cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 147 results. Next

A285849 Number T(n,k) of permutations of [n] with k ordered cycles such that equal-sized cycles are ordered with increasing least elements; triangle T(n,k), n>=0, 0<=k<=n, read by rows.

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 0, 2, 6, 1, 0, 6, 19, 18, 1, 0, 24, 100, 105, 40, 1, 0, 120, 508, 1005, 430, 75, 1, 0, 720, 3528, 6762, 6300, 1400, 126, 1, 0, 5040, 24876, 61572, 62601, 28700, 3822, 196, 1, 0, 40320, 219168, 558548, 706608, 431445, 105336, 9114, 288, 1
Offset: 0

Views

Author

Alois P. Heinz, Apr 27 2017

Keywords

Comments

Each cycle is written with the smallest element first and equal-sized cycles are arranged in increasing order of their first elements.

Examples

			T(3,1) = 2: (123), (132).
T(3,2) = 6: (1)(23), (23)(1), (2)(13), (13)(2), (3)(12), (12)(3).
T(3,3) = 1: (1)(2)(3).
Triangle T(n,k) begins:
  1;
  0,    1;
  0,    1,     1;
  0,    2,     6,     1;
  0,    6,    19,    18,     1;
  0,   24,   100,   105,    40,     1;
  0,  120,   508,  1005,   430,    75,    1;
  0,  720,  3528,  6762,  6300,  1400,  126,   1;
  0, 5040, 24876, 61572, 62601, 28700, 3822, 196, 1;
		

Crossrefs

Row sums give A196301.
Main diagonal and first lower diagonal give: A000012, A002411.
T(2n,n) gives A285862.

Programs

  • Maple
    b:= proc(n, i, p) option remember; expand(`if`(n=0 or i=1,
          (p+n)!/n!*x^n, add(b(n-i*j, i-1, p+j)*(i-1)!^j*combinat
          [multinomial](n, n-i*j, i$j)/j!^2*x^j, j=0..n/i)))
        end:
    T:= n-> (p-> seq(coeff(p, x, i), i=0..n))(b(n$2, 0)):
    seq(T(n), n=0..12);
  • Mathematica
    multinomial[n_, k_List] := n!/Times @@ (k!);
    b[n_, i_, p_] := b[n, i, p] = Expand[If[n == 0 || i == 1, (p + n)!/n!*x^n, Sum[b[n - i*j, i - 1, p + j]*(i - 1)!^j*multinomial[n, Join[{n - i*j}, Table[i, j]]]/j!^2*x^j, {j, 0, n/i}]]];
    T[n_] := Function[p, Table[Coefficient[p, x, i], {i, 0, n}]][b[n, n, 0]];
    Table[T[n], {n, 0, 12}] // Flatten (* Jean-François Alcover, Apr 28 2018, after Alois P. Heinz *)

A008705 Coefficient of x^n in (Product_{m=1..n}(1-x^m))^n.

Original entry on oeis.org

1, -1, -1, 5, -5, -6, 11, 41, -125, -85, 1054, -2069, -209, 8605, -15625, 3990, 14035, 36685, -130525, -254525, 1899830, -3603805, -134905, 13479425, -25499225, 23579969, -64447293, 237487433, -133867445, -1795846200, 6309965146, -6788705842, -11762712973
Offset: 0

Views

Author

T. Forbes (anthony.d.forbes(AT)googlemail.com)

Keywords

Comments

Degree of resulting polynomial is A002411(n). - Michel Marcus, Sep 05 2013
The Gauss congruences a(n*p^k) == a(n*p^(k-1)) (mod p^k) hold for all primes p and all positive integers n and k. - Peter Bala, Jan 31 2022
Conjectures: the supercongruences a(p) == -1 - p (mod p^2) and a(2*p) == p - 1 (mod p^2) hold for all primes p >= 3. - Peter Bala, Apr 18 2023

Examples

			(1-x)^1 = -x + 1, hence a(1) = -1.
(1-x^2)^2*(1-x)^2 = x^6 - 2*x^5 - x^4 + 4*x^3 - x^2 - 2*x + 1, hence a(2) = -1.
		

Crossrefs

Bisections: A262308, A262309.
Main diagonal of A286354.

Programs

  • Maple
    C5:=proc(r) local t1,n; t1:=mul((1-x^n)^r,n=1..r+2); series(t1,x,r+1); coeff(%,x,r); end;
    [seq(C5(i),i=0..30)]; # N. J. A. Sloane, Oct 04 2015
    # second Maple program:
    b:= proc(n, k) option remember; `if`(n=0, 1, -k*
          add(numtheory[sigma](j)*b(n-j, k), j=1..n)/n)
        end:
    a:= n-> b(n$2):
    seq(a(n), n=0..35);  # Alois P. Heinz, Jun 21 2018
  • Mathematica
    With[{m = 40}, Table[SeriesCoefficient[Series[(Product[1-x^j, {j, n}])^n, {x, 0, m}], n], {n, 0, m}]] (* G. C. Greubel, Sep 09 2019 *)
  • PARI
    a(n) = polcoeff(prod(m = 1, n, (1-x^m)^n), n); \\ Michel Marcus, Sep 05 2013

Formula

a(n) = [x^n] exp(-n*Sum_{k>=1} x^k/(k*(1 - x^k))). - Ilya Gutkovskiy, May 30 2018

Extensions

More terms from Michel Marcus, Sep 05 2013
a(0)=1 prepended by N. J. A. Sloane, Oct 04 2015

A132191 Square array a(m,n) read by antidiagonals, defined by A000010(n)*a(m,n) = Sum_{k=1..n, gcd(k,n)=1} m^{ Sum_{d|n} A000010(d)/ (multiplicative order of k modulo d) }.

Original entry on oeis.org

1, 1, 2, 1, 4, 3, 1, 6, 9, 4, 1, 12, 18, 16, 5, 1, 12, 54, 40, 25, 6, 1, 40, 72, 160, 75, 36, 7, 1, 28, 405, 280, 375, 126, 49, 8, 1, 96, 390, 2176, 825, 756, 196, 64, 9, 1, 104, 1944, 2800, 8125, 2016, 1372, 288, 81, 10, 1, 280, 3411, 17920, 13175, 23976, 4312, 2304, 405
Offset: 1

Views

Author

N. J. A. Sloane, Dec 01 2007, based on email from Max Alekseyev, Nov 08 2007

Keywords

Comments

From Andrew Howroyd, Apr 22 2017: (Start)
Number of step shifted (decimated) sequences of length n using a maximum of m different symbols. See A056371 for an explanation of step shifts. -
Number of mappings with domain {0..n-1} and codomain {1..m} up to equivalence. Mappings A and B are equivalent if there is a d, prime to n, such that A(i) = B(i*d mod n) for i in {0..n-1}. (End)

Examples

			Array begins:
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...
2, 4, 6, 12, 12, 40, 28, 96, 104, 280, 216, 1248, 704, 2800, 4344, 8928, 8232, 44224, 29204, 136032, ...
3, 9, 18, 54, 72, 405, 390, 1944, 3411, 14985, 17802, 139968, 133104, 798525, 1804518, 5454378, 8072532, 64599849, 64573626, 437732424, ...
4, 16, 40, 160, 280, 2176, 2800, 17920, 44224, 263296, 419872, 4280320, 5594000, 44751616, 134391040, 539054080, 1073758360, 11453771776, 15271054960, 137575813120, ...
5, 25, 75, 375, 825, 8125, 13175, 103125, 327125, 2445625, 4884435, 61640625, 101732425, 1017323125, 3816215625, 19104609375, 47683838325, 635787765625, 1059638680675, 11924780390625, ...
		

Crossrefs

Row m=2 is A056371
Row m=3 is A056372
Row m=4 is A056373
Row m=5 is A056374
Row m=6 is A056375
Column n=2 is A000290
Column n=3 is A002411
Column n=4 is A019582

Programs

  • Mathematica
    a[m_, n_] := (1/EulerPhi[n])*Sum[If[GCD[k, n]==1, m^DivisorSum[n, EulerPhi[#] / MultiplicativeOrder[k, #]&], 0], {k, 1, n}]; Table[a[m-n+1, n], {m, 1, 15}, {n, m, 1, -1}] // Flatten (* Jean-François Alcover, Dec 01 2015 *)
  • PARI
    for(i=1,15,for(m=1,i,n=i-m+1; print1(sum(k=1, n, if(gcd(k,n)==1, m^sumdiv(n,d,eulerphi(d)/znorder(Mod(k,d))),0))/eulerphi(n)","))) \\ Herman Jamke (hermanjamke(AT)fastmail.fm), Apr 26 2008

Extensions

More terms from Herman Jamke (hermanjamke(AT)fastmail.fm), Apr 26 2008
Offset corrected by Andrew Howroyd, Apr 20 2017

A132813 Triangle read by rows: A001263 * A127648 as infinite lower triangular matrices.

Original entry on oeis.org

1, 1, 2, 1, 6, 3, 1, 12, 18, 4, 1, 20, 60, 40, 5, 1, 30, 150, 200, 75, 6, 1, 42, 315, 700, 525, 126, 7, 1, 56, 588, 1960, 2450, 1176, 196, 8, 1, 72, 1008, 4704, 8820, 7056, 2352, 288, 9, 1, 90, 1620, 10080, 26460, 31752, 17640, 4320, 405, 10
Offset: 0

Views

Author

Gary W. Adamson, Sep 01 2007

Keywords

Comments

Also T(n,k) = binomial(n-1, k-1)*binomial(n, k-1), related to Narayana polynomials (see Sulanke reference). - Roger L. Bagula, Apr 09 2008
h-vector for cluster complex associated to the root system B_n. See p. 8, Athanasiadis and C. Savvidou. - Tom Copeland, Oct 19 2014

Examples

			First few rows of the triangle are:
  1;
  1,  2;
  1,  6,   3;
  1, 12,  18,   4;
  1, 20,  60,  40,   5;
  1, 30, 150, 200,  75,   6;
  1, 42, 315, 700, 525, 126, 7;
  ...
		

Crossrefs

Family of polynomials (see A062145): A008459 (c=1), this sequence (c=2), A062196 (c=3), A062145 (c=4), A062264 (c=5), A062190 (c=6).
Columns: A000012 (k=0), A002378 (k=1), A006011 (k=2), 4*A006542 (k=3), 5*A006857 (k=4), 6*A108679 (k=5), 7*A134288 (k=6), 8*A134289 (k=7), 9*A134290 (k=8), 10*A134291 (k=9).
Diagonals: A000027 (k=n), A002411 (k=n-1), A004302 (k=n-2), A108647 (k=n-3), A134287 (k=n-4).
Main diagonal: A000894.
Sums: (-1)^floor((n+1)/2)*A001405 (signed row), A001700 (row), A203611 (diagonal).
Cf. A103371 (mirrored).

Programs

  • GAP
    Flat(List([0..10],n->List([0..n], k->(k+1)*Binomial(n+1,k+1)*Binomial(n+1,k)/(n+1)))); # Muniru A Asiru, Feb 26 2019
    
  • Haskell
    a132813 n k = a132813_tabl !! n !! k
    a132813_row n = a132813_tabl !! n
    a132813_tabl = zipWith (zipWith (*)) a007318_tabl $ tail a007318_tabl
    -- Reinhard Zumkeller, Apr 04 2014
    
  • Magma
    /* triangle */ [[(k+1)*Binomial(n+1,k+1)*Binomial(n+1,k)/(n+1): k in [0..n]]: n in [0.. 15]]; // Vincenzo Librandi, Oct 19 2014
    
  • Maple
    P := (n, x) -> hypergeom([1-n, -n], [1], x): for n from 1 to 9 do PolynomialTools:-CoefficientList(simplify(P(n,x)),x) od; # Peter Luschny, Nov 26 2014
  • Mathematica
    T[n_,k_]=Binomial[n-1,k-1]*Binomial[n,k-1]; Table[Table[T[n,k],{k,1,n}],{n,1,11}]; Flatten[%] (* Roger L. Bagula, Apr 09 2008 *)
    P[n_, x_] := HypergeometricPFQ[{1-n, -n}, {1}, x]; Table[CoefficientList[P[n, x], x], {n, 1, 10}] // Flatten (* Jean-François Alcover, Nov 27 2014, after Peter Luschny *)
  • PARI
    tabl(nn) = {for (n = 1, nn, for (k = 1, n, print1(binomial(n-1, k-1)*binomial(n, k-1) , ", ");););} \\ Michel Marcus, Feb 12 2014
    
  • SageMath
    def A132813(n,k): return binomial(n,k)*binomial(n+1,k)
    print(flatten([[A132813(n,k) for k in range(n+1)] for n in range(13)])) # G. C. Greubel, Mar 12 2025

Formula

T(n,k) = (k+1)*binomial(n+1,k+1)*binomial(n+1,k)/(n+1), n >= k >= 0.
From Roger L. Bagula, May 14 2010: (Start)
T(n, m) = coefficients(p(x,n)), where
p(x,n) = (1-x)^(2*n)*Sum_{k >= 0} binomial(k+n-1, k)*binomial(n+k, k)*x^k,
or p(x,n) = (1-x)^(2*n)*Hypergeometric2F1([n, n+1], [1], x). (End)
T(n,k) = binomial(n,k) * binomial(n+1,k). - Reinhard Zumkeller, Apr 04 2014
These are the coefficients of the polynomials Hypergeometric2F1([1-n,-n], [1], x). - Peter Luschny, Nov 26 2014
G.f.: A(x,y) = A281260(x,y)/(1-A281260(x,y))/x. - Vladimir Kruchinin, Oct 10 2020

A325007 Array read by descending antidiagonals: A(n,k) is the number of achiral colorings of the facets of a regular n-dimensional orthotope using up to k colors.

Original entry on oeis.org

1, 2, 1, 3, 6, 1, 4, 18, 10, 1, 5, 40, 55, 15, 1, 6, 75, 200, 126, 21, 1, 7, 126, 560, 700, 252, 28, 1, 8, 196, 1316, 2850, 1996, 462, 36, 1, 9, 288, 2730, 9261, 11376, 5004, 792, 45, 1, 10, 405, 5160, 25480, 50127, 38550, 11440, 1287, 55, 1, 11, 550, 9075, 61776, 181027, 225225, 116160, 24310, 2002, 66, 1
Offset: 1

Views

Author

Robert A. Russell, May 27 2019

Keywords

Comments

Also called hypercube, n-dimensional cube, and measure polytope. For n=1, the figure is a line segment with two vertices. For n=2 the figure is a square with four edges. For n=3 the figure is a cube with six square faces. For n=4, the figure is a tesseract with eight cubic facets. The Schläfli symbol, {4,3,...,3}, of the regular n-dimensional orthotope (n>1) consists of a four followed by n-2 threes. Each of its 2n facets is an (n-1)-dimensional orthotope. An achiral coloring is identical to its reflection.
Also the number of achiral colorings of the vertices of a regular n-dimensional orthoplex using up to k colors.

Examples

			Array begins with A(1,1):
1  2   3     4      5      6       7        8         9        10 ...
1  6  18    40     75    126     196      288       405       550 ...
1 10  55   200    560   1316    2730     5160      9075     15070 ...
1 15 126   700   2850   9261   25480    61776    135675    275275 ...
1 21 252  1996  11376  50127  181027   559728   1529892   3784627 ...
1 28 462  5004  38550 225225 1053304  4119648  13942908  41918800 ...
1 36 792 11440 116160 881595 5263336 25794288 107427420 390891160 ...
For a(2,2)=6, all colorings are achiral: two with just one of the colors, two with one color on just one edge, one with opposite colors the same, and one with opposite colors different.
		

Crossrefs

Cf. A325004 (oriented), A325005 (unoriented), A325006 (chiral), A325011 (exactly k colors).
Other n-dimensional polytopes: A325001 (simplex), A325015 (orthoplex).
Rows 1-2 are A000027, A002411; column 2 is A186783(n+2).

Programs

  • Mathematica
    Table[Binomial[Binomial[d-n+2,2]+n-1,n]-Binomial[Binomial[d-n+1,2],n],{d,1,11},{n,1,d}] // Flatten
  • PARI
    a(n, k) = binomial(binomial(k+1, 2)+n-1, n) - binomial(binomial(k, 2), n)
    array(rows, cols) = for(x=1, rows, for(y=1, cols, print1(a(x, y), ", ")); print(""))
    /* Print initial 6 rows and 8 columns of array as follows: */
    array(6, 8) \\ Felix Fröhlich, May 30 2019

Formula

A(n,k) = binomial(binomial(k+1,2) + n-1, n) - binomial(binomial(k,2),n).
A(n,k) = Sum_{j=1..2*n} A325011(n,j) * binomial(k,j).
A(n,k) = 2*A325005(n,k) - A325004(n,k) = (A325004(n,k) - 2*A325006(n,k)) / 2 = A325005(n,k) + A325006(n,k).
G.f. for row n: Sum{j=1..2*n} A325011(n,j) * x^j / (1-x)^(j+1).
Linear recurrence for row n: T(n,k) = Sum_{j=0..2*n} binomial(-2-j,2*n-j) * T(n,k-1-j).
G.f. for column k: 1/(1-x)^binomial(k+1,2) - (1+x)^binomial(k,2).

A325015 Array read by descending antidiagonals: T(n,k) is the number of achiral colorings of the facets of a regular n-dimensional orthoplex using up to k colors.

Original entry on oeis.org

1, 2, 1, 3, 6, 1, 4, 18, 21, 1, 5, 40, 201, 308, 1, 6, 75, 1076, 34128, 180342, 1, 7, 126, 4025, 1056576, 2945136213, 366975285216, 1, 8, 196, 11901, 15303750, 2932338749408, 103863386269870076808, 10316179427644325573474464, 1
Offset: 1

Views

Author

Robert A. Russell, May 27 2019

Keywords

Comments

Also called cross polytope and hyperoctahedron. For n=1, the figure is a line segment with two vertices. For n=2 the figure is a square with four edges. For n=3 the figure is an octahedron with eight triangular faces. For n=4, the figure is a 16-cell with sixteen tetrahedral facets. The Schläfli symbol, {3,...,3,4}, of the regular n-dimensional orthoplex (n>1) consists of n-2 threes followed by a four. Each of its 2^n facets is an (n-1)-dimensional simplex. An achiral coloring is identical to its reflection.
Also the number of achiral colorings of the vertices of a regular n-dimensional orthotope (cube) using up to k colors.

Examples

			Array begins with T(1,1):
1   2     3       4        5         6         7          8 ...
1   6    18      40       75       126       196        288 ...
1  21   201    1076     4025     11901     29841      66256 ...
1 308 34128 1056576 15303750 136236276 865711763 4296782848 ...
...
For T(2,2)=6, two squares have all edges the same color, two have three edges the same color, one has opposite edges the same color, and one has opposite edges different colors.
		

Crossrefs

Cf. A325012 (oriented), A325013 (unoriented), A325014 (chiral), A325019 (exactly k colors).
Other n-dimensional polytopes: A325001 (simplex), A325007 (orthotope).
Rows 1-2 are A000027, A002411.

Programs

  • Mathematica
    a48[n_] := a48[n] = DivisorSum[NestWhile[#/2&, n, EvenQ], MoebiusMu[#]2^(n/#)&]/(2n); (* A000048 *)
    a37[n_] := a37[n] = DivisorSum[n, MoebiusMu[n/#]2^#&]/n; (* A001037 *)
    CI0[{n_Integer}] := CI0[{n}] = CI[Transpose[If[EvenQ[n], p2 = IntegerExponent[n, 2]; sub = Divisors[n/2^p2]; {2^(p2+1) sub, a48 /@ (2^p2 sub) }, sub = Divisors[n]; {sub, a37 /@ sub}]]] 2^(n-1); (* even perm. *)
    CI1[{n_Integer}] := CI1[{n}] = CI[sub = Divisors[n]; Transpose[If[EvenQ[n], {sub, a37 /@ sub}, {2 sub, a48 /@ sub}]]] 2^(n-1); (* odd perm. *)
    compress[x : {{, } ...}] := (s = Sort[x]; For[i = Length[s], i > 1, i -= 1, If[s[[i, 1]]==s[[i-1, 1]], s[[i-1, 2]] += s[[i, 2]]; s = Delete[s, i], Null]]; s)
    cix[{a_, b_}, {c_, d_}] := {LCM[a, c], (a b c d)/LCM[a, c]};
    Unprotect[Times]; Times[CI[a_List], CI[b_List]] :=  (* combine *) CI[compress[Flatten[Outer[cix, a, b, 1], 1]]]; Protect[Times];
    CI0[p_List] := CI0[p] = Expand[CI0[Drop[p, -1]] CI0[{Last[p]}] + CI1[Drop[p, -1]] CI1[{Last[p]}]]
    CI1[p_List] := CI1[p] = Expand[CI0[Drop[p, -1]] CI1[{Last[p]}] + CI1[Drop[p, -1]] CI0[{Last[p]}]]
    pc[p_List] := Module[{ci,mb},mb = DeleteDuplicates[p]; ci = Count[p, #] & /@ mb; n!/(Times @@ (ci!) Times @@ (mb^ci))] (* partition count *)
    row[n_Integer] := row[n] = Factor[(Total[(CI1[#] pc[#]) & /@ IntegerPartitions[n]])/(n! 2^(n - 1))] /. CI[l_List] :> j^(Total[l][[2]])
    array[n_, k_] := row[n] /. j -> k
    Table[array[n, d-n+1], {d, 1, 10}, {n, 1, d}] // Flatten

Formula

The algorithm used in the Mathematica program below assigns each permutation of the axes to a partition of n. It then determines the number of permutations for each partition and the cycle index for each partition.
T(n,k) = 2*A325013(n,k) - A325012(n,k) = A325012(n,k) - 2*A325014(n,k) = A325013(n,k) - A325014(n,k).
T(n,k) = Sum_{j=1..3*2^(n-2)} A325019(n,j) * binomial(k,j).

A070893 Let r, s, t be three permutations of the set {1,2,3,..,n}; a(n) = value of Sum_{i=1..n} r(i)*s(i)*t(i), with r={1,2,3,..,n}; s={n,n-1,..,1} and t={n,n-2,n-4,...,1,...,n-3,n-1}.

Original entry on oeis.org

1, 6, 19, 46, 94, 172, 290, 460, 695, 1010, 1421, 1946, 2604, 3416, 4404, 5592, 7005, 8670, 10615, 12870, 15466, 18436, 21814, 25636, 29939, 34762, 40145, 46130, 52760, 60080, 68136, 76976, 86649, 97206, 108699, 121182, 134710, 149340
Offset: 1

Views

Author

Wouter Meeussen, May 22 2002

Keywords

Comments

See A070735 for the minimal values for these products. This sequence is an upper bound. The third permutation 't'= ceiling(abs(range(n-1/2,-n,-2))) is such that it associates its smallest factor with the largest factor of the product 'r'*'s'.
We observe that is the transform of A002717 by the following transform T: T(u_0,u_1,u_2,u_3,...) = (u_0,u_0+u_1, u_0+u_1+u_2, u_0+u_1+u_2+u_3+u_4,...). In other words, v_p = Sum_{k=0..p} u_k and the g.f. phi_v of v is given by phi_v = phi_u/(1-z). - Richard Choulet, Jan 28 2010

Examples

			{1,2,3,4,5,6,7}*{7,6,5,4,3,2,1}*{7,5,3,1,2,4,6} gives {49,60,45,16,30,48,42}, with sum 290, so a(7)=290.
		

Crossrefs

Cf. A070735, A082289. a(n)=A082290(2n-2).
Cf. A002717 (first differences). - Bruno Berselli, Aug 26 2011
Column k=3 of A166278. - Alois P. Heinz, Nov 02 2012

Programs

  • Magma
    [(1/96)*(2*n*(n+2)*(3*n^2+10*n+4)+3*(-1)^n-3): n in [1..40]]; // Vincenzo Librandi, Aug 26 2011
  • Mathematica
    Table[Plus@@(Range[n]*Range[n, 1, -1]*Ceiling[Abs[Range[n-1/2, -n, -2]]]), {n, 49}];
    (* or *)
    CoefficientList[Series[ -(1+2x)/(-1+x)^5/(1+x), {x, 0, 48}], x]//Flatten
  • PARI
    a(n)=sum(i=1,n,i*(n+1-i)*ceil(abs(n+3/2-2*i)))
    
  • PARI
    a(n)=polcoeff(if(n<0,x^4*(2+x)/((1+x)*(1-x)^5),x*(1+2*x)/((1+x)*(1-x)^5))+x*O(x^abs(n)),abs(n))
    

Formula

G.f.: x*(1+2*x)/((1+x)*(1-x)^5). - Michael Somos, Apr 07 2003
a(n) = 3*a(n-1) - 2*a(n-2) - 2*a(n-3) + 3*a(n-4) - a(n-5) + 3. If sequence is also defined for n <= 0 by this equation, then a(n)=0 for -3 <= n <= 0 and a(n)=A082289(-n) for n <= -4. - Michael Somos, Apr 07 2003
a(n) = (1/96)*(2*n*(n+2)*(3*n^2+10*n+4)+3*(-1)^n-3). a(n) - a(n-2) = A002411(n). - Bruno Berselli, Aug 26 2011

A135503 a(n) = n*(n^2 - 1)/2.

Original entry on oeis.org

0, 0, 3, 12, 30, 60, 105, 168, 252, 360, 495, 660, 858, 1092, 1365, 1680, 2040, 2448, 2907, 3420, 3990, 4620, 5313, 6072, 6900, 7800, 8775, 9828, 10962, 12180, 13485, 14880, 16368, 17952, 19635, 21420, 23310, 25308, 27417, 29640, 31980, 34440
Offset: 0

Views

Author

Cino Hilliard, Feb 09 2008

Keywords

Comments

Previous name was: Integer values of sqrt(b) solving sqrt(d) + sqrt(b) = sqrt(c) with d^2 + b = c.
Squaring the first equation and setting the result equal to the second, we need d + b + 2*sqrt(d*b) = d^2+b -> d + 2*sqrt(d*b) = d^2 -> d^2 - d = 2*sqrt(d*b)
-> d^2*(d-1)^2 = 4*d*b -> b = d*(d-1)^2/4 -> sqrt(b) = (d-1)*sqrt(d)/2. Setting d = (n+1)^2 yields sqrt(b) = A027480(n).
This is the case k = 2 for FLTR, Fermat's Last Theorem with rational exponents 1/k: Consider x + y = x + y. Then (x^k)^(1/k) + (y^k)^(1/k) = ((x+y)^k)^(1/k).
For k > 2, there are infinitely many solutions to d^(1/k) + b^(1/k) = c^(1/k). E.g., 8^(1/3) + 27^(1/3) = 125^(1/3) at k = 3. However, in conjunction with d^2 + b = c, I could not find any nontrivial solutions.
A shifted version of A027480. - R. J. Mathar, Apr 07 2009
For n > 2, a(n) is the maximum value of the magic constant in a perimeter-magic n-gon of order n (see A342758). - Stefano Spezia, Mar 21 2021
a(n) is equal to the total number of P_3 edge-disjoint subgraphs of the complete graph on n vertices. - Samuel J. Bevins, May 09 2023

Examples

			For d = 9, b = 144, c = 225, 9^(1/2) + 144^(1/2) = 225^(1/2) and 9^2 + 144 = 225. So b^(1/2) = 12 is the 4th entry in the sequence.
		

Crossrefs

Programs

  • Mathematica
    Array[# (#^2 - 1)/2 &, 42, 0] (* Michael De Vlieger, Feb 20 2018 *)
  • PARI
    flt2(n,p) = { local(a,b); for(a=0,n, b = (a^3-a)/2; print1(b", ") ) }

Formula

a(n) = 3*A000292(n-1).
From R. J. Mathar Feb 20 2008: (Start)
O.g.f.: 3*x^2/(-1+x)^4.
a(n) = n*(n^2 - 1)/2 = A007531(n+1)/2. (End)
G.f.: 3*x^2*G(0)/2, where G(k) = 1 + 1/(1 - x/(x + (k+1)/(k+4)/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, Jun 01 2013
a(n) = A006003(n+1) - A000326(n+1). - J. M. Bergot, Dec 04 2014
E.g.f.: (1/2)* x^2 *(3 + x)*exp(x). - G. C. Greubel, Oct 15 2016
From Miquel Cerda, Dec 25 2016: (Start)
a(n) = A000578(n) - A006003(n).
a(n) = A004188(n) - A000578(n).
a(n) = A007588(n) - A004188(n). (End)
a(n) = A002411(n) - A000217(n). - Justin Gaetano, Feb 20 2018
From Amiram Eldar, Jan 09 2021: (Start)
Sum_{n>=2} 1/a(n) = 1/2.
Sum_{n>=2} (-1)^n/a(n) = 4*log(2) - 5/2. (End)

Extensions

Edited by R. J. Mathar, Apr 21 2009
New name using R. J. Mathar's formula, Joerg Arndt, Dec 05 2014

A279216 Expansion of Product_{k>=1} 1/(1 - x^k)^(k^2*(k+1)/2).

Original entry on oeis.org

1, 1, 7, 25, 86, 269, 862, 2606, 7812, 22704, 64989, 182356, 504414, 1373694, 3693367, 9804435, 25733084, 66808578, 171719539, 437183839, 1103143657, 2760037810, 6850400668, 16873338215, 41260373472, 100196920196, 241712863504, 579416535973, 1380517695672, 3270075208145, 7702580246941
Offset: 0

Views

Author

Ilya Gutkovskiy, Dec 08 2016

Keywords

Comments

Euler transform of the pentagonal pyramidal numbers (A002411).

Crossrefs

Programs

  • Mathematica
    nmax=30; CoefficientList[Series[Product[1/(1 - x^k)^(k^2 (k + 1)/2), {k, 1, nmax}], {x, 0, nmax}], x]

Formula

G.f.: Product_{k>=1} 1/(1 - x^k)^(k^2*(k+1)/2).
a(n) ~ exp(-Zeta(3)/(8*Pi^2) - Pi^16/(83980800000*Zeta(5)^3) + Zeta'(-3)/2 + (Pi^12/(97200000*2^(2/5)*3^(1/5)*Zeta(5)^(11/5))) * n^(1/5) + (-Pi^8/(108000*2^(4/5)*3^(2/5)*Zeta(5)^(7/5))) * n^(2/5) + (Pi^4/(180*2^(1/5)*(3*Zeta(5))^(3/5))) * n^(3/5) + ((5*(3*Zeta(5))^(1/5))/(2^(8/5))) * n^(4/5)) * (3*Zeta(5))^(119/1200) / (2^(181/600) * sqrt(5*Pi) * n^(719/1200)). - Vaclav Kotesovec, Dec 08 2016

A368520 Irregular triangular array T, read by rows: T(n,k) = number of sums |x-y|+|y-z| = k, where x,y,z are in {1,2,...,n} and x <= z.

Original entry on oeis.org

1, 2, 2, 2, 3, 4, 7, 2, 2, 4, 6, 12, 8, 6, 2, 2, 5, 8, 17, 14, 15, 6, 6, 2, 2, 6, 10, 22, 20, 24, 16, 12, 6, 6, 2, 2, 7, 12, 27, 26, 33, 26, 25, 12, 12, 6, 6, 2, 2, 8, 14, 32, 32, 42, 36, 38, 26, 20, 12, 12, 6, 6, 2, 2, 9, 16, 37, 38, 51, 46, 51, 40, 37, 20, 20
Offset: 1

Views

Author

Clark Kimberling, Jan 22 2024

Keywords

Comments

Row n consists of 2n-1 positive integers.

Examples

			First seven rows:
 1
 2   2   2
 3   4   7   2   2
 4   6  12   8   6   2   2
 5   8  17  14  15   6   6   2   2
 6  10  22  20  24  16  12   6   6  2  2
 7  12  27  26  33  26  25  12  12  6  6  2  2
For n=2, there are 6 triples (x,y,z) having x <= z:
111:  |x-y| + |y-z| = 0
112:  |x-y| + |y-z| = 1
121:  |x-y| + |y-z| = 2
122:  |x-y| + |y-z| = 1
212:  |x-y| + |y-z| = 2
222:  |x-y| + |y-z| = 0
so that row 1 of the array is (2,2,2), representing two 0s, two 1s, and two 2s.
		

Crossrefs

Cf. A002411 (row sums), A110660 (limiting reverse row), A368434, A368437, A368515, A368516, A368517, A368518, A368519, A368521, A368522.

Programs

  • Mathematica
    t1[n_] := t1[n] = Tuples[Range[n], 3];
    t[n_] := t[n] = Select[t1[n], #[[1]] <= #[[3]] &];
    a[n_, k_] := Select[t[n], Abs[#[[1]] - #[[2]]] + Abs[#[[2]] - #[[3]]] == k &];
    u = Table[Length[a[n, k]], {n, 1, 15}, {k, 0, 2 n - 2}];
    v = Flatten[u]  (* sequence *)
    Column[Table[Length[a[n, k]], {n, 1, 15}, {k, 0, 2 n - 2}]]  (* array *)
Previous Showing 31-40 of 147 results. Next