cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 70 results. Next

A057080 Even-indexed Chebyshev U-polynomials evaluated at sqrt(10)/2.

Original entry on oeis.org

1, 9, 71, 559, 4401, 34649, 272791, 2147679, 16908641, 133121449, 1048062951, 8251382159, 64962994321, 511452572409, 4026657584951, 31701808107199, 249587807272641, 1965000650073929, 15470417393318791, 121798338496476399
Offset: 0

Views

Author

Wolfdieter Lang, Aug 04 2000

Keywords

Comments

a(n) = L(n,-8)*(-1)^n, where L is defined as in A108299; see also A070997 for L(n,+8). - Reinhard Zumkeller, Jun 01 2005
General recurrence is a(n)=(a(1)-1)*a(n-1)-a(n-2), a(1)>=4, lim n->infinity a(n)= x*(k*x+1)^n, k =(a(1)-3), x=(1+sqrt((a(1)+1)/(a(1)-3)))/2. Examples in OEIS: a(1)=4 gives A002878. a(1)=5 gives A001834. a(1)=6 gives A030221. a(1)=7 gives A002315. a(1)=8 gives A033890. a(1)=9 gives A057080. a(1)=10 gives A057081. - Ctibor O. Zizka, Sep 02 2008
The primes in this sequence are 71, 34649, 16908641, 8251382159, 31701808107199,... - Ctibor O. Zizka, Sep 02 2008
The aerated sequence (b(n))n>=1 = [1, 0, 9, 0, 71, 0, 559, 0, ...] is a fourth-order linear divisibility sequence; that is, if n | m then b(n) | b(m). It is the case P1 = 0, P2 = -6, Q = -1 of the 3-parameter family of divisibility sequences found by Williams and Guy. See A100047. - Peter Bala, Mar 22 2015
From Klaus Purath, May 06 2025: (Start)
Nonnegative solutions to the Diophantine equation 3*a(n)^2 - 5*b(n)^2 = -2. The corresponding b(n) are A070997(n). Note that (a(n)*a(n+2) - a(n+1)^2)/2 = -5 and (b(n)*b(n+2) - b(n+1)^2)/2 = 3.
(a(n) + b(n))/2 = (a(n+1) - b(n+1))/2 = A001090(n+1) = Lucas U(8,1). Also a(n)*b(n+1) - a(n+1)*b(n) = -2.
a(n) = (t(i+2n+1) - t(i))/(t(i+n+1) - t(i+n)) as long as t(i+n+1) - t(i+n) != 0 for integer i and n >= 0 where (t) is a sequence satisfying t(i+3) = 9*t(i+2) - 9*t(i+1) + t(i) or t(i+2) = 8*t(i+1) - t(i), regardless of the initial values and including this sequence itself. (End)

Crossrefs

Programs

  • GAP
    a:=[1,9];; for n in [3..30] do a[n]:=8*a[n-1]-a[n-2]; od; a; # G. C. Greubel, Dec 06 2019
  • Magma
    I:=[1,9]; [n le 2 select I[n] else 8*Self(n-1)-Self(n-2): n in [1..30]]; // Vincenzo Librandi, Mar 22 2015
    
  • Maple
    A057080 := proc(n)
        option remember;
        if n <= 1 then
            op(n+1,[1,9]);
        else
            8*procname(n-1)-procname(n-2) ;
        end if;
    end proc: # R. J. Mathar, Apr 30 2017
  • Mathematica
    CoefficientList[Series[(1+x)/(1-8x+x^2), {x, 0, 33}], x] (* Vincenzo Librandi, Mar 22 2015 *)
  • PARI
    Vec((1+x)/(1-8*x+x^2) + O(x^30)) \\ Michel Marcus, Mar 22 2015
    
  • Sage
    [(lucas_number2(n,8,1)-lucas_number2(n-1,8,1))/6 for n in range(1, 21)] # Zerinvary Lajos, Nov 10 2009
    

Formula

For all elements x of the sequence, 15*x^2 + 10 is a square. Lim. n-> Inf. a(n)/a(n-1) = 4 + sqrt(15). - Gregory V. Richardson, Oct 13 2002
a(n) = 8*a(n-1) - a(n-2), a(-1)=-1, a(0)=1.
a(n) = S(n, 8) + S(n-1, 8) = S(2*n, sqrt(10)) with S(n, x) := U(n, x/2), Chebyshev polynomials of 2nd kind, A049310. S(n, 8) = A001090(n).
G.f.: (1+x)/(1-8*x+x^2).
a(n) = ( ((4+sqrt(15))^(n+1) - (4-sqrt(15))^(n+1)) + ((4+sqrt(15))^n - (4-sqrt(15))^n) )/(2*sqrt(15)). - Gregory V. Richardson, Oct 13 2002
a(n) = sqrt((5*A070997(n)^2 - 2)/3) (cf. Richardson comment).
Let q(n, x) = Sum_{i=0..n} x^(n-i)*binomial(2*n-i, i) then a(n) = (-1)^n*q(n,-10). - Benoit Cloitre, Nov 10 2002
a(n) = Jacobi_P(n,1/2,-1/2,4)/Jacobi_P(n,-1/2,1/2,1); - Paul Barry, Feb 03 2006
a(n+1) = 4*a(n) + sqrt(5*(3*a(n)^2 + 2)). - Richard Choulet, Aug 30 2007
In addition to the first formula above: In general, the following applies to all recurrences (a(n)) of the form (8,-1) with a(0) = 1 and arbritrary a(1): 15*a(n)^2 + y = b^2 where y = x^2 + 8*x + 1 and x = a(1) - 8. Also y = a(k+1)^2 - a(k)*a(k+1) for any k >=0. - Klaus Purath, May 06 2025
From Peter Bala, May 09 2025: (Start)
a(n) = Dir(n, 4), where Dir(n, x) denotes the n-th row polynomial of the triangle A244419.
a(n)^2 - 8*a(n)*a(n+1) + a(n+1)^2 = 10.
More generally, for arbitrary x, a(n+x)^2 - 8*a(n+x)*a(n+x+1) + a(n+x+1)^2 = 10 with a(n) := ( ((4+sqrt(15))^(n+1) - (4-sqrt(15))^(n+1)) + ((4+sqrt(15))^n - (4-sqrt(15))^n) )/(2*sqrt(15)) as given above.
a(n+1/2) = sqrt(10) * A001090(n+1).
a(n+3/4) + a(n+1/4) = sqrt(10)*sqrt(sqrt(10) + 2) * A001090(n+1).
a(n+3/4) - a(n+1/4) = sqrt((sqrt(40) - 4)/3) * A001091(n+1).
Sum_{n >= 1} (-1)^(n+1)/(a(n) - 1/a(n)) = 1/10 (telescoping series: for n >= 1, 10/(a(n) - 1/a(n)) = 1/A001090(n) + 1/A001090(n+1)).
Product_{n >= 1} (a(n) + 1)/(a(n) - 1) = sqrt(5/3) (telescoping product: Product_{n = 1..k} ((a(n) + 1)/(a(n) - 1))^2 = 5/3 * (1 - 2/(1 + A001091(k+1)))). (End)

A028230 Bisection of A001353. Indices of square numbers which are also octagonal.

Original entry on oeis.org

1, 15, 209, 2911, 40545, 564719, 7865521, 109552575, 1525870529, 21252634831, 296011017105, 4122901604639, 57424611447841, 799821658665135, 11140078609864049, 155161278879431551, 2161117825702177665, 30100488280951055759, 419245718107612602961, 5839339565225625385695
Offset: 1

Views

Author

Keywords

Comments

Chebyshev S-sequence with Diophantine property.
4*b(n)^2 - 3*a(n)^2 = 1 with b(n) = A001570(n), n>=0.
y satisfying the Pellian x^2 - 3*y^2 = 1, for even x given by A094347(n). - Lekraj Beedassy, Jun 03 2004
a(n) = L(n,-14)*(-1)^n, where L is defined as in A108299; see also A001570 for L(n,+14). - Reinhard Zumkeller, Jun 01 2005
Product x*y, where the pair (x, y) solves for x^2 - 3y^2 = -2, i.e., a(n) = A001834(n)*A001835(n). - Lekraj Beedassy, Jul 13 2006
Numbers n such that RootMeanSquare(1,3,...,2*A001570(k)-1) = n. - Ctibor O. Zizka, Sep 04 2008
As n increases, this sequence is approximately geometric with common ratio r = lim(n -> oo, a(n)/a(n-1)) = (2 + sqrt(3))^2 = 7 + 4 * sqrt(3). - Ant King, Nov 15 2011

References

  • R. L. Graham, D. E. Knuth, and O. Patashnik, Concrete Mathematics. Addison-Wesley, Reading, MA, 1990, p. 329.
  • J. D. E. Konhauser et al., Which Way Did the Bicycle Go?, MAA 1996, p. 104.

Crossrefs

Programs

  • GAP
    a:=[1,15];; for n in [3..30] do a[n]:=14*a[n-1]-a[n-2]; od; a; # G. C. Greubel, Dec 06 2019
  • Magma
    I:=[1,15]; [n le 2 select I[n] else 14*Self(n-1) - Self(n-2): n in [1..30]]; // G. C. Greubel, Dec 06 2019
    
  • Maple
    seq(coeff(series((1+x)/(1-14*x+x^2), x, n+1), x, n), n = 0..30); # G. C. Greubel, Dec 06 2019
  • Mathematica
    LinearRecurrence[{14, - 1}, {1, 15}, 17] (* Ant King, Nov 15 2011 *)
    CoefficientList[Series[(1+x)/(1-14x+x^2), {x, 0, 30}], x] (* Vincenzo Librandi, Jun 17 2014 *)
  • PARI
    Vec((1+x)/(1-14*x+x^2)+O(x^99)) \\ Charles R Greathouse IV, Jun 16 2014
    
  • PARI
    isok(n) = ispolygonal(n^2, 8); \\ Michel Marcus, Jul 09 2017
    
  • Sage
    [(lucas_number2(n,14,1)-lucas_number2(n-1,14,1))/12 for n in range(1, 18)] # Zerinvary Lajos, Nov 10 2009
    

Formula

a(n) = 2*A001921(n)+1.
a(n) = 14*a(n-1) - a(n-2) for n>1.
a(n) = S(n, 14) + S(n-1, 14) = S(2*n, 4) with S(n, x) := U(n, x/2) Chebyshev's polynomials of the second kind. See A049310. S(-1, x) = 0, S(n, 14) = A007655(n+1) and S(n, 4) = A001353(n+1).
G.f.: x*(1+x)/(1-14*x+x^2).
a(n) = (ap^(2*n+1) - am^(2*n+1))/(ap - am) with ap := 2+sqrt(3) and am := 2-sqrt(3).
a(n+1) = Sum_{k=0..n} (-1)^k*binomial(2*n-k, k)*16^(n-k), n>=0.
a(n) = sqrt((4*A001570(n-1)^2 - 1)/3).
a(n) ~ 1/6*sqrt(3)*(2 + sqrt(3))^(2*n-1). - Joe Keane (jgk(AT)jgk.org), May 15 2002
4*a(n+1) = (A001834(n))^2 + 4*(A001835(n+1))^2 - (A001835(n))^2. E.g. 4*a(3) = 4*209 = 19^2 + 4*11^2 - 3^2 = (A001834(2))^2 + 4*(A001835(3))^2 - (A001835(2))^2. Generating floretion: 'i + 2'j + 3'k + i' + 2j' + 3k' + 4'ii' + 3'jj' + 4'kk' + 3'ij' + 3'ji' + 'jk' + 'kj' + 4e. - Creighton Dement, Dec 04 2004
a(n) = f(a(n-1),7) + f(a(n-2),7), where f(x,s) = s*x + sqrt((s^2-1)*x^2+1); f(0,s)=0. - Marcos Carreira, Dec 27 2006
From Ant King, Nov 15 2011: (Start)
a(n) = 1/6 * sqrt(3) * ( (tan(5*Pi/12)) ^ (2n-1) - (tan(Pi/12)) ^ (2n-1) ).
a(n) = floor (1/6 * sqrt(3) * (tan(5*Pi/12)) ^ (2n-1)). (End)
a(n) = A001353(n)^2-A001353(n-1)^2. - Antonio Alberto Olivares, Apr 06 2020
E.g.f.: 1 - exp(7*x)*(3*cosh(4*sqrt(3)*x) - 2*sqrt(3)*sinh(4*sqrt(3)*x))/3. - Stefano Spezia, Dec 12 2022
a(n) = sqrt(A036428(n)). - Bernard Schott, Dec 19 2022

Extensions

Additional comments from Wolfdieter Lang, Nov 29 2002
Incorrect recurrence relation deleted by Ant King, Nov 15 2011
Minor edits by Vaclav Kotesovec, Jan 28 2015

A057081 Even-indexed Chebyshev U-polynomials evaluated at sqrt(11)/2.

Original entry on oeis.org

1, 10, 89, 791, 7030, 62479, 555281, 4935050, 43860169, 389806471, 3464398070, 30789776159, 273643587361, 2432002510090, 21614379003449, 192097408520951, 1707262297685110, 15173263270645039, 134852107138120241, 1198495700972437130, 10651609201613813929
Offset: 0

Views

Author

Wolfdieter Lang, Aug 04 2000

Keywords

Comments

This is the m=11 member of the m-family of sequences S(n,m-2)+S(n-1,m-2) = S(2*n,sqrt(m)) (for S(n,x) see Formula). The m=4..10 instances are A005408, A002878, A001834, A030221, A002315, A033890 and A057080, resp. The m=1..3 (signed) sequences are: A057078, A057077 and A057079, resp.
General recurrence is a(n)=(a(1)-1)*a(n-1)-a(n-2), a(1)>=4, lim_{n->oo} a(n)= x*(k*x+1)^n, k =(a(1)-3), x=(1+sqrt((a(1)+1)/(a(1)-3)))/2. Examples in OEIS: a(1)=4 gives A002878. a(1)=5 gives A001834. a(1)=6 gives A030221. a(1)=7 gives A002315. a(1)=8 gives A033890. a(1)=9 gives A057080. a(1)=10 gives A057081. - Ctibor O. Zizka, Sep 02 2008
The primes in this sequence are 89, 389806471, 192097408520951, 7477414486269626733119, ... - Ctibor O. Zizka, Sep 02 2008
The aerated sequence (b(n))n>=1 = [1, 0, 10, 0, 89, 0, 791, 0, ...] is a fourth-order linear divisibility sequence; that is, if n | m then b(n) | b(m). It is the case P1 = 0, P2 = -7, Q = -1 of the 3-parameter family of divisibility sequences found by Williams and Guy. See A100047. - Peter Bala, Mar 22 2015

Crossrefs

Programs

  • Maple
    A057081 := proc(n)
        option remember;
        if n <= 1 then
            op(n+1,[1,10]);
        else
            9*procname(n-1)-procname(n-2) ;
        end if;
    end proc: # R. J. Mathar, Apr 30 2017
  • Mathematica
    CoefficientList[Series[(1 + x)/(1 - 9*x + x^2), {x,0,50}], x] (* or *) LinearRecurrence[{9,-1}, {1,10}, 50] (* G. C. Greubel, Apr 12 2017 *)
  • PARI
    Vec((1+x)/(1-9*x+x^2) + O(x^30)) \\ Michel Marcus, Mar 22 2015
  • Sage
    [(lucas_number2(n,9,1)-lucas_number2(n-1,9,1))/7 for n in range(1, 20)] # Zerinvary Lajos, Nov 10 2009
    

Formula

a(n) = 9*a(n-1) - a(n-2), a(-1)=-1, a(0)=1.
a(n) = S(n, 9) + S(n-1, 9) = S(2*n, sqrt(11)) with S(n, x) := U(n, x/2), Chebyshev polynomials of 2nd kind, A049310. S(n, 9) = A018913(n).
G.f.: (1+x)/(1-9*x+x^2).
Let q(n, x) = Sum{i=0..n} x^(n-i)*binomial(2*n-i, i), a(n) = (-1)^n*q(n, -11). - Benoit Cloitre, Nov 10 2002
a(n) = L(n,-9)*(-1)^n, where L is defined as in A108299; see also A070998 for L(n,+9). - Reinhard Zumkeller, Jun 01 2005
From Peter Bala, Jun 08 2025: (Start)
a(n) = (1/sqrt(7)) * ( ((sqrt(11) + sqrt(7))/2)^(2*n+1) - ((sqrt(11) - sqrt(7))/2)^(2*n+1) ).
Sum_{n >= 1} (-1)^(n+1)/(a(n) - 1/a(n)) = 1/11 (telescoping series: 11/(a(n) - 1/a(n)) = 1/A018913(n+1) + 1/A018913(n)).
Conjecture: for k >= 1, Sum_{n >= 1} (-1)^(n+1)/(a(k*n) - s(k)/a(k*n)) = 1/(1 + a(k)) where s(k) = a(0) + a(1) + ... + a(k-1).
Product_{n >= 1} (a(n) + 1)/(a(n) - 1) = sqrt(11/7) [telescoping product: ((a(n) + 1)/(a(n) - 1))^2 = (1 - 4/b(n+1))/(1 - 4/b(n)), where b(n) = 2 + A056918(n)]. (End)

A294099 Rectangular array read by (upward) antidiagonals: A(n,k) = Sum_{j=0..k} (-1)^floor(j/2)*binomial(k-floor((j+1)/2), floor(j/2))*n^(k-j), n >= 1, k >= 0.

Original entry on oeis.org

1, 1, 2, 1, 3, 1, 1, 4, 5, -1, 1, 5, 11, 7, -2, 1, 6, 19, 29, 9, -1, 1, 7, 29, 71, 76, 11, 1, 1, 8, 41, 139, 265, 199, 13, 2, 1, 9, 55, 239, 666, 989, 521, 15, 1, 1, 10, 71, 377, 1393, 3191, 3691, 1364, 17, -1, 1, 11, 89, 559, 2584, 8119, 15289, 13775, 3571, 19, -2
Offset: 1

Views

Author

Keywords

Comments

This array is used to compute A269254: A269254(n) = least k such that A(n,k) is a prime, or -1 if no such k exists.
For detailed theory, see [Hone]. - L. Edson Jeffery, Feb 09 2018
The array can be extended to k<0 with A(n, k) = -A(n, -k-1) for all k in Z. - Michael Somos, Jun 19 2023

Examples

			Array begins:
  1   2    1    -1     -2      -1        1         2          1          -1
  1   3    5     7      9      11       13        15         17          19
  1   4   11    29     76     199      521      1364       3571        9349
  1   5   19    71    265     989     3691     13775      51409      191861
  1   6   29   139    666    3191    15289     73254     350981     1681651
  1   7   41   239   1393    8119    47321    275807    1607521     9369319
  1   8   55   377   2584   17711   121393    832040    5702887    39088169
  1   9   71   559   4401   34649   272791   2147679   16908641   133121449
  1  10   89   791   7030   62479   555281   4935050   43860169   389806471
  1  11  109  1079  10681  105731  1046629  10360559  102558961  1015229051
		

Crossrefs

Programs

  • Mathematica
    (* Array: *)
    Grid[Table[LinearRecurrence[{n, -1}, {1, 1 + n}, 10], {n, 10}]]
    (* Array antidiagonals flattened (gives this sequence): *)
    A294099[n_, k_] := Sum[(-1)^(Floor[j/2]) Binomial[k - Floor[(j + 1)/2], Floor[j/2]] n^(k - j), {j, 0, k}]; Flatten[Table[A294099[n - k, k], {n, 11}, {k, 0, n - 1}]]
  • PARI
    {A(n, k) = sum(j=0, k, (-1)^(j\2)*binomial(k-(j+1)\2, j\2)*n^(k-j))}; /* Michael Somos, Jun 19 2023 */

Formula

A(n,0) = 1, A(n,1) = n + 1, A(n,k) = n*A(n,k-1) - A(n,k-2), n >= 1, k >= 2.
G.f. for row n: (1 + x)/(1 - n*x + x^2), n >= 1.
A(n, k) = B(-n, k) where B = A299045. - Michael Somos, Jun 19 2023

A299100 Indices k such that s_k(4) is a (probable) prime, where s_k(4) = 4*s_{k-1}(4) - s_{k-2}(4), k >= 2, s_0(4) = 1, s_1(4) = 5.

Original entry on oeis.org

1, 2, 3, 6, 9, 14, 18, 146, 216, 293, 704, 1143, 1530, 1593, 2924, 7163, 9176, 9489, 11531, 39543, 50423, 60720, 62868, 69993, 69995, 88103, 88163, 104606, 164441, 178551
Offset: 1

Views

Author

Keywords

Comments

From a problem in A269254. For detailed theory, see [Hone].
a(31) > 2*10^5. - Robert Price, May 29 2020

Crossrefs

Programs

  • Mathematica
    s[k_, m_] := s[k, m] = Which[k == 0, 1, k == 1, 1 + m, True, m s[k - 1, m] - s[k - 2, m]]; Select[Range@ 2000, PrimeQ@ Abs@ s[#, 4] &] (* Michael De Vlieger, Feb 03 2018 *)

Extensions

a(24)-a(30) from Robert Price, May 29 2020

A299107 Probable primes in sequence {s_k(4)}, where s_k(4) = 4*s_{k-1}(4) - s_{k-2}(4), k >= 2, s_0(4) = 1, s_1(4) = 5.

Original entry on oeis.org

5, 19, 71, 3691, 191861, 138907099, 26947261171, 436315574686414344004975231616076636245689199862837798457639364993981991744926792179
Offset: 1

Views

Author

Keywords

Comments

From a problem in A269254. For detailed theory, see [Hone].
Subsequent terms have too many digits to display.

Crossrefs

Formula

a(n) = s_{A299100(n)}(4) = A001834(A299100(n)).

A082630 Limit of the sequence obtained from S(0) = (1,1) and, for n > 0, S(n) = I(S(n-1)), where I consists of inserting, for i = 1, 2, 3..., the term a(i) + a(i+1) between any two terms for which 7*a(i+1) <= 11*a(i).

Original entry on oeis.org

1, 2, 5, 8, 19, 30, 71, 112, 265, 418, 989, 1560, 3691, 5822, 13775, 21728, 51409, 81090, 191861, 302632, 716035, 1129438, 2672279, 4215120, 9973081, 15731042, 37220045, 58709048, 138907099, 219105150, 518408351, 817711552, 1934726305, 3051741058, 7220496869
Offset: 1

Views

Author

John W. Layman, May 23 2003

Keywords

Comments

The bisection {1,5,19,265,...} appears to be A001834 and to satisfy the recurrence a(n) = 4*a(n-1) - a(n-2) and the condition that 3*a(n)^2 + 6 is a square. The other bisection {2,8,30,112,...} appears to be A052530 and one-half of this bisection, {1,4,15,56,...}, appears to be A001353 and to satisfy a(n) = 4*a(n-1) - a(n-2) and the condition that 3*a(n)^2 + 1 is a square.
Conjecturally, a(n) = x + y, where these values solve x^2 - floor(y^2/3) = 1, see related sequences and formula below. - Richard R. Forberg, Sep 08 2013
Let alpha be an algebraic integer and define a sequence of integers a(alpha,n) by the condition a(alpha,n) = max { integer d : alpha^n = = 1 (mod d)}. Silverman shows that a(alpha,n) is a strong-divisibility sequence, that is gcd(a(n), a(m)) = a(gcd(n, m)) for all n and m in N; in particular, if n divides m then a(n) divides a(m). This sequence appears to be the strong divisibility sequence a(2 + sqrt(3),n) (Silverman, Example 4). - Peter Bala, Jan 10 2014
This sequence appears as the coefficients of the defining inequalities of a polyhedral realization of the B(infinity) crystal of the Kac-Moody Lie algebra with Cartan matrix [2,-2;-3,2] (see Nakashima-Zelevinsky reference). - Paul E. Gunnells, May 05 2019
From Zhuorui He, Jul 16 2025: (Start)
This sequence is Ratio-determined insertion sequence I(7/11) (see the Layman link below).
If S(0) in the definition is (1,1,a,b,c...) (all numbers >= 0) instead of (1,1), the resulting sequence is still the same.
For a finite sequence S, let k be the least i such that 7*S(i+1) <= 11*S(i). If k didn't exist then I(S)=S. Else, let k' be the least i such that 7*I(S)(i+1) <= 11*I(S)(i). Then k <= k' <= k+1.
This sequence can be generated by this process:
Step 1: Let X=1 and Y=1.
Step 2: If 7*(X+Y)<=11*X, then Y:=X+Y, repeat this step. Else go to step 3.
Step 3: Append X to the sequence. Let X:=X+Y, go back to step 2. (End)

Examples

			Let S(0) = (1,1). Since 7*1 <= 11*1 we obtain S(1) = (1,2,1). Then since 7*2 > 11*1 and 7*1 <= 11*2, we obtain S(2) = (1,2,3,1). Continuing, we get S(3) = (1,2,5,3,4,1), S(4) = (1,2,5,8,3,7,4,5,1), S(5) = (1,2,5,8,11,3,...), S(6) =(1,2,5,8,19,11,...), etc.
		

Crossrefs

Programs

  • Python
    def A082630_list(n):
      a = []
      x = y = 1
      while len(a) < n:
        a.append(x)
        while 7*(x+y) <= 11*x:
          y += x
        x += y
      return a # Zhuorui He, Jul 16 2025

Formula

The sequence appears to satisfy a(n) = 4*a(n-2) - a(n-4).
Apparently a(n)*a(n+3) = -2 + a(n+1)*a(n+2). - Ralf Stephan, May 29 2004
Conjecturally, a(n) = A143643(n-1) + A005246(n), for n => 2, as derived from comment above. - Richard R. Forberg, Sep 08 2013
If the above conjectures are true, then a(n) = A001353(n)/A005246(n+1). - Andrey Zabolotskiy, Sep 26 2024

Extensions

Edited by M. F. Hasler, Nov 06 2018

A162436 a(n) = 3*a(n-2) for n > 2; a(1) = 1, a(2) = 3.

Original entry on oeis.org

1, 3, 3, 9, 9, 27, 27, 81, 81, 243, 243, 729, 729, 2187, 2187, 6561, 6561, 19683, 19683, 59049, 59049, 177147, 177147, 531441, 531441, 1594323, 1594323, 4782969, 4782969, 14348907, 14348907, 43046721, 43046721, 129140163, 129140163, 387420489, 387420489, 1162261467
Offset: 1

Views

Author

Klaus Brockhaus, Jul 03 2009, Jul 05 2009

Keywords

Comments

Interleaving of A000244 and 3*A000244.
Unsigned version of A128019.
Partial sums are in A164123.
Apparently a(n) = A056449(n-1) for n > 1. a(n) = A108411(n) for n >= 1.
Binomial transform is A026150 without initial 1, second binomial transform is A001834, third binomial transform is A030192, fourth binomial transform is A161728, fifth binomial transform is A162272.

Crossrefs

Cf. A000244 (powers of 3), A128019 (expansion of (1-3x)/(1+3x^2)), A164123, A026150, A001834, A030192, A161728, A162272.
Essentially the same as A056449 (3^floor((n+1)/2)) and A108411 (powers of 3 repeated).

Programs

  • Magma
    [ n le 2 select 2*n-1 else 3*Self(n-2): n in [1..35] ];
    
  • Mathematica
    CoefficientList[Series[(-3*x - 1)/(3*x^2 - 1), {x, 0, 200}], x] (* Vladimir Joseph Stephan Orlovsky, Jun 10 2011 *)
    Transpose[NestList[{Last[#],3*First[#]}&,{1,3},40]][[1]] (* or *) With[{c= 3^Range[20]},Join[{1},Riffle[c,c]]](* Harvey P. Dale, Feb 17 2012 *)
  • PARI
    a(n)=3^(n>>1) \\ Charles R Greathouse IV, Jul 15 2011

Formula

a(n) = 3^((1/4)*(2*n - 1 + (-1)^n)).
G.f.: x*(1 + 3*x)/(1 - 3*x^2).
a(n+3) = a(n+2)*a(n+1)/a(n). - Reinhard Zumkeller, Mar 04 2011
E.g.f.: cosh(sqrt(3)*x) - 1 + sinh(sqrt(3)*x)/sqrt(3). - Stefano Spezia, Dec 31 2022

Extensions

G.f. corrected, formula simplified, comments added by Klaus Brockhaus, Sep 18 2009

A129818 Riordan array (1/(1+x), x/(1+x)^2), inverse array is A039599.

Original entry on oeis.org

1, -1, 1, 1, -3, 1, -1, 6, -5, 1, 1, -10, 15, -7, 1, -1, 15, -35, 28, -9, 1, 1, -21, 70, -84, 45, -11, 1, -1, 28, -126, 210, -165, 66, -13, 1, 1, -36, 210, -462, 495, -286, 91, -15, 1, -1, 45, -330, 924, -1287, 1001, -455, 120, -17, 1, 1, -55, 495, -1716, 3003, -3003, 1820, -680, 153, -19, 1
Offset: 0

Views

Author

Philippe Deléham, Jun 09 2007

Keywords

Comments

This sequence is up to sign the same as A129818. - T. D. Noe, Sep 30 2011
Row sums: A057078. - Philippe Deléham, Jun 11 2007
Subtriangle of the triangle given by (0, -1, 0, -1, 0, 0, 0, 0, 0, 0, 0, ...) DELTA (1, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, ...) where DELTA is the operator defined in A084938. - Philippe Deléham, Mar 19 2012
This triangle provides the coefficients of powers of x^2 for the even-indexed Chebyshev S polynomials (see A049310): S(2*n,x) = Sum_{k=0..n} T(n,k)*x^(2*k), n >= 0. - Wolfdieter Lang, Dec 17 2012
If L(x^n) := C(n) = A000108(n) (Catalan numbers), then the polynomials P_n(x) := Sum_{k=0..n} T(n,k)*x^k are orthogonal with respect to the inner product given by (f(x),g(x)) := L(f(x)*g(x)). - Michael Somos, Jan 03 2019

Examples

			Triangle T(n,k) begins:
  n\k  0   1    2     3     4     5    6    7    8   9 10 ...
   0:  1
   1: -1   1
   2:  1  -3    1
   3: -1   6   -5     1
   4:  1 -10   15    -7     1
   5: -1  15  -35    28    -9     1
   6:  1 -21   70   -84    45   -11    1
   7: -1  28 -126   210  -165    66  -13    1
   8:  1 -36  210  -462   495  -286   91  -15    1
   9: -1  45 -330   924 -1287  1001 -455  120  -17   1
  10:  1 -55  495 -1716  3003 -3003 1820 -680  153 -19  1
  ... Reformatted by _Wolfdieter Lang_, Dec 17 2012
Recurrence from the A-sequence A115141:
15 = T(4,2) = 1*6 + (-2)*(-5) + (-1)*1.
(0, -1, 0, -1, 0, 0, ...) DELTA (1, 0, 1, -1, 0, 0, ...) begins:
  1
  0,  1
  0, -1,   1
  0,  1,  -3,   1
  0, -1,   6,  -5,  1
  0,  1, -10,  15, -7,  1
  0, -1,  15, -35, 28, -9, 1. - _Philippe Deléham_, Mar 19 2012
Row polynomial for n=3 in terms of x^2: S(6,x) = -1 + 6*x^2 -5*x^4 + 1*x^6, with Chebyshev's S polynomial. See a comment above. - _Wolfdieter Lang_, Dec 17 2012
Boas-Buck type recurrence: -35 = T(5,2) = (5/3)*(-1*1 +1*(-5) - 1*15) = -3*7 = -35. - _Wolfdieter Lang_, Jun 03 2020
		

Crossrefs

Programs

  • Maple
    # The function RiordanSquare is defined in A321620.
    RiordanSquare((1 - sqrt(1 - 4*x))/(2*x), 10):
    LinearAlgebra[MatrixInverse](%); # Peter Luschny, Jan 04 2019
  • Mathematica
    max = 10; Flatten[ CoefficientList[#, y] & /@ CoefficientList[ Series[ (1 + x)/(1 + (2 - y)*x + x^2), {x, 0, max}], x]] (* Jean-François Alcover, Sep 29 2011, after Wolfdieter Lang *)
  • Sage
    @CachedFunction
    def A129818(n,k):
        if n< 0: return 0
        if n==0: return 1 if k == 0 else 0
        h = A129818(n-1,k) if n==1 else 2*A129818(n-1,k)
        return A129818(n-1,k-1) - A129818(n-2,k) - h
    for n in (0..9): [A129818(n,k) for k in (0..n)] # Peter Luschny, Nov 20 2012

Formula

T(n,k) = (-1)^(n-k)*A085478(n,k) = (-1)^(n-k)*binomial(n+k,2*k).
Sum_{k=0..n} T(n,k)*A000531(k) = n^2, with A000531(0)=0. - Philippe Deléham, Jun 11 2007
Sum_{k=0..n} T(n,k)*x^k = A033999(n), A057078(n), A057077(n), A057079(n), A005408(n), A002878(n), A001834(n), A030221(n), A002315(n), A033890(n), A057080(n), A057081(n), A054320(n), A097783(n), A077416(n), A126866(n), A028230(n+1) for x = 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16, respectively. - Philippe Deléham, Nov 19 2009
O.g.f.: (1+x)/(1+(2-y)*x+x^2). - Wolfdieter Lang, Dec 15 2010
O.g.f. column k with leading zeros (Riordan array, see NAME): (1/(1+x))*(x/(1+x)^2)^k, k >= 0. - Wolfdieter Lang, Dec 15 2010
From Wolfdieter Lang, Dec 20 2010: (Start)
Recurrences from the Z- and A-sequences for Riordan arrays. See the W. Lang link under A006232 for details and references.
T(n,0) = -1*T(n-1,0), n >= 1, from the o.g.f. -1 for the Z-sequence (trivial result).
T(n,k) = Sum_{j=0..n-k} A(j)*T(n-1,k-1+j), n >= k >= 1, with A(j):= A115141(j) = [1,-2,-1,-2,-5,-14,...], j >= 0 (o.g.f. 1/c(x)^2 with the A000108 (Catalan) o.g.f. c(x)). (End)
T(n,k) = (-1)^n*A123970(n,k). - Philippe Deléham, Feb 18 2012
T(n,k) = -2*T(n-1,k) + T(n-1,k-1) - T(n-2,k), T(0,0) = T(1,1) = 1, T(1,0) = -1, T(n,k) = 0 if k < 0 or if k > n. - Philippe Deléham, Mar 19 2012
A039599(m,n) = Sum_{k=0..n} T(n,k) * C(k+m) where C(n) are the Catalan numbers. - Michael Somos, Jan 03 2019
Equals the matrix inverse of the Riordan square (cf. A321620) of the Catalan numbers. - Peter Luschny, Jan 04 2019
Boas-Buck type recurrence for column k >= 0 (see Aug 10 2017 comment in A046521 with references): T(n,k) = ((1 + 2*k)/(n - k))*Sum_{j = k..n-1} (-1)^(n-j)*T(j,k), with input T(n,n) = 1, and T(n,k) = 0 for n < k. - Wolfdieter Lang, Jun 03 2020

A054491 a(n) = 4*a(n-1) - a(n-2), a(0)=1, a(1)=6.

Original entry on oeis.org

1, 6, 23, 86, 321, 1198, 4471, 16686, 62273, 232406, 867351, 3236998, 12080641, 45085566, 168261623, 627960926, 2343582081, 8746367398, 32641887511, 121821182646, 454642843073, 1696750189646, 6332357915511, 23632681472398
Offset: 0

Views

Author

Barry E. Williams, May 04 2000

Keywords

Comments

Bisection (even part) of Chebyshev sequence with Diophantine property.
The odd part is A077234 with Diophantine companion A077235.

References

  • A. H. Beiler, Recreations in the Theory of Numbers, Dover, N. Y., 1964, pp. 122-125, 194-196.

Crossrefs

Programs

  • GAP
    a:=[1,6];; for n in [3..30] do a[n]:=4*a[n-1]-a[n-2]; od; a; # G. C. Greubel, Jan 15 2020
  • Magma
    I:=[1,6]; [n le 2 select I[n] else 4*Self(n-1) -Self(n-2): n in [1..30]]; // G. C. Greubel, Jan 15 2020
    
  • Maple
    seq( simplify(ChebyshevU(n,2) +2*ChebyshevU(n-1,2)), n=0..30); # G. C. Greubel, Jan 15 2020
  • Mathematica
    Table[ChebyshevU[n, 2] +2*ChebyshevU[n-1, 2], {n,0,30}] (* G. C. Greubel, Jan 15 2020 *)
    LinearRecurrence[{4,-1},{1,6},30] (* Harvey P. Dale, Sep 04 2021 *)
  • PARI
    a(n) = if (n==0, 1, if (n==1, 6, 4*a(n-1)-a(n-2))) \\ Michel Marcus, Jun 23 2013
    
  • PARI
    a(n) = polchebyshev(n, 2, 2) + 2*polchebyshev(n-1, 2, 2); \\ Michel Marcus, Oct 13 2021
    
  • Sage
    [chebyshev_U(n,2) +2*chebyshev_U(n-1,2) for n in (0..30)]; # G. C. Greubel, Jan 15 2020
    

Formula

-3*a(n)^2 + A077236(n)^2 = 13.
a(n) = ( 6*((2+sqrt(3))^n-(2-sqrt(3))^n) - ((2+sqrt(3))^(n-1)-(2-sqrt(3))^(n-1)) )/(2*sqrt(3)).
a(n) = 6*S(n-1, 4) - S(n-2, 4) = S(n, 4) + 2*S(n-1, 4), with S(n, x) := U(n, x/2) Chebyshev's polynomials of 2nd kind, A049310. S(-1, x) := 0, S(-2, x) := -1, S(n, 4)= A001353(n+1).
G.f.: (1+2*x)/(1-4*x+x^2).
a(n+1) = A001353(n+2) + 2*A001353(n+1). - Creighton Dement, Nov 28 2004. Comment from Vim Wenders, Mar 26 2008: This is easily verified using a(n) = (6*( (2+sqrt(3))^n - (2-sqrt(3))^n ) - ( (2+sqrt(3))^(n-1) - (2-sqrt(3))^(n-1) ))/(2*sqrt(3)) and A001353(n) = ( (2+sqrt(3))^n - (2-sqrt(3))^n )/(2*sqrt(3)).
a(n) = (-1)^n*Sum_{k = 0..n} A238731(n,k)*(-7)^k. - Philippe Deléham, Mar 05 2014
E.g.f.: (1/3)*exp(2*x)*(3*cosh(sqrt(3)*x) + 4*sqrt(3)*sinh(sqrt(3)*x)). - Stefano Spezia, Jan 27 2020

Extensions

Chebyshev comments from Wolfdieter Lang, Nov 08 2002
Previous Showing 21-30 of 70 results. Next