cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 46 results. Next

A067403 Third column of triangle A067402.

Original entry on oeis.org

1, 5, 45, 405, 3645, 32805, 295245, 2657205, 23914845, 215233605, 1937102445, 17433922005, 156905298045, 1412147682405, 12709329141645, 114383962274805, 1029455660473245, 9265100944259205, 83385908498332845, 750473176484995605, 6754258588364960445, 60788327295284644005
Offset: 0

Views

Author

Wolfdieter Lang, Jan 25 2002

Keywords

Crossrefs

Cf. A002001 (second column), A067404 (fourth column), A001019 (powers of 9).
Cf. A067402.

Programs

  • Maple
    A067403:=n->5*9^(n-1): 1,seq(A067403(n), n=1..30); # Wesley Ivan Hurt, Apr 09 2017
  • Mathematica
    Join[{1},NestList[9#&,5,30]] (* or *) CoefficientList[Series[ (1-4x)/ (1-9x),{x,0,30}],x] (* Harvey P. Dale, Apr 26 2011 *)
  • PARI
    Vec((1-4*x)/(1-9*x) + O(x^30)) \\ Michel Marcus, Apr 09 2017

Formula

a(n) = A067402(n+2, 2).
a(n) = 5*9^(n-1) for n>=1, a(0) = 1.
G.f.: (1-4*x)/(1-9*x).
E.g.f.: (4 + 5*exp(9*x))/9. - Stefano Spezia, Sep 30 2022

A067410 Triangle with columns built from certain power sequences.

Original entry on oeis.org

1, 2, 1, 4, 3, 1, 8, 12, 4, 1, 16, 48, 24, 5, 1, 32, 192, 144, 40, 6, 1, 64, 768, 864, 320, 60, 7, 1, 128, 3072, 5184, 2560, 600, 84, 8, 1, 256, 12288, 31104, 20480, 6000, 1008, 112, 9, 1, 512, 49152, 186624, 163840, 60000, 12096, 1568, 144, 10, 1
Offset: 0

Views

Author

Wolfdieter Lang, Jan 25 2002

Keywords

Examples

			Triangle starts:
  1;
  2,  1;
  4,  3, 1;
  8, 12, 4, 1;
  ...
		

Crossrefs

Cf. A009998 (triangle built from powers of (m+1)), A067402.

Programs

  • Mathematica
    A[n_,m_]:=If[n==m,1,(m+2)(2(m+1))^(n-m-1)]; Flatten[Table[A[n,m],{n,0,9},{m,0,n}]] (* Stefano Spezia, Sep 30 2022 *)

Formula

a(n, m) = 1 if n = m; a(n, m) = (m+2)*(2*(m+1))^(n-m-1) if n > m >= 0.
G.f. for column m: (x^m)*(1-m*x)/(1-2*(m+1)*x).

A140660 a(n) = 3*4^n + 1.

Original entry on oeis.org

4, 13, 49, 193, 769, 3073, 12289, 49153, 196609, 786433, 3145729, 12582913, 50331649, 201326593, 805306369, 3221225473, 12884901889, 51539607553, 206158430209, 824633720833, 3298534883329, 13194139533313, 52776558133249
Offset: 0

Views

Author

Paul Curtz, Jul 10 2008

Keywords

Comments

An Engel expansion of 4/3 to the base 4 as defined in A181565, with the associated series expansion 4/3 = 4/4 + 4^2/(4*13) + 4^3/(4*13*49) + 4^4/(4*13*49*193) + .... Cf. A199115. - Peter Bala, Oct 29 2013

Crossrefs

Programs

  • Magma
    [3*4^n+1: n in [0..30] ]; // Vincenzo Librandi, May 23 2011
    
  • Mathematica
    LinearRecurrence[{5,-4}, {4,13}, 50] (* or *) CoefficientList[Series[ (7*x-4)/((1-x)*(4*x-1)), {x,0,50}], x] (* G. C. Greubel, Sep 15 2017 *)
  • PARI
    x='x+O('x^50); Vec((7*x-4)/((1-x)*(4*x-1))) \\ G. C. Greubel, Sep 15 2017

Formula

a(n) = A002001(n+1) + 1.
a(n) = 4*a(n-1) - 3.
First differences: a(n+1) - a(n) = A002063(n).
a(n+k) - a(n) = 3*(4^k - 1)*A000302(n) = 9*A002450(k)*A000302(n).
a(n) = A140529(n) - A096045(n).
O.g.f.: (7*x - 4)/((1 - x)*(4*x - 1)). - R. J. Mathar, Jul 14 2008
From G. C. Greubel, Sep 15 2017: (Start)
E.g.f.: 3*exp(4*x) + exp(x).
a(n) = 5*a(n-1) - 4*a(n-2). (End)

Extensions

Edited and extended R. J. Mathar, Jul 14 2008

A200139 Triangle T(n,k), read by rows, given by (1,1,0,0,0,0,0,0,0,...) DELTA (1,0,0,0,0,0,0,0,0,...) where DELTA is the operator defined in A084938.

Original entry on oeis.org

1, 1, 1, 2, 3, 1, 4, 8, 5, 1, 8, 20, 18, 7, 1, 16, 48, 56, 32, 9, 1, 32, 112, 160, 120, 50, 11, 1, 64, 256, 432, 400, 220, 72, 13, 1, 128, 576, 1120, 1232, 840, 364, 98, 15, 1, 256, 1280, 2816, 3584, 2912, 1568, 560, 128, 17, 1, 512, 2816, 6912, 9984, 9408, 6048, 2688, 816, 162, 19, 1
Offset: 0

Views

Author

Philippe Deléham, Nov 13 2011

Keywords

Comments

Riordan array ((1-x)/(1-2x),x/(1-2x)).
Product A097805*A007318 as infinite lower triangular arrays.
Product A193723*A130595 as infinite lower triangular arrays.
T(n,k) is the number of ways to place n unlabeled objects into any number of labeled bins (with at least one object in each bin) and then designate k of the bins. - Geoffrey Critzer, Nov 18 2012
Apparently, rows of this array are unsigned diagonals of A028297. - Tom Copeland, Oct 11 2014
Unsigned A118800, so my conjecture above is true. - Tom Copeland, Nov 14 2016

Examples

			Triangle begins:
   1
   1,   1
   2,   3,   1
   4,   8,   5,   1
   8,  20,  18,   7,   1
  16,  48,  56,  32,   9,   1
  32, 112, 160, 120,  50,  11,   1
		

Crossrefs

Cf. A118800 (signed version), A081277, A039991, A001333 (antidiagonal sums), A025192 (row sums); diagonals: A000012, A005408, A001105, A002492, A072819l; columns: A011782, A001792, A001793, A001794, A006974, A006975, A006976.

Programs

  • Mathematica
    nn=15;f[list_]:=Select[list,#>0&];Map[f,CoefficientList[Series[(1-x)/(1-2x-y x) ,{x,0,nn}],{x,y}]]//Grid  (* Geoffrey Critzer, Nov 18 2012 *)

Formula

T(n,k) = 2*T(n-1,k)+T(n-1,k-1) with T(0,0)=T(1,0)=T(1,1)=1 and T(n,k)=0 for k<0 or for n
T(n,k) = A011782(n-k)*A135226(n,k) = 2^(n-k)*(binomial(n,k)+binomial(n-1,k-1))/2.
Sum_{k, 0<=k<=n} T(n,k)*x^k = A000007(n), A011782(n), A025192(n), A002001(n), A005054(n), A052934(n), A055272(n), A055274(n), A055275(n), A052268(n), A055276(n), A196731(n) for n=-1,0,1,2,3,4,5,6,7,8,9,10 respectively.
G.f.: (1-x)/(1-(2+y)*x).
T(n,k) = Sum_j>=0 T(n-1-j,k-1)*2^j.
T = A007318*A059260, so the row polynomials of this entry are given umbrally by p_n(x) = (1 + q.(x))^n, where q_n(x) are the row polynomials of A059260 and (q.(x))^k = q_k(x). Consequently, the e.g.f. is exp[tp.(x)] = exp[t(1+q.(x))] = e^t exp(tq.(x)) = [1 + (x+1)e^((x+2)t)]/(x+2), and p_n(x) = (x+1)(x+2)^(n-1) for n > 0. - Tom Copeland, Nov 15 2016
T^(-1) = A130595*(padded A130595), differently signed A118801. Cf. A097805. - Tom Copeland, Nov 17 2016
The n-th row polynomial in descending powers of x is the n-th Taylor polynomial of the rational function (1 + x)/(1 + 2*x) * (1 + 2*x)^n about 0. For example, for n = 4, (1 + x)/(1 + 2*x) * (1 + 2*x)^4 = (8*x^4 + 20*x*3 + 18*x^2 + 7*x + 1) + O(x^5). - Peter Bala, Feb 24 2018

A110594 a(1) = 4, a(2) = 12, for n>1: a(n) = 3*4^(n-1).

Original entry on oeis.org

4, 12, 48, 192, 768, 3072, 12288, 49152, 196608, 786432, 3145728, 12582912, 50331648, 201326592, 805306368, 3221225472, 12884901888, 51539607552, 206158430208, 824633720832, 3298534883328, 13194139533312, 52776558133248
Offset: 1

Author

Jonathan Vos Post, Jul 29 2005

Keywords

Crossrefs

Programs

  • GAP
    Concatenation([4],List([2..25],n->3*4^(n-1))); # Muniru A Asiru, Oct 21 2018
  • Magma
    [4] cat [3*4^(n-1): n in [2..30]]; // Vincenzo Librandi, May 29 2014
    
  • Maple
    seq(coeff(series(4*x*(1-x)/(1-4*x),x,n+1), x, n), n = 1 .. 25); # Muniru A Asiru, Oct 21 2018
  • Mathematica
    CoefficientList[Series[4 (1 - x)/(1 - 4 x), {x, 0, 40}], x] (* Vincenzo Librandi, May 29 2014 *)
  • PARI
    x='x+O('x^50); Vec(4*x*(1 - x)/(1 - 4*x)) \\ G. C. Greubel, Sep 01 2017
    

Formula

a(n) = A002001(n), n>1. - R. J. Mathar, Aug 18 2008
G.f.: 4*x*(1 - x)/(1 - 4*x). - Vincenzo Librandi, May 29 2014

Extensions

Definition corrected by R. J. Mathar, Aug 18 2008

A178789 a(n) = 4^(n-1) + 2: Number of acute angles after n iterations of the Koch snowflake construction.

Original entry on oeis.org

3, 6, 18, 66, 258, 1026, 4098, 16386, 65538, 262146, 1048578, 4194306, 16777218, 67108866, 268435458, 1073741826, 4294967298, 17179869186, 68719476738, 274877906946, 1099511627778, 4398046511106, 17592186044418, 70368744177666
Offset: 1

Author

Keywords

Comments

Starting from an equilateral triangle, at each step each straight segment is replaced by a "/\" shape of four segments of equal length, with the acute angle in the middle pointing to the exterior. The sequence counts the angles which are (i.e., already were) at both extremities, plus the one newly created acute angle in the middle of each former segment. At step n, there are 3*4^(n-1) straight segments, therefore a(n+1) = a(n) + 3*4^(n-1). - M. F. Hasler, Dec 17 2013

Crossrefs

Programs

  • Magma
    [2^(2*(n-1)) + 2: n in [1..30]]; // Vincenzo Librandi, Feb 02 2013
    
  • Maple
    A178789:=n->2+4^(n-1); seq(A178789(n), n=1..30); # Wesley Ivan Hurt, Dec 17 2013
  • Mathematica
    a=b=3;lst={a};Do[a=a+b;b*=4;AppendTo[lst,a],{n,40}];lst
    Flatten[Table[2^(2*(n-1)) + 2, {n, 1, 50}]](* or *)   CoefficientList[Series[(3 - 9*x)/(1 - 5*x + 4*x^2),{x, 0, 100}], x] (* Vincenzo Librandi, Feb 02 2013 *)
  • PARI
    A178789=n->4^(n-1)+2  \\ - M. F. Hasler, Dec 17 2013

Formula

G.f.: 3*x*(1 - 3*x)/(1 - 5*x + 4*x^2).
a(n) = 3 * A047849(n-1).
a(n) = 2^(2*(n-1)) + 2. - Vincenzo Librandi, Feb 02 2013
a(n+1) = a(n) + 3*4^(n-1) = a(n) + A002001(n) for n > 0. - M. F. Hasler, Dec 17 2013
a(n) = 2 + A000302(n-1). - Omar E. Pol, Dec 18 2013

A196661 Expansion of g.f. (1-2*x)/(1-7*x).

Original entry on oeis.org

1, 5, 35, 245, 1715, 12005, 84035, 588245, 4117715, 28824005, 201768035, 1412376245, 9886633715, 69206436005, 484445052035, 3391115364245, 23737807549715, 166164652848005, 1163152569936035, 8142067989552245, 56994475926865715, 398961331488060005
Offset: 0

Author

Philippe Deléham, Oct 05 2011

Keywords

Crossrefs

Cf. A002001, A193577 (which is the same except for the initial 1), A193722.

Programs

Formula

a(0) = 1, a(n) = 5*7^(n-1) for n>0.
a(n) = Sum_{k=0..n} A193722(n,k)*2^k.
From Elmo R. Oliveira, Mar 18 2025: (Start)
E.g.f.: (5*exp(7*x) + 2)/7.
a(n) = 7*a(n-1). (End)

A196662 Expansion of g.f. (1-3*x)/(1-10*x).

Original entry on oeis.org

1, 7, 70, 700, 7000, 70000, 700000, 7000000, 70000000, 700000000, 7000000000, 70000000000, 700000000000, 7000000000000, 70000000000000, 700000000000000, 7000000000000000, 70000000000000000, 700000000000000000, 7000000000000000000, 70000000000000000000
Offset: 0

Author

Philippe Deléham, Oct 05 2011

Keywords

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[(1-3x)/(1-10x),{x,0,20}],x] (* or *) LinearRecurrence[ {10},{1,7},30] (* or *) Join[{1},NestList[10#&,7,20]] (* Harvey P. Dale, Dec 18 2021 *)

Formula

a(0) = 1, a(n) = 7*10^(n-1) for n>0.
a(n) = Sum_{k=0..n} A193722(n,k)*3^k.
From Elmo R. Oliveira, Mar 18 2025: (Start)
E.g.f.: (7*exp(10*x) + 3)/10.
a(n) = 10*a(n-1). (End)

A006342 Coloring a circuit with 4 colors.

Original entry on oeis.org

1, 1, 4, 10, 31, 91, 274, 820, 2461, 7381, 22144, 66430, 199291, 597871, 1793614, 5380840, 16142521, 48427561, 145282684, 435848050, 1307544151, 3922632451, 11767897354, 35303692060, 105911076181, 317733228541, 953199685624, 2859599056870, 8578797170611
Offset: 0

Keywords

Comments

Also equal to the number of set partitions of {1,2,...,n+2} with at most 4 parts such that each part does not contain both i,i+1 for 1<=iMike Zabrocki, Sep 08 2020
Also a(n) equals the number of color-complete multipoles with n terminals (that is, having all the states allowed by the Parity Lemma). - Miquel A. Fiol, May 27 2024

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Magma
    [3*3^n/8+1/4+3*(-1)^n/8: n in [0..30]]; // Vincenzo Librandi, Aug 20 2011
    
  • Maple
    A006342:=-(-1+2*z)/(z-1)/(3*z-1)/(z+1); # conjectured by Simon Plouffe in his 1992 dissertation
    a[0]:=0:a[1]:=1:for n from 2 to 50 do a[n]:=2*a[n-1]+3*a[n-2]-1 od: seq(a[n], n=1..26); # Zerinvary Lajos, Apr 28 2008
  • Mathematica
    CoefficientList[Series[(1-2 x)/((1-x^2) (1-3 x)),{x,0,30}],x] (* or *) LinearRecurrence[{3,1,-3},{1,1,4},30] (* Harvey P. Dale, Aug 16 2016 *)
  • PARI
    Vec((1 - 2*x) / ((1 - x)*(1 + x)*(1 - 3*x)) + O(x^30)) \\ Colin Barker, Nov 07 2017

Formula

G.f.: (1 - 2 x ) / (( 1 - x^2 ) ( 1 - 3 x )).
Binomial transform of A002001 (with interpolated zeros). Partial sums of A054878. E.g.f.: exp(x)(3*cosh(2*x) + 1)/4; a(n) = 3*3^n/8 + 1/4 + 3(-1)^n/8 = Sum_{k=0..n} (3^k + 3(-1)^k)/4. - Paul Barry, Sep 03 2003
a(n) = 2*a(n-1) + 3*a(n-2) - 1, n > 1. - Gary Detlefs, Jun 21 2010
a(n) = a(n-1) + A054878(n-2). - Yuchun Ji, Sep 12 2017
From Colin Barker, Nov 07 2017: (Start)
a(n) = (3^(n+1) + 5) / 8 for n even.
a(n) = (3^(n+1) - 1) / 8 for n odd.
a(n) = 3*a(n-1) + a(n-2) - 3*a(n-3) for n > 2.
(End)
a(n) = 3*a(n-1) + (3*(-1)^n - 1)/2 for n > 0. - Yuchun Ji, Dec 05 2019

A053661 For n > 1: if n is present, 2n is not.

Original entry on oeis.org

1, 2, 3, 5, 7, 8, 9, 11, 12, 13, 15, 17, 19, 20, 21, 23, 25, 27, 28, 29, 31, 32, 33, 35, 36, 37, 39, 41, 43, 44, 45, 47, 48, 49, 51, 52, 53, 55, 57, 59, 60, 61, 63, 65, 67, 68, 69, 71, 73, 75, 76, 77, 79, 80, 81, 83, 84, 85, 87, 89, 91, 92, 93, 95, 97, 99, 100, 101, 103, 105
Offset: 1

Author

Jeevan Chana Rai (Karanjit.Rai(AT)btinternet.com), Feb 16 2000

Keywords

Comments

The Name line gives a property of the sequence, not a definition. The sequence can be defined simultaneously with b(n) := A171945(n) via a(n) = mex{a(i), b(i) : 0 <= i < n} (n >= 0}, b(n)=2a(n). The two sequences are complementary, hence A053661 is identical to A171944 (except for the first terms). Furthmore, A053661 is the same as A003159 except for the replacement of vile by dopey powers of 2. - Aviezri S. Fraenkel, Apr 28 2011
For n >= 2, either n = 2^k where k is odd or n = 2^k*m where m > 1 is odd and k is even (found by Kirk Bresniker and Stan Wagon). [Robert Israel, Oct 10 2010]
Subsequence of A175880; A000040, A001749, A002001, A002042, A002063, A002089, A003947, A004171 and A081294 are subsequences.

Crossrefs

Essentially identical to A171944 and the complement of A171945.

Programs

  • Haskell
    a053661 n = a053661_list !! (n-1)
    a053661_list = filter (> 0) a175880_list -- Reinhard Zumkeller, Feb 09 2011
  • Maple
    N:= 1000: # to get all terms <= N
    sort([1,seq(2^(2*i+1),i=0..(ilog2(N)-1)/2), seq(seq(2^(2*i)*(2*j+1),j=1..(N/2^(2*i)-1)/2),i=0..ilog2(N)/2)]); # Robert Israel, Jul 24 2015
  • Mathematica
    Clear[T]; nn = 105; T[n_, k_] := T[n, k] = If[n < 1 || k < 1, 0, If[n == 1 || k == 1, 1, If[k > n, T[k, n], If[n > k, T[k, Mod[n, k, 1]], -Product[T[n, i], {i, n - 1}]]]]]; DeleteCases[Table[If[T[n, n] == -1, n, ""], {n, 1, nn}], ""] (* Mats Granvik, Aug 25 2012 *)

Extensions

More terms from James Sellers, Feb 22 2000
Previous Showing 11-20 of 46 results. Next