cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 198 results. Next

A176187 Least period of sequence {f^(m)(n)},m=1,2,3,..., where f^(m) is the m-th iteration of A002326 (f^(1)=f), after possibly dropping some finite number of iterations.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 3, 3, 1, 1, 1, 3, 1, 1, 3, 1, 1, 3, 1, 1, 1, 3, 1, 3, 1, 1, 3, 1, 1, 3, 1, 3, 1, 3, 1, 1, 3, 1, 1, 1, 3, 1, 3, 3, 1, 1, 1, 3, 3, 3, 1, 1, 3, 3, 1, 3, 1, 3, 1, 3, 3, 1, 3, 1, 3, 3, 1, 1, 1, 3
Offset: 0

Views

Author

Vladimir Shevelev, Apr 11 2010, Apr 20 2010

Keywords

Comments

Conjecture: For every n>=0 the sequence {f^(m)(n)} is eventually periodic. Further calculations may show if there exist terms different from 1 and 3.

Examples

			For n=0, we have: f(0)=1, f(1)=2, f(2)=4, f(4)=6, f(6)=12, f(12)=20, f(20)=20,... Thus a(1)=1.
		

Crossrefs

A265630 Numbers n > 1 such that 2^m == 1 (mod n^2), where m = A002326((n-1)/2).

Original entry on oeis.org

1093, 3511, 7651, 10533, 14209, 17555, 22953, 31599, 42627, 45643, 52665, 99463, 136929, 157995, 228215, 298389, 410787, 684645, 2053935, 3837523, 11512569, 19187615, 26862661, 34537707, 49887799, 57562845, 80587983, 134313305, 149663397, 172688535, 241763949, 249438995, 349214593, 402939915, 448990191, 748316985, 1047643779, 1208819745, 1746072965, 2244950955, 3142931337, 5238218895, 15714656685
Offset: 1

Views

Author

Thomas Ordowski, Dec 11 2015

Keywords

Comments

A subsequence of A077816.
Odd numbers n > 1 such that A237292((n-1)/2) = 1.
Indices k such that A077816(k) is not in this sequence are 2, 13, 14, 16, 22, 24, 25, 27, 28, 30, ... - Altug Alkan, Dec 11 2015
There are no other terms, unless there are other Wieferich primes (A001220) besides 1093 and 3511. - Max Alekseyev, Dec 11 2015

Crossrefs

Programs

  • Mathematica
    Select[Range[10^6], Mod[2^MultiplicativeOrder[2, 2 ((# - 1)/2) + 1], #^2] == 1 &] (* Michael De Vlieger, Dec 11 2015 *)
  • PARI
    a002326(n) = znorder(Mod(2, 2*n+1));
    a237292(n) = a002326(2*n*(n+1))/a002326(n);
    for(n=1, 1e8, if(a237292(n)==1, print1(2*n+1, ", "))) \\ Altug Alkan, Dec 11 2015

Extensions

More terms from Altug Alkan, Dec 11 2015
Missing terms a(28)-a(30) and further terms a(34)-a(43) added by Max Alekseyev, Dec 11 2015

A364086 Fixed points of A002326, i.e., numbers k such that A002326(k) = k.

Original entry on oeis.org

3, 8, 11, 20, 23, 35, 39, 48, 51, 68, 83, 95, 96, 99, 119, 131, 135, 155, 156, 179, 183, 191, 200, 204, 224, 231, 239, 243, 251, 260, 284, 299, 303, 323, 359, 371, 375, 380, 384, 404, 411, 419, 428, 431, 443, 464, 483, 488, 491, 495, 504, 515, 519, 531, 543, 564
Offset: 1

Views

Author

Daniel Haase, Jul 09 2023

Keywords

Comments

It seems that a(n) = (A115591(n)-1)/2. Indeed, it follows from the definition of A115591 that if a prime p is listed in A115591, then (p-1)/2 is also listed in this sequence.
The related case of A002326(k) = 2k is true if (and conjecturally only if) 2k+1 is a prime with primitive root 2, see A001122.

Examples

			The first three terms of this sequence are 3, 8, and 11. Thus, the first three fixed points of A002326 are A002326(3) = 3, A002326(8) = 8, and A002326(11) = 11.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[600], MultiplicativeOrder[2, 2*# + 1] == # &] (* Amiram Eldar, Jul 28 2023 *)
  • PARI
    isok(k) = znorder(Mod(2, 2*k+1)) == k; \\ Michel Marcus, Jul 28 2023

A140198 A002326((k-1)/2) for composite numbers k from A141229.

Original entry on oeis.org

18, 100, 1210, 2028, 6498, 23548, 49284, 146068, 201898, 223260, 296274, 564898, 1020100, 1213594, 2230930, 2666298, 3285748, 4304178, 5147788, 5703298, 5896980, 7606564, 9349410, 11645554, 19392748, 25067908, 31754524, 41661514, 42386748, 51755988, 54296298
Offset: 1

Views

Author

Vladimir Shevelev, Jun 15 2008

Keywords

Crossrefs

Programs

  • Mathematica
    r[n_] := EulerPhi[n]/MultiplicativeOrder[2, n]; d[n_] := DivisorSum[n, r[#] &]; f[n_] := (m = MultiplicativeOrder[2, n])*d[n] - m + 1; MultiplicativeOrder[2, #] & /@  Select[Range[10^5], CompositeQ[#] && Total@(r /@ Divisors[#]) - 1 == 3 &] (* Amiram Eldar, Sep 12 2019 *)

Extensions

a(4) corrected and more terms added by Amiram Eldar, Sep 12 2019

A001220 Wieferich primes: primes p such that p^2 divides 2^(p-1) - 1.

Original entry on oeis.org

1093, 3511
Offset: 1

Views

Author

Keywords

Comments

Sequence is believed to be infinite.
Joseph Silverman showed that the abc-conjecture implies that there are infinitely many primes which are not in the sequence. - Benoit Cloitre, Jan 09 2003
Graves and Murty (2013) improved Silverman's result by showing that for any fixed k > 1, the abc-conjecture implies that there are infinitely many primes == 1 (mod k) which are not in the sequence. - Jonathan Sondow, Jan 21 2013
The squares of these numbers are Fermat pseudoprimes to base 2 (A001567) and Catalan pseudoprimes (A163209). - T. D. Noe, May 22 2003
Primes p that divide the numerator of the harmonic number H((p-1)/2); that is, p divides A001008((p-1)/2). - T. D. Noe, Mar 31 2004
In a 1977 paper, Wells Johnson, citing a suggestion from Lawrence Washington, pointed out the repetitions in the binary representations of the numbers which are one less than the two known Wieferich primes; i.e., 1092 = 10001000100 (base 2); 3510 = 110110110110 (base 2). It is perhaps worth remarking that 1092 = 444 (base 16) and 3510 = 6666 (base 8), so that these numbers are small multiples of repunits in the respective bases. Whether this is mathematically significant does not appear to be known. - John Blythe Dobson, Sep 29 2007
A002326((a(n)^2 - 1)/2) = A002326((a(n)-1)/2). - Vladimir Shevelev, Jul 09 2008, Aug 24 2008
It is believed that p^2 does not divide 3^(p-1) - 1 if p = a(n). This is true for n = 1 and 2. See A178815, A178844, A178900, and Ostafe-Shparlinski (2010) Section 1.1. - Jonathan Sondow, Jun 29 2010
These primes also divide the numerator of the harmonic number H(floor((p-1)/4)). - H. Eskandari (hamid.r.eskandari(AT)gmail.com), Sep 28 2010
1093 and 3511 are prime numbers p satisfying congruence 429327^(p-1) == 1 (mod p^2). Why? - Arkadiusz Wesolowski, Apr 07 2011. Such bases are listed in A247208. - Max Alekseyev, Nov 25 2014. See A269798 for all such bases, prime and composite, that are not powers of 2. - Felix Fröhlich, Apr 07 2018
A196202(A049084(a(1))) = A196202(A049084(a(2))) = 1. - Reinhard Zumkeller, Sep 29 2011
If q is prime and q^2 divides a prime-exponent Mersenne number, then q must be a Wieferich prime. Neither of the two known Wieferich primes divide Mersenne numbers. See Will Edgington's Mersenne page in the links below. - Daran Gill, Apr 04 2013
There are no other terms below 4.97*10^17 as established by PrimeGrid (see link below). - Max Alekseyev, Nov 20 2015. The search was done via PrimeGrid's PRPNet and the results were not double-checked. Because of the unreliability of the testing, the search was suspended in May 2017 (cf. Goetz, 2017). - Felix Fröhlich, Apr 01 2018. On Nov 28 2020, PrimeGrid has resumed the search (cf. Reggie, 2020). - Felix Fröhlich, Nov 29 2020. As of Dec 29 2022, PrimeGrid has completed the search to 2^64 (about 1.8 * 10^19) and has no plans to continue further. - Charles R Greathouse IV, Sep 24 2024
Are there other primes q >= p such that q^2 divides 2^(p-1)-1, where p is a prime? - Thomas Ordowski, Nov 22 2014. Any such q must be a Wieferich prime. - Max Alekseyev, Nov 25 2014
Primes p such that p^2 divides 2^r - 1 for some r, 0 < r < p. - Thomas Ordowski, Nov 28 2014, corrected by Max Alekseyev, Nov 28 2014
For some reason, both p=a(1) and p=a(2) also have more bases b with 1 < b < p that make b^(p-1) == 1 (mod p^2) than any smaller prime p; in other words, a(1) and a(2) belong to A248865. - Jeppe Stig Nielsen, Jul 28 2015
Let r_1, r_2, r_3, ..., r_i be the set of roots of the polynomial X^((p-1)/2) - (p-3)! * X^((p-3)/2) - (p-5)! * X^((p-5)/2) - ... - 1. Then p is a Wieferich prime iff p divides sum{k=1, p}(r_k^((p-1)/2)) (see Example 2 in Jakubec, 1994). - Felix Fröhlich, May 27 2016
Arthur Wieferich showed that if p is not a term of this sequence, then the First Case of Fermat's Last Theorem has no solution in x, y and z for prime exponent p (cf. Wieferich, 1909). - Felix Fröhlich, May 27 2016
Let U_n(P, Q) be a Lucas sequence of the first kind, let e be the Legendre symbol (D/p) and let p be a prime not dividing 2QD, where D = P^2 - 4*Q. Then a prime p such that U_(p-e) == 0 (mod p^2) is called a "Lucas-Wieferich prime associated to the pair (P, Q)". Wieferich primes are those Lucas-Wieferich primes that are associated to the pair (3, 2) (cf. McIntosh, Roettger, 2007, p. 2088). - Felix Fröhlich, May 27 2016
Any repeated prime factor of a term of A000215 is a term of this sequence. Thus, if there exist infinitely many Fermat numbers that are not squarefree, then this sequence is infinite, since no two Fermat numbers share a common factor. - Felix Fröhlich, May 27 2016
If the Diophantine equation p^x - 2^y = d has more than one solution in positive integers (x, y), with (p, d) not being one of the pairs (3, 1), (3, -5), (3, -13) or (5, -3), then p is a term of this sequence (cf. Scott, Styer, 2004, Corollary to Theorem 2). - Felix Fröhlich, Jun 18 2016
Odd primes p such that Chi_(D_0)(p) != 1 and Lambda_p(Q(sqrt(D_0))) != 1, where D_0 < 0 is the fundamental discriminant of the imaginary quadratic field Q(sqrt(1-p^2)) and Chi and Lambda are Iwasawa invariants (cf. Byeon, 2006, Proposition 1 (i)). - Felix Fröhlich, Jun 25 2016
If q is an odd prime, k, p are primes with p = 2*k+1, k == 3 (mod 4), p == -1 (mod q) and p =/= -1 (mod q^3) (Jakubec, 1998, Corollary 2 gives p == -5 (mod q) and p =/= -5 (mod q^3)) with the multiplicative order of q modulo k = (k-1)/2 and q dividing the class number of the real cyclotomic field Q(Zeta_p + (Zeta_p)^(-1)), then q is a term of this sequence (cf. Jakubec, 1995, Theorem 1). - Felix Fröhlich, Jun 25 2016
From Felix Fröhlich, Aug 06 2016: (Start)
Primes p such that p-1 is in A240719.
Prime terms of A077816 (cf. Agoh, Dilcher, Skula, 1997, Corollary 5.9).
p = prime(n) is in the sequence iff T(2, n) > 1, where T = A258045.
p = prime(n) is in the sequence iff an integer k exists such that T(n, k) = 2, where T = A258787. (End)
Conjecture: an integer n > 1 such that n^2 divides 2^(n-1)-1 must be a Wieferich prime. - Thomas Ordowski, Dec 21 2016
The above conjecture is equivalent to the statement that no "Wieferich pseudoprimes" (WPSPs) exist. While base-b WPSPs are known to exist for several bases b > 1 other than 2 (see for example A244752), no base-2 WPSPs are known. Since two necessary conditions for a composite to be a base-2 WPSP are that, both, it is a base-2 Fermat pseudoprime (A001567) and all its prime factors are Wieferich primes (cf. A270833), as shown in the comments in A240719, it seems that the first base-2 WPSP, if it exists, is probably very large. This appears to be supported by the guess that the properties of a composite to be a term of A001567 and of A270833 are "independent" of each other and by the observation that the scatterplot of A256517 seems to become "less dense" at the x-axis parallel line y = 2 for increasing n. It has been suggested in the literature that there could be asymptotically about log(log(x)) Wieferich primes below some number x, which is a function that grows to infinity, but does so very slowly. Considering the above constraints, the number of WPSPs may grow even more slowly, suggesting any such number, should it exist, probably lies far beyond any bound a brute-force search could reach in the forseeable future. Therefore I guess that the conjecture may be false, but a disproof or the discovery of a counterexample are probably extraordinarily difficult problems. - Felix Fröhlich, Jan 18 2019
Named after the German mathematician Arthur Josef Alwin Wieferich (1884-1954). a(1) = 1093 was found by Waldemar Meissner in 1913. a(2) = 3511 was found by N. G. W. H. Beeger in 1922. - Amiram Eldar, Jun 05 2021
From Jianing Song, Jun 21 2025: (Start)
The ring of integers of Q(2^(1/k)) is Z[2^(1/k)] if and only if k does not have a prime factor in this sequence (k is in A342390). See Theorem 5.3 of the paper of Keith Conrad. For example, we have:
(1 + 2^(364/1093) + 2^(2*364/1093) + ... + 2^(1092*364/1093))/1093 is an algebraic integer, but it is not in Z[2^(1/1093)];
(1 + 2^(1755/3511) + 2^(2*1755/3511) + ... + 2^(3510*1755/3511))/3511 is an algebraic integer, but it is not in Z[2^(1/3511)]. (End)

References

  • Richard Crandall and Carl Pomerance, Prime Numbers: A Computational Perspective, Springer, NY, 2001; see p. 28.
  • Richard K. Guy, Unsolved Problems in Number Theory, A3.
  • G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, 5th ed., Oxford Univ. Press, 1979, th. 91.
  • Yves Hellegouarch, "Invitation aux mathématiques de Fermat Wiles", Dunod, 2eme Edition, pp. 340-341.
  • Pace Nielsen, Wieferich primes, heuristics, computations, Abstracts Amer. Math. Soc., 33 (#1, 20912), #1077-11-48.
  • Paulo Ribenboim, The Book of Prime Number Records. Springer-Verlag, NY, 2nd ed., 1989, p. 263.
  • Paulo Ribenboim, The Little Book of Bigger Primes, Springer-Verlag NY 2004. See pp. 230-234.
  • David Wells, The Penguin Dictionary of Curious and Interesting Numbers, Penguin Books, NY, 1986, p. 163.

Crossrefs

Cf. similar primes related to the first case of Fermat's last theorem: A007540, A088164.
Sequences "primes p such that p^2 divides X^(p-1)-1": A014127 (X=3), A123692 (X=5), A212583 (X=6), A123693 (X=7), A045616 (X=10), A111027 (X=12), A128667 (X=13), A234810 (X=14), A242741 (X=15), A128668 (X=17), A244260 (X=18), A090968 (X=19), A242982 (X=20), A298951 (X=22), A128669 (X=23), A306255 (X=26), A306256 (X=30).

Programs

  • GAP
    Filtered([1..50000],p->IsPrime(p) and (2^(p-1)-1) mod p^2 =0); # Muniru A Asiru, Apr 03 2018
    
  • Haskell
    import Data.List (elemIndices)
    a001220 n = a001220_list !! (n-1)
    a001220_list = map (a000040 . (+ 1)) $ elemIndices 1 a196202_list
    -- Reinhard Zumkeller, Sep 29 2011
    
  • Magma
    [p : p in PrimesUpTo(310000) | IsZero((2^(p-1) - 1) mod (p^2))]; // Vincenzo Librandi, Jan 19 2019
  • Maple
    wieferich := proc (n) local nsq, remain, bin, char: if (not isprime(n)) then RETURN("not prime") fi: nsq := n^2: remain := 2: bin := convert(convert(n-1, binary),string): remain := (remain * 2) mod nsq: bin := substring(bin,2..length(bin)): while (length(bin) > 1) do: char := substring(bin,1..1): if char = "1" then remain := (remain * 2) mod nsq fi: remain := (remain^2) mod nsq: bin := substring(bin,2..length(bin)): od: if (bin = "1") then remain := (remain * 2) mod nsq fi: if remain = 1 then RETURN ("Wieferich prime") fi: RETURN ("non-Wieferich prime"): end: # Ulrich Schimke (ulrschimke(AT)aol.com), Nov 01 2001
  • Mathematica
    Select[Prime[Range[50000]],Divisible[2^(#-1)-1,#^2]&]  (* Harvey P. Dale, Apr 23 2011 *)
    Select[Prime[Range[50000]],PowerMod[2,#-1,#^2]==1&] (* Harvey P. Dale, May 25 2016 *)
  • PARI
    N=10^4; default(primelimit,N);
    forprime(n=2,N,if(Mod(2,n^2)^(n-1)==1,print1(n,", ")));
    \\ Joerg Arndt, May 01 2013
    
  • Python
    from sympy import prime
    from gmpy2 import powmod
    A001220_list = [p for p in (prime(n) for n in range(1,10**7)) if powmod(2,p-1,p*p) == 1]
    # Chai Wah Wu, Dec 03 2014
    

Formula

(A178815(A000720(p))^(p-1) - 1) mod p^2 = A178900(n), where p = a(n). - Jonathan Sondow, Jun 29 2010
Odd primes p such that A002326((p^2-1)/2) = A002326((p-1)/2). See A182297. - Thomas Ordowski, Feb 04 2014

A001122 Primes with primitive root 2.

Original entry on oeis.org

3, 5, 11, 13, 19, 29, 37, 53, 59, 61, 67, 83, 101, 107, 131, 139, 149, 163, 173, 179, 181, 197, 211, 227, 269, 293, 317, 347, 349, 373, 379, 389, 419, 421, 443, 461, 467, 491, 509, 523, 541, 547, 557, 563, 587, 613, 619, 653, 659, 661, 677, 701, 709, 757, 773, 787, 797
Offset: 1

Views

Author

Keywords

Comments

Artin conjectured that this sequence is infinite.
Conjecture: sequence contains infinitely many pairs of twin primes. - Benoit Cloitre, May 08 2003
Pieter Moree writes (Oct 20 2004): Assuming the Generalized Riemann Hypothesis, it can be shown that the density of primes p such that a prescribed integer g has order (p-1)/t, with t fixed, exists and, moreover, it can be computed. This density will be a rational number times the so-called Artin constant. For 2 and 10 the density of primitive roots is A, the Artin constant itself.
It seems that this sequence consists of A050229 \ {1,2}.
Primes p such that 1/p, when written in base 2, has period p-1, which is the greatest period possible for any integer.
Positive integer 2*m-1 is in the sequence iff A179382(m)=m-1. - Vladimir Shevelev, Jul 14 2010
These are the odd primes p for which the polynomial 1+x+x^2+...+x^(p-1) is irreducible over GF(2). - V. Raman, Sep 17 2012 [Corrected by N. J. A. Sloane, Oct 17 2012]
Prime(n) is in the sequence if (and conjecturally only if) A133954(n) = prime(n). - Vladimir Shevelev, Aug 30 2013
Pollack shows that, on the GRH, that there is some C such that a(n+1) - a(n) < C infinitely often (in fact, 1 can be replaced by any positive integer). Further, for any m, a(n), a(n+1), ..., a(n+m) are consecutive primes infinitely often. - Charles R Greathouse IV, Jan 05 2015
From Jianing Song, Apr 27 2019: (Start)
All terms are congruent to 3 or 5 modulo 8. If we define
Pi(N,b) = # {p prime, p <= N, p == b (mod 8)};
Q(N) = # {p prime, p <= N, p in this sequence},
then by Artin's conjecture, Q(N) ~ C*N/log(N) ~ 2*C*(Pi(N,3) + Pi(N,5)), where C = A005596 is Artin's constant.
Conjecture: if we further define
Q(N,b) = # {p prime, p <= N, p == b (mod 8), p in this sequence},
then we have:
Q(N,3) ~ (1/2)*Q(N) ~ C*Pi(N,3);
Q(N,5) ~ (1/2)*Q(N) ~ C*Pi(N,5). (End)
Conjecture: for a prime p > 5, p has primitive root 2 iff p == +-3 (mod 8) divides 2^k + 3 for some k < p - 1 and divides 2^m + 5 for some m < p - 1. It seems that all primes of the form 2^k + 3 for k <> 2 (A057732) have primitive root 2. - Thomas Ordowski, Nov 27 2023

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 864.
  • E. Bach and Jeffrey Shallit, Algorithmic Number Theory, I; see p. 221.
  • J. H. Conway and R. K. Guy, The Book of Numbers, Copernicus Press, New York, 1996; see p. 169.
  • M. Kraitchik, Recherches sur la Théorie des Nombres. Gauthiers-Villars, Paris, Vol. 1, 1924, Vol. 2, 1929, see Vol. 1, p. 56.
  • Lehmer, D. H. and Lehmer, Emma; Heuristics, anyone? in Studies in mathematical analysis and related topics, pp. 202-210, Stanford Univ. Press, Stanford, Calif., 1962.
  • Paulo Ribenboim, The Little Book of Bigger Primes, Springer-Verlag NY 2004. See p. 20.
  • D. Shanks, Solved and Unsolved Problems in Number Theory, 2nd. ed., Chelsea, 1978, p. 81.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A002326 for the multiplicative order of 2 mod 2n+1. (Alternatively, the least positive value of m such that 2n+1 divides 2^m-1).
Cf. A216838 (Odd primes for which 2 is not a primitive root).

Programs

  • Mathematica
    Select[ Prime@Range@200, PrimitiveRoot@# == 2 &] (* Robert G. Wilson v, May 11 2001 *)
    pr = 2; Select[Prime[Range[200]], MultiplicativeOrder[pr, # ] == # - 1 &] (* N. J. A. Sloane, Jun 01 2010 *)
  • PARI
    forprime(p=3, 1000, if(znorder(Mod(2, p))==(p-1), print1(p,", "))); \\ [corrected by Michel Marcus, Oct 08 2014]
    
  • Python
    from itertools import islice
    from sympy import nextprime, is_primitive_root
    def A001122_gen(): # generator of terms
        p = 2
        while (p:=nextprime(p)):
            if is_primitive_root(2,p):
                yield p
    A001122_list = list(islice(A001122_gen(),30)) # Chai Wah Wu, Feb 13 2023

Formula

Delta(a(n),2^a(n)*x) = a(n)*Delta(a(n),2*x), where Delta(k,x) is the difference between numbers of evil(A001969) and odious(A000069) integers divisible by k in interval [0,x). - Vladimir Shevelev, Aug 30 2013
For n >= 2, a(n) = 1 + 2*A163782(n-1). - Antti Karttunen, Oct 07 2017

A025192 a(0)=1; a(n) = 2*3^(n-1) for n >= 1.

Original entry on oeis.org

1, 2, 6, 18, 54, 162, 486, 1458, 4374, 13122, 39366, 118098, 354294, 1062882, 3188646, 9565938, 28697814, 86093442, 258280326, 774840978, 2324522934, 6973568802, 20920706406, 62762119218, 188286357654, 564859072962, 1694577218886, 5083731656658, 15251194969974
Offset: 0

Views

Author

Keywords

Comments

Warning: there is considerable overlap between this entry and the essentially identical A008776.
Shifts one place left when plus-convolved (PLUSCONV) with itself. a(n) = 2*Sum_{i=0..n-1} a(i). - Antti Karttunen, May 15 2001
Let M = { 0, 1, ..., 2^n-1 } be the set of all n-bit numbers. Consider two operations on this set: "sum modulo 2^n" (+) and "bitwise exclusive or" (XOR). The results of these operations are correlated.
To give a numerical measure, consider the equations over M: u = x + y, v = x XOR y and ask for how many pairs (u,v) is there a solution? The answer is exactly a(n) = 2*3^(n-1) for n >= 1. The fraction a(n)/4^n of such pairs vanishes as n goes to infinity. - Max Alekseyev, Feb 26 2003
Number of (s(0), s(1), ..., s(2n+2)) such that 0 < s(i) < 6 and |s(i) - s(i-1)| = 1 for i = 1,2,...,2n+2, s(0) = 3, s(2n+2) = 3. - Herbert Kociemba, Jun 10 2004
Number of compositions of n into parts of two kinds. For a string of n objects, before the first, choose first kind or second kind; before each subsequent object, choose continue, first kind, or second kind. For example, compositions of 3 are 3; 2,1; 1,2; and 1,1,1. Using parts of two kinds, these produce respectively 2, 4, 4 and 8 compositions, 2+4+4+8 = 18. - Franklin T. Adams-Watters, Aug 18 2006
In the compositions the kinds of parts are ordered inside a run of identical parts, see example. Replacing "ordered" by "unordered" gives A052945. - Joerg Arndt, Apr 28 2013
Number of permutations of {1, 2, ..., n+1} such that no term is more than 2 larger than its predecessor. For example, a(3) = 18 because all permutations of {1, 2, 3, 4} are valid except 1423, 1432, 2143, 3142, 2314, 3214, in which 1 is followed by 4. Proof: removing (n + 1) gives a still-valid sequence. For n >= 2, can insert (n + 1) either at the beginning or immediately following n or immediately following (n - 1), but nowhere else. Thus the number of such permutations triples when we increase the sequence length by 1. - Joel B. Lewis, Nov 14 2006
Antidiagonal sums of square array A081277. - Philippe Deléham, Dec 04 2006
Equals row sums of triangle A160760. - Gary W. Adamson, May 25 2009
Let M = a triangle with (1, 2, 4, 8, ...) as the left border and all other columns = (0, 1, 2, 4, 8, ...). A025192 = lim_{n->oo} M^n, the left-shifted vector considered as a sequence. - Gary W. Adamson, Jul 27 2010
Number of nonisomorphic graded posets with 0 and uniform hasse graph of rank n with no 3-element antichain. ("Uniform" used in the sense of Retakh, Serconek and Wilson. By "graded" we mean that all maximal chains have the same length n.) - David Nacin, Feb 13 2012
Equals partial sums of A003946 prefaced with a 1: (1, 1, 4, 12, 36, 108, ...). - Gary W. Adamson, Feb 15 2012
Number of vertices (or sides) of the (n-1)-th iteration of a Gosper island. - Arkadiusz Wesolowski, Feb 07 2013
Row sums of triangle in A035002. - Jon Perry, May 30 2013
a(n) counts walks (closed) on the graph G(1-vertex; 1-loop, 1-loop, 2-loop, 2-loop, 3-loop, 3-loop, ...). - David Neil McGrath, Jan 01 2015
From Tom Copeland, Dec 03 2015: (Start)
For n > 0, a(n) are the traces of the even powers of the adjacency matrix M of the simple Lie algebra B_3, tr(M^(2n)) where M = Matrix(row 1; row 2; row 3) = Matrix[0,1,0; 1,0,2; 0,1,0], same as the traces of Matrix[0,2,0; 1,0,1; 0,1,0] (cf. Damianou). The traces of the odd powers vanish.
The characteristic polynomial of M equals determinant(x*I - M) = x^3 - 3x = A127672(3,x), so 1 - 3*x^2 = det(I - x M) = exp(-Sum_{n>=1} tr(M^n) x^n / n), implying Sum_{n>=1} a(n+1) x^(2n) / (2n) = -log(1 - 3*x^2), giving a logarithmic generating function for the aerated sequence, excluding a(0) and a(1).
a(n+1) = tr(M^(2n)), where tr(M^n) = 3^(n/2) + (-1)^n * 3^(n/2) = 2^n*(cos(Pi/6)^n + cos(5*Pi/6)^n) = n-th power sum of the eigenvalues of M = n-th power sum of the zeros of the characteristic polynomial.
The relation det(I - x M) = exp(-Sum_{n>=1} tr(M^n) x^n / n) = Sum_{n>=0} P_n(-tr(M), -tr(M^2), ..., -tr(M^n)) x^n/n! = exp(P.(-tr(M), -tr(M^2), ...)x), where P_n(x(1), ..., x(n)) are the partition polynomials of A036039 implies that with x(2n) = -tr(M^(2n)) = -a(n+1) for n > 0 and x(n) = 0 otherwise, the partition polynomials evaluate to zero except for P_2(x(1), x(2)) = P_2(0,-6) = -6.
Because of the inverse relation between the partition polynomials of A036039 and the Faber polynomials F_k(b1,b2,...,bk) of A263916, F_k(0,-3,0,0,...) = tr(M^k) gives aerated a(n), excluding n=0,1. E.g., F_2(0,-3) = -2(-3) = 6, F_4(0,-3,0,0) = 2 (-3)^2 = 18, and F_6(0,-3,0,0,0,0) = -2(-3)^3 = 54. (Cf. A265185.)
(End)
Number of permutations of length n > 0 avoiding the partially ordered pattern (POP) {1>2, 1>3, 1>4} of length 4. That is, number of length n permutations having no subsequences of length 4 in which the first element is the largest. - Sergey Kitaev, Dec 08 2020
For n > 0, a(n) is the number of 3-colorings of the grid graph P_2 X P_(n-1). More generally, for q > 1, the number of q-colorings of the grid graph P_2 X P_n is given by q*(q - 1)*((q - 1)*(q - 2) + 1)^(n - 1). - Sela Fried, Sep 25 2023
For n > 1, a(n) is the largest solution to the equation phi(x) = a(n-1). - M. Farrokhi D. G., Oct 25 2023
Number of dotted compositions of degree n. - Diego Arcis, Feb 01 2024

Examples

			There are a(3)=18 compositions of 3 into 2 kinds of parts. Here p:s stands for "part p of sort s":
01:  [ 1:0  1:0  1:0  ]
02:  [ 1:0  1:0  1:1  ]
03:  [ 1:0  1:1  1:0  ]
04:  [ 1:0  1:1  1:1  ]
05:  [ 1:0  2:0  ]
06:  [ 1:0  2:1  ]
07:  [ 1:1  1:0  1:0  ]
08:  [ 1:1  1:0  1:1  ]
09:  [ 1:1  1:1  1:0  ]
10:  [ 1:1  1:1  1:1  ]
11:  [ 1:1  2:0  ]
12:  [ 1:1  2:1  ]
13:  [ 2:0  1:0  ]
14:  [ 2:0  1:1  ]
15:  [ 2:1  1:0  ]
16:  [ 2:1  1:1  ]
17:  [ 3:0  ]
18:  [ 3:1  ]
- _Joerg Arndt_, Apr 28 2013
G.f. = 1 + 2*x + 6*x^2 + 18*x^3 + 54*x^4 + 162*x^5 + 486*x^6 + 1458*x^7 + ...
		

References

  • Richard P. Stanley, Enumerative combinatorics, Vol. 1, Cambridge University Press, Cambridge, 1997, pp. 96-100.

Crossrefs

First differences of 3^n (A000244). Other self-convolved sequences: A000108, A007460, A007461, A007462, A007463, A007464, A061922.
Apart from initial term, same as A008776.

Programs

  • Haskell
    a025192 0 = 1
    a025192 n = 2 * 3 ^ (n -1)
    a025192_list = 1 : iterate (* 3) 2  -- Reinhard Zumkeller, Nov 27 2012
  • Maple
    A025192 := proc(n): if n=0 then 1 else 2*3^(n-1) fi: end: seq(A025192(n),n=0..26);
  • Mathematica
    Join[{1},2*3^(Range[30]-1)]  (* Harvey P. Dale, Mar 22 2011 *)
  • PARI
    a(n)=max(1,2*3^(n-1)) \\ Charles R Greathouse IV, Jul 25 2011
    
  • PARI
    Vec((1-x)/(1-3*x) + O(x^100)) \\ Altug Alkan, Dec 05 2015
    
  • Python
    [1]+[2*3**(n-1) for n in range(1,30)] # David Nacin, Mar 04 2012
    

Formula

G.f.: (1-x)/(1-3*x).
E.g.f.: (2*exp(3*x) + exp(0))/3. - Paul Barry, Apr 20 2003
a(n) = phi(3^n) = A000010(A000244(n)). - Labos Elemer, Apr 14 2003
a(0) = 1, a(n) = Sum_{k=0..n-1} (a(k) + a(n-k-1)). - Benoit Cloitre, Jun 24 2003
a(n) = A002326((3^n-1)/2). - Vladimir Shevelev, May 26 2008
a(1) = 2, a(n) = 3*a(n-1). - Vincenzo Librandi, Jan 01 2011
a(n) = lcm(a(n-1), Sum_{k=1..n-1} a(k)) for n >= 3. - David W. Wilson, Sep 27 2011
a(n) = ((2*n-1)*a(n-1) + (3*n-6)*a(n-2))/(n-1); a(0)=1, a(1)=2. - Sergei N. Gladkovskii, Jul 16 2012
From Sergei N. Gladkovskii, Jul 17 2012: (Start)
For the e.g.f. E(x) = (2/3)*exp(3*x) + exp(0)/3 we have
E(x) = 2*G(0)/3 where G(k) = 1 + k!/(3*(9*x)^k - 3*(9*x)^(2*k+1)/((9*x)^(k+1) + (k+1)!/G(k+1))); (continued fraction, 3rd kind, 3-step).
E(x) = 1+2*x/(G(0)-3*x) where G(k) = 3*x + 1 + k - 3*x*(k+1)/G(k+1); (continued fraction, Euler's 1st kind, 1-step). (End)
a(n) = A114283(0,0). - Reinhard Zumkeller, Nov 27 2012
G.f.: 1 + ((1/2)/G(0) - 1)/x where G(k) = 1 - 2^k/(2 - 4*x/(2*x - 2^k/G(k+1) )); (recursively defined continued fraction). - Sergei N. Gladkovskii, Dec 22 2012
G.f.: 1 + x*W(0), where W(k) = 1 + 1/(1 - x*(2*k+3)/(x*(2*k+4) + 1/W(k+1))); (continued fraction). - Sergei N. Gladkovskii, Aug 28 2013
G.f.: 1 / (1 - 2*x / (1 - x)). - Michael Somos, Apr 03 2014
Construct the power matrix T(n,j) = [A(n)^*j]*[S(n)^*(j-1)] where A(n)=(2,2,2,...) and S(n)=(0,1,0,0,...). (* is convolution operation.) Then a(n) = Sum_{j=1..n} T(n,j). - David Neil McGrath, Jan 01 2015
G.f.: 1 + 2*x/(1 + 2*x)*( 1 + 5*x/(1 + 5*x)*( 1 + 8*x/(1 + 8*x)*( 1 + 11*x/(1 + 11*x)*( 1 + .... - Peter Bala, May 27 2017
Sum_{n>=0} 1/a(n) = 7/4. - Bernard Schott, Oct 02 2021
From Amiram Eldar, May 08 2023: (Start)
Sum_{n>=0} (-1)^n/a(n) = 5/8.
Product_{n>=1} (1 - 1/a(n)) = A132019. (End)

Extensions

Additional comments from Barry E. Williams, May 27 2000
a(22) corrected by T. D. Noe, Feb 08 2008
Maple programs simplified by Johannes W. Meijer, Jun 02 2011

A014664 Order of 2 modulo the n-th prime.

Original entry on oeis.org

2, 4, 3, 10, 12, 8, 18, 11, 28, 5, 36, 20, 14, 23, 52, 58, 60, 66, 35, 9, 39, 82, 11, 48, 100, 51, 106, 36, 28, 7, 130, 68, 138, 148, 15, 52, 162, 83, 172, 178, 180, 95, 96, 196, 99, 210, 37, 226, 76, 29, 119, 24, 50, 16, 131, 268, 135, 92, 70, 94, 292, 102, 155, 156, 316
Offset: 2

Views

Author

Keywords

Comments

In other words, a(n), n >= 2, is the least k such that prime(n) divides 2^k-1.
Concerning the complexity of computing this sequence, see for example Bach and Shallit, p. 115, exercise 8.
Also A002326((p_n-1)/2). Conjecture: If p_n is not a Wieferich prime (1093, 3511, ...) then A002326(((p_n)^k-1)/2) = a(n)*(p_n)^(k-1). - Vladimir Shevelev, May 26 2008
If for distinct i,j,...,k we have a(i)=a(j)=...=a(k) then the number N = p_i*p_j*...*p_k is in A001262 and moreover A137576((N-1)/2) = N. For example, a(16)=a(37)=a(255)=52. Therefore we could take N = p_16*p_37*p_255 = 53*157*1613 = 13421773. - Vladimir Shevelev, Jun 14 2008
Also degree of the irreducible polynomial factors for the polynomial (x^p+1)/(x+1) over GF(2), where p is the n-th prime. - V. Raman, Oct 04 2012
Is this the same as the smallest k > 1 not already in the sequence such that p = prime(n) is a factor of 2^k-1 (A270600)? If the answer is yes, is the sequence a permutation of the positive integers > 1? - Felix Fröhlich, Feb 21 2016. Answer: No, it is easy to prove that 6 is missing and obviously 11 appears twice. - N. J. A. Sloane, Feb 21 2016
pi(A112927(m)) is the index at which a given number m first appears in this sequence. - M. F. Hasler, Feb 21 2016

Examples

			2^2 == 1 (mod 3) and so a(2) = 2;
2^4 == 1 (mod 5) and so a(3) = 4;
2^3 == 1 (mod 7) and so a(4) = 3;
2^10 == 1 (mod 11) and so a(5) = 10; etc.
[Conway & Guy, p. 166]: Referring to the work of Euler, 1/13 in base 2 = 0.000100111011...; (cycle length of 12). - _Gary W. Adamson_, Aug 22 2009
		

References

  • E. Bach and Jeffrey Shallit, Algorithmic Number Theory, I.
  • Albert H. Beiler, "Recreations in the Theory of Numbers", Dover, 1966; Table 48, page 98, "Exponents to Which a Belongs, MOD p and MOD p^n.
  • John H. Conway and Richard Guy, "The Book of Numbers", Springer-Verlag, 1996; p. 166: "How does the Cycle Length Change with the Base?". [From Gary W. Adamson, Aug 22 2009]
  • S. K. Sehgal, Group rings, pp. 455-541 in Handbook of Algebra, Vol. 3, Elsevier, 2003; see p. 493.

Crossrefs

Cf. A002326 (order of 2 mod 2n+1), A001122 (full reptend primes in base 2), A065941, A112927.

Programs

  • GAP
    P:=Filtered([1..350],IsPrime);; a:=List([2..Length(P)],n->OrderMod(2,P[n]));; Print(a); # Muniru A Asiru, Jan 29 2019
    
  • Maple
    with(numtheory): [ seq(order(2,ithprime(n)), n=2..60) ];
  • Mathematica
    Reap[Do[p=Prime[i];Do[If[PowerMod[2,k,p]==1,Print[{i,k}];Sow[{i,k}];Goto[ni]],{k,1,10^6}];Label[ni],{i,2,5001}]][[2,1]] (* Zak Seidov, Jan 26 2009 *)
    Table[MultiplicativeOrder[2, Prime[n]], {n, 2, 70}] (* Jean-François Alcover, Dec 10 2015 *)
  • PARI
    a(n)=if(n<0,0,k=1;while((2^k-1)%prime(n)>0,k++);k)
    
  • PARI
    A014664(n)=znorder(Mod(2, prime(n))) \\ Nick Hobson, Jan 08 2007, edited by M. F. Hasler, Feb 21 2016
    
  • PARI
    forprime(p=3, 800, print(factormod((x^p+1)/(x+1), 2, 1)[1, 1])) \\ V. Raman, Oct 04 2012
    
  • Python
    from sympy import n_order, prime
    def A014664(n): return n_order(2,prime(n)) # Chai Wah Wu, Nov 09 2023

Formula

a(n) = (A000040(n)-1)/A001917(n); a(A072190(n)) = A001122(n) - 1. - Benoit Cloitre, Jun 06 2004

Extensions

More terms from Benoit Cloitre, Apr 11 2003

A007733 Period of binary representation of 1/n. Also, multiplicative order of 2 modulo the odd part of n (= A000265(n)).

Original entry on oeis.org

1, 1, 2, 1, 4, 2, 3, 1, 6, 4, 10, 2, 12, 3, 4, 1, 8, 6, 18, 4, 6, 10, 11, 2, 20, 12, 18, 3, 28, 4, 5, 1, 10, 8, 12, 6, 36, 18, 12, 4, 20, 6, 14, 10, 12, 11, 23, 2, 21, 20, 8, 12, 52, 18, 20, 3, 18, 28, 58, 4, 60, 5, 6, 1, 12, 10, 66, 8, 22, 12, 35, 6, 9, 36, 20, 18, 30, 12, 39, 4, 54, 20, 82, 6
Offset: 1

Views

Author

N. J. A. Sloane, Hal Sampson (hals(AT)easynet.com)

Keywords

Comments

Also sequence of period lengths for n's when you do primality testing and calculate "2^k mod n" from k = 0..n. - Gottfried Helms, Oct 05 2000
Fractal sequence related to A002326: the even terms of this sequence are this sequence itself, constructed on A002326, whose terms are the odd terms of this sequence. - Alexandre Wajnberg, Apr 27 2005
It seems that a(n) is also the sum of the terms in one period of the base-2 MR-expansion of 1/n (see A136042 for definition). - John W. Layman, Jan 22 2009
Indices n such that a(n) divides n are listed in A068563. - Max Alekseyev, Aug 25 2013
a(n) is the smallest k such that x^n - 1 factors into n linear polynomials over GF(2^k). For example, a(12) = 2, and x^12 - 1 = (x - 1)^4*(x - w)^4*(x - (w + 1))^4 in GF(4), where w^2 + w + 1 = 0. - Jianing Song, Jan 20 2019

References

  • Simmons, G. J. The structure of the differentiation digraphs of binary sequences. Ars Combin. 35 (1993), A, 71-88, see Table 2. Math. Rev. 95f:05052.

Crossrefs

Cf. A136042. - John W. Layman, Jan 22 2009
Positions of records are A139099.

Programs

  • Haskell
    a007733 = a002326 . flip div 2 . subtract 1 . a000265
    -- Reinhard Zumkeller, Apr 13 2015
    
  • Mathematica
    f[n_] := MultiplicativeOrder[2, n/(2^IntegerExponent[n, 2])]; Array[f, 84] (* Robert G. Wilson v, Jun 10 2011 *)
  • PARI
    a(n) = znorder(Mod(2, n/2^valuation(n, 2))); \\ Michel Marcus, Apr 11 2015
    
  • Python
    from sympy.ntheory import n_order
    def A007733(n): return n_order(2,n>>(~n & n-1).bit_length()) # Chai Wah Wu, Jul 01 2022

Formula

a(n) = A002326((A000265(n) - 1)/2). - Max Alekseyev, Jun 11 2009

A003558 Least number m > 0 such that 2^m == +-1 (mod 2n + 1).

Original entry on oeis.org

1, 1, 2, 3, 3, 5, 6, 4, 4, 9, 6, 11, 10, 9, 14, 5, 5, 12, 18, 12, 10, 7, 12, 23, 21, 8, 26, 20, 9, 29, 30, 6, 6, 33, 22, 35, 9, 20, 30, 39, 27, 41, 8, 28, 11, 12, 10, 36, 24, 15, 50, 51, 12, 53, 18, 36, 14, 44, 12, 24, 55, 20, 50, 7, 7, 65, 18, 36, 34, 69, 46
Offset: 0

Views

Author

Keywords

Comments

Multiplicative suborder of 2 (mod 2n+1) (or sord(2, 2n+1)).
This is called quasi-order of 2 mod b, with b = 2*n+1, for n >= 1, in the Hilton/Pederson reference.
For the complexity of computing this, see A002326.
Also, the order of the so-called "milk shuffle" of a deck of n cards, which maps cards (1,2,...,n) to (1,n,2,n-1,3,n-2,...). See the paper of Lévy. - Jeffrey Shallit, Jun 09 2019
It appears that under iteration of the base-n Kaprekar map, for even n > 2 (A165012, A165051, A165090, A151949 in bases 4, 6, 8, 10), almost all cycles are of length a(n/2 - 1); proved under the additional constraint that the cycle contains at least one element satisfying "number of digits (n-1) - number of digits 0 = o(total number of digits)". - Joseph Myers, Sep 05 2009
From Gary W. Adamson, Sep 20 2011: (Start)
a(n) can be determined by the cycle lengths of iterates using x^2 - 2, seed 2*cos(2*Pi/N); as shown in the A065941 comment of Sep 06 2011. The iterative map of the logistic equation 4x*(1-x) is likewise chaotic with the same cycle lengths but initiating the trajectory with sin^2(2*Pi/N), N = 2n+1 [Kappraff & Adamson, 2004]. Chaotic terms with the identical cycle lengths can be obtained by applying Newton's method to i = sqrt(-1) [Strang, also Kappraff and Adamson, 2003], resulting in the morphism for the cot(2*Pi/N) trajectory: (x^2-1)/2x. (End)
From Gary W. Adamson, Sep 11 2019: (Start)
Using x^2 - 2 with seed 2*cos(Pi/7), we obtain the period-three trajectory 1.8019377...-> 1.24697...-> -0.445041... For an odd prime N, the trajectory terms represent diagonal lengths of regular star 2N-gons, with edge the shortest value (0.445... in this case.) (Cf. "Polygons and Chaos", p. 9, Fig 4.) We can normalize such lengths by dividing through with the lowest value, giving 3 diagonals of the 14-gon: (1, 2.801937..., 4.048917...). Label the terms ranked in magnitude with odd integers (1, 3, 5), and we find that the diagonal lengths are in agreement with the diagonal formula (sin(j*Pi)/14)/(sin(Pi/14)), with j = (1,3,5). (End)
Roots of signed n-th row A054142 polynomials are chaotic with respect to the operation (-2, x^2), with cycle lengths a(n). Example: starting with a root to x^3 - 5x^2 + 6x - 1 = 0; (2 + 2*cos(2*Pi/N) = 3.24697...); we obtain the trajectory (3.24697...-> 1.55495...-> 0.198062...); the roots to the polynomial with cycle length 3 matching a(3) = 3. - Gary W. Adamson, Sep 21 2011
From Juhani Heino, Oct 26 2015: (Start)
Start a sequence with numbers 1 and n. For next numbers, add previous numbers going backwards until the sum is even. Then the new number is sum/2. I conjecture that the sequence returns to 1,n and a(n) is the cycle length.
For example:
1,7,4,2,1,7,... so a(7) = 4.
1,6,3,5,4,2,1,6,... so a(6) = 6. (End)
From Juhani Heino, Nov 06 2015: (Start)
Proof of the above conjecture: Let n = -1/2; thus 2n + 1 = 0, so operations are performed mod (2n + 1). When the member is even, it is divided by 2. When it is odd, multiply by n, so effectively divide by -2. This is all well-defined in the sense that new members m are 1 <= m <= n. Now see what happens starting from an odd member m. The next member is -m/2. As long as there are even members, divide by 2 and end up with an odd -m/(2^k). Now add all the members starting with m. The sum is m/(2^k). It's divided by 2, so the next member is m/(2^(k+1)). That is the same as (-m/(2^k))/(-2), as with the definition.
So actually start from 1 and always divide by 2, although the sign sometimes changes. Eventually 1 is reached again. The chain can be traversed backwards and then 2^(cycle length) == +-1 (mod 2n + 1).
To conclude, we take care of a(0): sequence 1,0 continues with zeros and never returns to 1. So let us declare that cycle length 0 means unavailable. (End)
From Gary W. Adamson, Aug 20 2019: (Start)
Terms in the sequence can be obtained by applying the doubling sequence mod (2n + 1), then counting the terms until the next term is == +1 (mod 2n + 1). Example: given 25, the trajectory is (1, 2, 4, 8, 16, 7, 14, 3, 6, 12).
The cycle ends since the next term is 24 == -1 (mod 25) and has a period of 10. (End)
From Gary W. Adamson, Sep 04 2019: (Start)
Conjecture of Kappraff and Adamson in "Polygons and Chaos", p. 13 Section 7, "Chaos and Number": Given the cycle length for N = 2n + 1, the same cycle length is present in bases 4, 9, 16, 25, ..., m^2, for the expansion of 1/N.
Examples: The cycle length for 7 is 3, likewise for 1/7 in base 4: 0.021021021.... In base 9 the expansion of 1/7 is 0.125125125... Check: The first few terms are 1/9 + 2/81 + 5/729 = 104/279 = 0.1426611... (close to 1/7 = 0.142857...). (End)
From Gary W. Adamson, Sep 24 2019: (Start)
An exception to the rule for 1/N in bases m^2: (when N divides m^2 as in 1/7 in base 49, = 7/49, rational). When all terms in the cycle are the same, the identity reduces to 1/N in (some bases) = .a, a, a, .... The minimal values of "a" for 1/N are provided as examples, with the generalization 1/N in base (N-1)^2 = .a, a, a, ... for N odd:
1/3 in base 4 = .1, 1, 1, ...
1/5 in base 16 = .3, 3, 3, ...
1/7 in base 36 = .5, 5, 5, ...
1/9 in base 64 = .7, 7, 7, ...
1/11 in base 100 = .9, 9, 9, ... (Check: the first three terms are 9/100 +9/(100^2) + 9/(100^3) = 0.090909 where 1/11 = 0.09090909...). (End)
For N = 2n+1, the corresponding entry is equal to the degree of the polynomial for N shown in (Lang, Table 2, p. 46). As shown, x^3 - 3x - 1 is the minimal polynomial for N = 9, with roots (1.87938..., -1.53208..., 0.347296...); matching the (abs) values of the 2*cos(Pi/9) trajectory using x^2 - 2. Thus, a(4) = 3. If N is prime, the polynomials shown in Table 2 are the same as those for the same N in A065941. If different, the minimal polynomials shown in Table 2 are factors of those in A065941. - Gary W. Adamson, Oct 01 2019
The terms in the 2*cos(Pi/N) trajectory (roots to the minimal polynomials in A187360 and (Lang)), are quickly obtained from the doubling trajectory (mod N) by using the operation L(m) 2*cos(x)--> 2*cos(m*x), where L(2), the second degree Lucas polynomial (A034807) is x^2 - 2. Relating to the heptagon and using seed 2*cos(Pi/7), we obtain the trajectory 1.8019..., 1.24697..., and 0.445041....; cyclic with period 3. All such roots can be derived from the N-th roots of Unity and can be mapped on the Vesica Piscis. Given the roots of Unity (Polar 1Angle(k*2*Pi/N), k = 1, 2, ..., (N-1)/2) the Vesica Piscis maps these points on the left (L) circle to the (R) circle by adding 1A(0) or (a + b*I) = (1 + 0i). But this operation is the same as vector addition in which the resultant vector is 1 + 1A(k*(2*Pi/N)). Example: given the radius at 2*Pi/7 on the left circle, this maps to (1 + 1A(2*Pi/7)) on the right circle; or 1A(2*Pi/7) --> (1.8019377...A(Pi/7). Similarly, 1 + 1A((2)*2*Pi/7)) maps to (1.24697...A (2*Pi/7); and 1 + 1A(3*2*Pi/7) maps to (.0445041...A(3*Pi/7). - Gary W. Adamson, Oct 23 2019
From Gary W. Adamson, Dec 01 2021: (Start)
As to segregating the two sets: (A014659 terms are those N = (2*n+1), N divides (2^m - 1), and (A014657 terms are those N that divide (2^m + 1)); it appears that the following criteria apply: Given IcoS(N, 1) (cf. Lang link "On the Equivalence...", p. 16, Definition 20), if the number of odd terms is odd, then N belongs to A014659, otherwise A014657. In IcoS(11, 1): (1, 2, 4, 3, 5), three odd terms indicate that 11 is a term in A014657. IcoS(15, 1) has the orbit (1, 2, 4, 7) with two odd terms indicating that 15 is a term in A014659.
It appears that if sin(2^m * Pi/N) has a negative sign, then N is in A014659; otherwise N is in A014657. With N = 15, m is 4 and sin(16 * Pi/15) is -0.2079116... If N is 11, m is 5 and sin(32 * Pi/11) is 0.2817325. (End)
On the iterative map using x^2 - 2, (Devaney, p. 126) states that we must find the function that takes 2*cos(Pi) -> 2*cos(2*Pi). "However, we may write 2*cos(2*Pi) = 2*(2*cos^2(Pi) - 1) = (2*cos(Pi))^2 - 2. So the required function is x^2 - 2." On the period 3 implies chaos theorem of James Yorke and T.Y. Li, proved in 1975; Devaney (p. 133) states that if F is continuous and we find a cycle of period 3, there are infinitely many other cycles for this map with every possible period. Check: The x^2 - 2 orbit for 7 has a period of 3, so this entry has periodic points of all other periods. - Gary W. Adamson, Jan 04 2023
It appears that a(n) is the length of the cycle starting at 2/(2*n+1) for the map x->1 - abs(2*x-1). - Michel Marcus, Jul 16 2025

Examples

			a(3) = 3 since f(x) = x^2 - 2 has a period of 3 using seed 2*cos(2*Pi/7), where 7 = 2*3 + 1.
a(15) = 5 since the iterative map of the logistic equation 4x*(1-x) has a period 5 using seed sin^2(2*Pi)/N; N = 31 = 2*15 + 1.
		

References

  • Peter Hilton and Jean Pedersen, A Mathematical Tapestry: Demonstrating the Beautiful Unity of Mathematics, Cambridge University Press, 2010, pp. 261-264.
  • Carl Schick, Trigonometrie und unterhaltsame Zahlentheorie, Bokos Druck, Zürich, 2003 (ISBN 3-9522917-0-6).
  • Robert L. Devaney, A First Course in Chaotic Dynamical Systems, Theory and Experiment; Perseus Books Publishing, 1992, pp. 121-126.

Crossrefs

Cf. A054142, A065941, A085478, A160657, A179480, A135303 (coach numbers), A216371 (odd primes with one coach), A000215 (Fermat numbers).
A216066 is an essentially identical sequence apart from the offset.
Cf. A329593, A332433 (signs).

Programs

  • Maple
    A003558 := proc(n)
        local m,mo ;
        if n = 0 then
            return 0 ;
        end if;
        for m from 1 do
            mo := modp(2^m,2*n+1) ;
            if mo in {1,2*n} then
                return m;
            end if;
        end do:
    end proc:
    seq(A003558(n),n=0..20) ; # R. J. Mathar, Dec 01 2014
    f:= proc(n) local t;
          t:= numtheory:-mlog(-1,2,n);
          if t = FAIL then numtheory:-order(2,n) else t fi
    end proc:
    0, seq(f(2*k+1),k=1..1000); # Robert Israel, Oct 26 2015
  • Mathematica
    Suborder[a_,n_]:=If[n>1&&GCD[a,n]==1,Min[MultiplicativeOrder[a,n,{-1,1}]],0];
    Join[{1},Table[Suborder[2,2n+1],{n,100}]] (* T. D. Noe, Aug 02 2006 *) (* revised by Vincenzo Librandi, Apr 11 2020 *)
  • PARI
    a(n) = {m=1; while(m, if( (2^m) % (2*n+1) == 1 || (2^m) % (2*n+1) == 2*n, return(m)); m++)} \\ Altug Alkan, Nov 06 2015
    
  • PARI
    isok(m, n) = my(md = Mod(2, 2*n+1)^m); (md==1) || (md==-1);
    A003558(n) = my(m=1); while(!isok(m,n) , m++); m; \\ Michel Marcus, May 06 2020
    
  • Python
    def A003558(n):
        m, k = 1, 2 % (c:=(r:=n<<1)+1)
        while not (k==1 or k==r):
            k = 2*k%c
            m += 1
        return m # Chai Wah Wu, Oct 09 2023

Formula

a(n) = log_2(A160657(n) + 2) - 1. - Nathaniel Johnston, May 22 2009
a(n-1) = card {cos((2^k)*Pi/(2*n-1)): k in N} for n >= 1 (see A216066, an essentially identical sequence, for more information). - Roman Witula, Sep 01 2012
a(n) <= n. - Charles R Greathouse IV, Sep 15 2012 [For n >= 1]
a(n) = min{k > 0 | q_k = q_0} where q_0 = 1 and q_k = |2*n+1 - 2*q_{k-1}| (cf. [Schick, p. 4]; q_k=1 for n=1; q_k=A010684(k) for n=2; q_k=A130794(k) for n=3; q_k=|A154870(k-1)| for n=4; q_k=|A135449(k)| for n=5.) - Jonathan Skowera, Jun 29 2013
2^(a(n)) == A332433(n) (mod (2*n+1)), and (2^(a(n)) - A332433(n))/(2*n+1) = A329593(n), for n >= 0. - Wolfdieter Lang, Apr 09 2020

Extensions

More terms from Harry J. Smith, Feb 11 2005
Entry revised by N. J. A. Sloane, Aug 02 2006 and again Dec 10 2017
Previous Showing 21-30 of 198 results. Next