; /* Michael Somos, Sep 30 2003 */
    
  • PARI
    {T(n,k)=if(k>n||n<0||k<0,0,if(k==0||k==n,1, sum(j=0,n-k,binomial(n-k,j)*binomial(k+j-1,k-1)););)} (Hanna)

Formula

a(n, m)= Am(n, 0) if n >= m >= 0 and a(n, m) := 0 if nA007318) with the lower triangular matrix A007318 (Pascal triangle) and prs^(m) is the partial row sums (prs) mapping for triangular matrices applied m times. See e.g. A055584 for m=4.
G.f. for column m: (1/(1-x))*(x*(1-x)/(1-2*x))^m, m >= 0.
T(n, k) = sum_{j=0..n-k} C(n-k, j)*C(k+j-1, k-1). - Paul D. Hanna, Jan 14 2004

A078836 a(n) = n*2^(n-6).

Original entry on oeis.org

6, 14, 32, 72, 160, 352, 768, 1664, 3584, 7680, 16384, 34816, 73728, 155648, 327680, 688128, 1441792, 3014656, 6291456, 13107200, 27262976, 56623104, 117440512, 243269632, 503316480, 1040187392, 2147483648, 4429185024, 9126805504, 18790481920, 38654705664
Offset: 6

Views

Author

Silvia Heubach (sheubac(AT)calstatela.edu), Jan 17 2003

Keywords

Comments

a(n) is the number of occurrences of 5s in the palindromic compositions of 2n-1 = the number of occurrences of 6s in the palindromic compositions of 2n.
This sequence is part of a family of sequences, namely R(n,k), the number of ks in palindromic compositions of n. See also A057711, A001792, A079859, A079861 - A079863. General formula: R(n,k)=2^(floor(n/2) - k) * (2 + floor(n/2) - k) if n and k have different parity and R(n,k)=2^(floor(n/2) - k) * (2 + floor(n/2) - k + 2^(floor((k+1)/2 - 1)) otherwise, for n >= 2k.
Also the number of independent vertex sets and vertex covers in the (n-4)-sun graph. - Eric W. Weisstein, Sep 27 2017

Examples

			a(6) = 6 since the palindromic compositions of 11 that contain a 5 are 3+5+3, 1+2+5+2+1, 2+1+5+1+2, 1+1+1+5+1+1+1 and 5+1+5, for a total of 6 5s. The palindromic compositions of 12 that contain a 6 are 3+6+3, 1+2+6+2+1, 2+1+6+1+2, 1+1+1+6+1+1+1 and 6+6.
		

Crossrefs

Programs

  • Magma
    [n*2^(n-6): n in [6..40]]; // Vincenzo Librandi, Oct 04 2011
    
  • Mathematica
    Table[n 2^(n - 6), {m, 6, 50}]
    LinearRecurrence[{4, -4}, {6, 14}, 20] (* Eric W. Weisstein, Sep 27 2017 *)
    CoefficientList[Series[-2 (-3 + 5 x)/(-1 + 2 x)^2, {x, 0, 20}], x] (* Eric W. Weisstein, Sep 27 2017 *)
  • PARI
    a(n)=n<<(n-6) \\ Charles R Greathouse IV, Oct 03 2011
    
  • PARI
    Vec(-2*x^6*(5*x-3)/(2*x-1)^2 + O(x^100)) \\ Colin Barker, Sep 29 2015
    
  • Python
    def a(n): return n << (n-6)
    print([a(n) for n in range(6, 37)]) # Michael S. Branicky, Jun 14 2021

Formula

From Colin Barker, Sep 29 2015: (Start)
a(n) = 2*A045891(n-4).
a(n) = 4*a(n-1) - 4*a(n-2) for n > 7.
G.f.: -2*x^6*(5*x-3) / (2*x-1)^2.
(End)
From Amiram Eldar, Jan 12 2021: (Start)
Sum_{n>=6} 1/a(n) = 64*log(2) - 661/15.
Sum_{n>=6} (-1)^n/a(n) = 391/15 - 64*log(3/2). (End)

A080928 Triangle T(n,k) read by rows: T(n,k) = Sum_{i=0..n} C(n,2i)*C(2i,k).

Original entry on oeis.org

1, 1, 0, 2, 2, 1, 4, 6, 3, 0, 8, 16, 12, 4, 1, 16, 40, 40, 20, 5, 0, 32, 96, 120, 80, 30, 6, 1, 64, 224, 336, 280, 140, 42, 7, 0, 128, 512, 896, 896, 560, 224, 56, 8, 1, 256, 1152, 2304, 2688, 2016, 1008, 336, 72, 9, 0, 512, 2560, 5760, 7680, 6720, 4032, 1680, 480, 90, 10
Offset: 0

Views

Author

Paul Barry, Feb 26 2003

Keywords

Comments

Gives the general solution to a(n) = 2*a(n-1) + k(k+2)*a(n-2), a(0) = a(1) = 1. The value k=1 gives the row sums of the triangle, or 1,1,5,13,... This is A046717, the solution to a(n) = 2*a(n-1) + 3*a(n-2), a(0)=a(1)=1.
Product of A007318 and A007318 with every odd-indexed row set to zero. - Paul Barry, Nov 08 2005

Examples

			Triangle begins:
    1;
    1,    0;
    2,    2,    1;
    4,    6,    3,    0;
    8,   16,   12,    4,    1;
   16,   40,   40,   20,    5,    0;
   32,   96,  120,   80,   30,    6,   1;
   64,  224,  336,  280,  140,   42,   7,  0;
  128,  512,  896,  896,  560,  224,  56,  8, 1;
  256, 1152, 2304, 2688, 2016, 1008, 336, 72, 9, 0; etc.
		

References

  • A. T. Benjamin and J. J. Quinn, Proofs that really count: the art of combinatorial proof, M.A.A. 2003, identity 156.
  • J-L. Kim, Relation between weight distribution and combinatorial identities, Bulletin of the Institute of Combinatorics and its Applications, Canada, 31, 2001, pp. 69-79.

Crossrefs

Apart from k=n, T(n, k) equals (1/2)*A038207(n, k).
Columns include A011782, 2*A001792, A080929, 4*A080930. Row sums are in A046717.

Programs

  • Mathematica
    Table[Sum[Binomial[n, 2 i] Binomial[2 i, k], {i, 0, n}], {n, 0, 10}, {k, 0, n}] // Flatten (* Michael De Vlieger, Oct 11 2018 *)

Formula

T(n, n) = (n+1) mod 2, T(n, k) = C(n, k)*2^(n-k-1).
T(n, 0) = A011782(n), T(n, k)=0, k>n, T(2n, 2n)=1, T(2n-1, 2n-1)=0, T(n+1, n)=n+1. Otherwise T(n, k) = T(n-1, k-1) + 2T(n-1, k). Rows are the coefficients of the polynomials in the expansion of (1-x)/((1+k*x)*(1-(k+2)*x)). The main diagonal is 1, 0, 1, 0, 1, 0, ... with g.f. 1/(1-x^2). Subsequent subdiagonals are given by A011782(k)*C(n+k, k) with g.f. A011782(k)/(1-x)^k.
T(n, k) = Sum_{j=0..n} C(n, j)*C(j, k)*(1+(-1)^j)/2; T(n, k) = 2^(n-k-1)*(C(n, k) + (-1)^n*C(0, n-k)). - Paul Barry, Nov 08 2005

Extensions

Edited by Ralf Stephan, Feb 04 2005

A103406 Triangle read by rows: n-th row = unsigned coefficients of the characteristic polynomials of an n X n matrix with 2's on the diagonal and 1's elsewhere.

Original entry on oeis.org

1, 1, 2, 1, 4, 3, 1, 6, 9, 4, 1, 8, 18, 16, 5, 1, 10, 30, 40, 25, 6, 1, 12, 45, 80, 75, 36, 7, 1, 14, 63, 140, 175, 126, 49, 8, 1, 16, 84, 224, 350, 336, 196, 64, 9, 1, 18, 108, 336, 630, 756, 588, 288, 81, 10, 1, 20, 135, 480, 1050, 1512, 1470, 960, 405, 100, 11, 1, 22, 165
Offset: 0

Views

Author

Gary W. Adamson, Feb 04 2005

Keywords

Comments

This triangle * [1/1, 1/2, 1/3, ...] = (1, 2, 4, 8, 16, 32, ...). - Gary W. Adamson, Nov 15 2007
Triangle read by rows: T(n,k) = (k+1)*binomial(n,k), 0 <= k <= n. - Philippe Deléham, Apr 20 2009

Examples

			Characteristic polynomial of 3 X 3 matrix [2 1 1 / 1 2 1 / 1 1 2] = x^3 - 6x^2 + 9x - 4.
The first few characteristic polynomials are:
  1
  x - 2
  x^2 - 4x + 3
  x^3 - 6x^2 + 9x - 4
  x^4 - 8x^3 + 18x^2 - 16x + 5
		

Crossrefs

Row sums = A001792: 1, 3, 8, 20, 48, 112, ...
See A103283 for the mirror image.

Programs

  • Maple
    with(linalg): printf(`%d,`,1): for n from 1 to 15 do mymat:=array(1..n, 1..n): for i from 1 to n do for j from 1 to n do if i=j then mymat[i,j]:=2 else mymat[i,j]:=1 fi: od: od: temp:=charpoly(mymat,x): for j from n to 0 by -1 do printf(`%d,`,abs(coeff(temp, x, j))) od: od: # James Sellers, Apr 22 2005
    p := (n,x) -> (x+1)^(n-1)+(x+1)^(n-2)*(n-1);
    seq(seq(coeff(p(n,x),x,n-j-1),j=0..n-1),n=1..11); # Peter Luschny, Feb 25 2014
  • Mathematica
    t[n_, k_] := (k+1)*Binomial[n, k]; Table[t[n, k], {n, 0, 11}, {k, 0, n}] // Flatten (* Jean-François Alcover, Oct 09 2012, after Philippe Deléham *)

Formula

Binomial transform of A127648. - Gary W. Adamson, Nov 15 2007
Equals A128064 * A007318. - Gary W. Adamson, Jan 03 2008
T(n,k) = (k+1)*A007318(n,k). - Philippe Deléham, Apr 20 2009
T(n,k) = Sum_{i=1..k+1} i*binomial(k+1,i)*binomial(n-k,k+1-i). - Mircea Merca, Apr 11 2012
O.g.f.: (1 - y)/(1 - y - x*y)^2 = 1 + (1 + 2*x)*y + (1 + 4*x + 3*x*2)*y^2 + .... - Peter Bala, Oct 18 2023

Extensions

More terms from James Sellers, Apr 22 2005

A204235 Permanent of the n-th principal submatrix of A143182.

Original entry on oeis.org

1, 5, 42, 632, 14124, 449652, 19200336, 1063272704, 74068997888, 6344884818304, 655635015988864, 80447681129070080, 11565193558509497088, 1925787312858332101888, 367762470538537620457472, 79847718328265949957881856, 19560087897336150724249288704
Offset: 1

Views

Author

Clark Kimberling, Jan 13 2012

Keywords

Comments

The n-th principal submatrix of A143182 is an n X n symmetric Toeplitz matrix whose first row consists of successive natural numbers 1, ..., n. - Stefano Spezia, Sep 23 2018
Conjecture: a(1) and a(2) are the only terms that are odd numbers. - Stefano Spezia, Oct 28 2018

Crossrefs

Cf. A143182.

Programs

  • Maple
    f:= proc(n) uses LinearAlgebra;
    Permanent(ToeplitzMatrix([seq(i, i=1 ..n)], n, symmetric))
    end proc:
    map(f, [$1..20]); # Stefano Spezia, Oct 28 2018
  • Mathematica
    f[i_, j_] := Max[i - j + 1, j - i + 1];  (* A143182 *)
    m[n_] := Table[f[i, j], {i, 1, n}, {j, 1, n}]
    TableForm[m[4]] (* 4 X 4 principal submatrix *)
    Table[Det[m[n]], {n, 1, 22}]  (* A001792 - signed *)
    Permanent[m_] :=
      With[{a = Array[x, Length[m]]},
       Coefficient[Times @@ (m.a), Times @@ a]];
    Table[Permanent[m[n]], {n, 1, 14}]  (* A204235 *)
    b[i_]:=i; a[n_]:=Permanent[ToeplitzMatrix[Array[b, n], Array[b, n]]]; Array[a, 22] (* Stefano Spezia, Sep 23 2018 *)
  • PARI
    {a(n) = matpermanent(matrix(n, n, i, j, max(i - j + 1, j - i + 1)))}
    for(n=1, 20, print1(a(n), ", ")) \\ Vaclav Kotesovec, Apr 29 2019

Extensions

Extended by Stefano Spezia, Oct 28 2018

A208341 Triangle read by rows, T(n,k) = hypergeometric_2F1([n-k+1, -k], [1], -1) for n>=0 and k>=0.

Original entry on oeis.org

1, 1, 2, 1, 3, 4, 1, 4, 8, 8, 1, 5, 13, 20, 16, 1, 6, 19, 38, 48, 32, 1, 7, 26, 63, 104, 112, 64, 1, 8, 34, 96, 192, 272, 256, 128, 1, 9, 43, 138, 321, 552, 688, 576, 256, 1, 10, 53, 190, 501, 1002, 1520, 1696, 1280, 512, 1, 11, 64, 253, 743, 1683, 2972, 4048
Offset: 0

Views

Author

Clark Kimberling, Feb 25 2012

Keywords

Comments

Previous name was: Triangle of coefficients of polynomials v(n,x) jointly generated with A160232; see the Formula section.
Row sums: (1,3,8,...), even-indexed Fibonacci numbers.
Alt. row sums: (1,-1,2,-3,...), signed Fibonacci numbers.
v(n,2) = A107839(n), v(n,n) = 2^(n-1), v(n+1,n) = A001792(n),
v(n+2,n) = A049611, v(n+3,n) = A049612.
Subtriangle of the triangle T(n,k) given by (1, 0, -1/2, 1/2, 0, 0, 0, 0, 0, 0, 0, ...) DELTA (0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, ...) where DELTA is the operator defined in A084938. - Philippe Deléham, Mar 12 2012
Essentially triangle in A049600. - Philippe Deléham, Mar 23 2012

Examples

			First five rows:
  1;
  1, 2;
  1, 3,  4;
  1, 4,  8,  8;
  1, 5, 13, 20, 16;
First five polynomials v(n,x):
  1
  1 + 2x
  1 + 3x +  4x^2
  1 + 4x +  8x^2 +  8x^3
  1 + 5x + 13x^2 + 20x^3 + 16x^4
(1, 0, -1/2, 1/2, 0, 0, ...) DELTA (0, 2, 0, 0, 0, ...) begins:
  1;
  1, 0;
  1, 2,  0;
  1, 3,  4,  0;
  1, 4,  8,  8,  0;
  1, 5, 13, 20, 16,  0;
  1, 6, 19, 38, 48, 32, 0;
Triangle in A049600 begins:
  0;
  0, 1;
  0, 1, 2;
  0, 1, 3,  4;
  0, 1, 4,  8,  8;
  0, 1, 5, 13, 20, 16;
  0, 1, 6, 19, 38, 48, 32;
  ... - _Philippe Deléham_, Mar 23 2012
		

Crossrefs

Programs

  • Haskell
    a208341 n k = a208341_tabl !! (n-1) !! (k-1)
    a208341_row n = a208341_tabl !! (n-1)
    a208341_tabl = map reverse a106195_tabl
    -- Reinhard Zumkeller, Dec 16 2013
    
  • Maple
    T := (n,k) -> hypergeom([n-k+1, -k],[1],-1):
    seq(lprint(seq(simplify(T(n,k)),k=0..n)),n=0..7); # Peter Luschny, May 20 2015
  • Mathematica
    u[1, x_] := 1; v[1, x_] := 1; z = 13;
    u[n_, x_] := u[n - 1, x] + x*v[n - 1, x];
    v[n_, x_] := u[n - 1, x] + 2*x*v[n - 1, x];
    Table[Expand[u[n, x]], {n, 1, z/2}]
    Table[Expand[v[n, x]], {n, 1, z/2}]
    cu = Table[CoefficientList[u[n, x], x], {n, 1, z}];
    TableForm[cu]
    Flatten[%]   (* A160232 *)
    Table[Expand[v[n, x]], {n, 1, z}]
    cv = Table[CoefficientList[v[n, x], x], {n, 1, z}];
    TableForm[cv]
    Flatten[%]   (* A208341 *)
  • PARI
    T(n,k) = sum(i = 0, k, 2^(k-i)*binomial(n-k,i)*binomial(k,i));
    tabl(nn) = for (n=0, nn, for (k=0, n, print1(T(n, k), ", ")); print();); \\ Michel Marcus, Aug 14 2015

Formula

u(n,x) = u(n-1,x) + x*v(n-1,x), v(n,x) = u(n-1,x) + 2x*v(n-1,x), where u(1,x) = 1, v(1,x) = 1.
As DELTA-triangle with 0 <= k <= n: T(n,k) = T(n-1,k) + 2*T(n-1,k-1) - T(n-2,k-1), T(0,0) = T(1,0) = T(2,0) = 1, T(1,1) = T(2,2) = 0, T(2,1) = 2 and T(n,k) = 0 if k<0 or if k>n. - Philippe Deléham, Mar 12 2012
G.f.: (1-2*y*x+y*x^2)/(1-x-2*y*x+y*x^2). - Philippe Deléham, Mar 12 2012
T(n,k) = A106195(n-1,n-k), k = 1..n. - Reinhard Zumkeller, Dec 16 2013
From Peter Bala, Aug 11 2015: (Start)
The following remarks assume the row and column indexing start at 0.
T(n,k) = Sum_{i = 0..k} 2^(k-i)*binomial(n-k,i)*binomial(k,i) = Sum_{i = 0..k} binomial(n-k+i,i)*binomial(k,i).
Riordan array (1/(1 - x), x*(2 - x)/(1 - x)).
O.g.f. 1/(1 - (2*t + 1)*x + t*x^2) = 1 + (1 + 2*t)*x + (1 + 3*t + 4*t^2)*x^2 + ....
Read as a square array, this equals P * transpose(P^2), where P denotes Pascal's triangle A007318. (End)
For kGlen Whitney, Aug 17 2021

Extensions

New name from Peter Luschny, May 20 2015
Offset corrected by Joerg Arndt, Aug 12 2015

A221876 T(n,k) is the number of order-preserving full contraction mappings (of an n-chain) with exactly k fixed points.

Original entry on oeis.org

1, 2, 1, 5, 2, 1, 12, 5, 2, 1, 28, 12, 5, 2, 1, 64, 28, 12, 5, 2, 1, 144, 64, 28, 12, 5, 2, 1, 320, 144, 64, 28, 12, 5, 2, 1, 704, 320, 144, 64, 28, 12, 5, 2, 1, 1536, 704, 320, 144, 64, 28, 12, 5, 2, 1, 3328, 1536, 704, 320, 144, 64, 28, 12, 5, 2, 1
Offset: 1

Views

Author

Abdullahi Umar, Feb 28 2013

Keywords

Comments

Row sum is A001792(n-1).
The matrix inverse starts
1;
-2,1;
-1,-2,1;
0,-1,-2,1;
1,0,-1,-2,1;
2,1,0,-1,-2,1;
3,2,1,0,-1,-2,1;
4,3,2,1,0,-1,-2,1;
5,4,3,2,1,0,-1,-2,1;
6,5,4,3,2,1,0,-1,-2,1;
7,6,5,4,3,2,1,0,-1,-2,1; - R. J. Mathar, Apr 12 2013
...
T(n,k) is also the total number of occurrences of parts k in all compositions (ordered partitions) of n, see example. The equivalent sequence for partitions is A066633. Omar E. Pol, Aug 26 2013

Examples

			T(5,3) = 5 because there are exactly 5 order-preserving full contraction mappings (of a 5-chain) with exactly 3 fixed points, namely: (12333), (12334), (22344), (23345), (33345).
Triangle begins:
1,
2, 1,
5, 2, 1,
12, 5, 2, 1,
28, 12, 5, 2, 1,
64, 28, 12, 5, 2, 1,
144, 64, 28, 12, 5, 2, 1,
320, 144, 64, 28, 12, 5, 2, 1,
704, 320, 144, 64, 28, 12, 5, 2, 1,
1536, 704, 320, 144, 64, 28, 12, 5, 2, 1,
3328, 1536, 704, 320, 144, 64, 28, 12, 5, 2, 1,
...
Note that column k is column 1 shifted down by k positions.
Row 4 is [12, 5, 2, 1]: in the compositions of 4
[ 1]  [ 1 1 1 1 ]
[ 2]  [ 1 1 2 ]
[ 3]  [ 1 2 1 ]
[ 4]  [ 1 3 ]
[ 5]  [ 2 1 1 ]
[ 6]  [ 2 2 ]
[ 7]  [ 3 1 ]
[ 8]  [ 4 ]
there are 12 parts=1, 5 parts=2, 2 part=3, and 1 part=4.
- _Joerg Arndt_, Sep 01 2013
		

Crossrefs

Programs

  • Mathematica
    T[n_, n_] = 1; T[n_, k_] := (n - k + 3)*2^(n - k - 2);
    Table[T[n, k], {n, 1, 11}, {k, 1, n}] // Flatten (* Jean-François Alcover, Jul 21 2018 *)

Formula

T(n,n) = 1, T(n,k) = (n-k+3)*2^(n-k-2) for n>=2 and n > k > 0.
T(2*n+1,n+1) = T(n+1,1) = A045623(n) for n>=0.
T(n,k) = A045623(n-k), n>=1, 1<=k<=n. - Omar E. Pol, Sep 01 2013
Previous Showing 71-80 of 215 results. Next