A002492
Sum of the first n even squares: 2*n*(n+1)*(2*n+1)/3.
Original entry on oeis.org
0, 4, 20, 56, 120, 220, 364, 560, 816, 1140, 1540, 2024, 2600, 3276, 4060, 4960, 5984, 7140, 8436, 9880, 11480, 13244, 15180, 17296, 19600, 22100, 24804, 27720, 30856, 34220, 37820, 41664, 45760, 50116, 54740, 59640, 64824, 70300, 76076, 82160
Offset: 0
- A. O. Barut, Group Structure of the Periodic System, in Wybourne, Ed., The Structure of Matter, University of Canterbury Press, Christchurch, 1972, p. 126.
- Edward G. Mazur, Graphic Representation of the Periodic System during One Hundred Years, University of Alabama Press, Alabama, 1974.
- W. Permans and J. Kemperman, "Nummeringspribleem van S. Dockx, Mathematisch Centrum. Amsterdam," Rapport ZW; 1949-005, 4 leaves, 19.8 X 34 cm.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Jose Manuel Garcia Calcines, Luis Javier Hernandez Paricio, and Maria Teresa Rivas Rodriguez, Semi-simplicial combinatorics of cyclinders and subdivisions, arXiv:2307.13749 [math.CO], 2023. See p. 32.
- Milan Janjic, Two Enumerative Functions
- Milan Janjić, On Restricted Ternary Words and Insets, arXiv:1905.04465 [math.CO], 2019.
- Milan Janjic and Boris Petkovic, A Counting Function, arXiv preprint arXiv:1301.4550 [math.CO], 2013. - From _N. J. A. Sloane_, Feb 13 2013
- Milan Janjic and Boris Petkovic, A Counting Function Generalizing Binomial Coefficients and Some Other Classes of Integers, J. Int. Seq. 17 (2014), Article #14.3.5.
- Ângela Mestre and José Agapito, Square Matrices Generated by Sequences of Riordan Arrays, J. Int. Seq., Vol. 22 (2019), Article 19.8.4.
- D. Neubert, Double Shell Structure of the Periodic System of the Elements, Z. Naturforschung, 25A (1970), p. 210.
- Karl-Dietrich Neubert, Double-Shell PSE: Metals - Nonmetals.
- Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992, arXiv:0911.4975 [math.NT], 2009.
- Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992.
- D. Suprijanto and Rusliansyah, Observation on Sums of Powers of Integers Divisible by Four, Applied Mathematical Sciences, Vol. 8, No. 45 (2014), pp. 2219-2226.
- Index entries for sequences related to Chebyshev polynomials.
- Index entries for two-way infinite sequences.
- Index entries for linear recurrences with constant coefficients, signature (4,-6,4,-1).
-
[2*n*(n+1)*(2*n+1)/3: n in [0..40]]; // Vincenzo Librandi, Jun 16 2011
-
A002492:=n->2*n*(n+1)*(2*n+1)/3; seq(A002492(n), n=0..50); # Wesley Ivan Hurt, Apr 04 2014
-
Table[2n(n+1)(2n+1)/3, {n,0,40}] (* or *) Binomial[2*Range[0,40]+2,3] (* or *) LinearRecurrence[{4,-6,4,-1}, {0,4,20,56},40] (* Harvey P. Dale, Aug 15 2012 *)
Accumulate[(2*Range[0,40])^2] (* Harvey P. Dale, Jun 04 2019 *)
-
a(n)=2*n*(n+1)*(2*n+1)/3
A015084
Carlitz-Riordan q-Catalan numbers for q=3.
Original entry on oeis.org
1, 1, 4, 43, 1252, 104098, 25511272, 18649337311, 40823535032644, 267924955577741566, 5274102955963545775864, 311441054994969341088610030, 55171471477692117486494217498280
Offset: 0
G.f. = 1 + x + 4*x^2 + 43*x^3 + 1252*x^4 + 104098*x^5 + 25511272*x^6 + ...
From _Seiichi Manyama_, Dec 05 2016: (Start)
a(1) = 1,
a(2) = 3^1 + 1 = 4,
a(3) = 3^3 + 3^2 + 2*3^1 + 1 = 43,
a(4) = 3^6 + 3^5 + 2*3^4 + 3*3^3 + 3*3^2 + 3*3^1 + 1 = 1252. (End)
Cf.
A015108 (q=-11),
A015107 (q=-10),
A015106 (q=-9),
A015105 (q=-8),
A015103 (q=-7),
A015102 (q=-6),
A015100 (q=-5),
A015099 (q=-4),
A015098 (q=-3),
A015097 (q=-2),
A090192 (q=-1),
A000108 (q=1),
A015083 (q=2), this sequence (q=3),
A015085 (q=4),
A015086 (q=5),
A015089 (q=6),
A015091 (q=7),
A015092 (q=8),
A015093 (q=9),
A015095 (q=10),
A015096 (q=11).
-
A015084 := proc(n)
option remember;
if n = 1 then
1;
else
add(3^(i-1)*procname(i)*procname(n-i),i=1..n-1) ;
end if;
end proc: # R. J. Mathar, Sep 29 2012
-
a[n_] := a[n] = Sum[3^i*a[i]*a[n -i -1], {i, 0, n -1}]; a[0] = 1; Array[a, 16, 0] (* Robert G. Wilson v, Dec 24 2016 *)
m = 13; ContinuedFractionK[If[i == 1, 1, -3^(i-2) x], 1, {i, 1, m}] + O[x]^m // CoefficientList[#, x]& (* Jean-François Alcover, Nov 17 2019 *)
-
a(n)=if(n==1,1,sum(i=1,n-1,3^(i-1)*a(i)*a(n-i))) \\ Paul D. Hanna
-
def A(q, n)
ary = [1]
(1..n).each{|i| ary << (0..i - 1).inject(0){|s, j| s + q ** j * ary[j] * ary[i - 1 - j]}}
ary
end
def A015084(n)
A(3, n)
end # Seiichi Manyama, Dec 24 2016
A080851
Square array of pyramidal numbers, read by antidiagonals.
Original entry on oeis.org
1, 1, 3, 1, 4, 6, 1, 5, 10, 10, 1, 6, 14, 20, 15, 1, 7, 18, 30, 35, 21, 1, 8, 22, 40, 55, 56, 28, 1, 9, 26, 50, 75, 91, 84, 36, 1, 10, 30, 60, 95, 126, 140, 120, 45, 1, 11, 34, 70, 115, 161, 196, 204, 165, 55, 1, 12, 38, 80, 135, 196, 252, 288, 285, 220, 66, 1, 13, 42, 90, 155, 231, 308, 372, 405, 385, 286, 78
Offset: 0
Array begins (n>=0, k>=0):
1, 3, 6, 10, 15, 21, 28, 36, 45, 55, ... A000217
1, 4, 10, 20, 35, 56, 84, 120, 165, 220, ... A000292
1, 5, 14, 30, 55, 91, 140, 204, 285, 385, ... A000330
1, 6, 18, 40, 75, 126, 196, 288, 405, 550, ... A002411
1, 7, 22, 50, 95, 161, 252, 372, 525, 715, ... A002412
1, 8, 26, 60, 115, 196, 308, 456, 645, 880, ... A002413
1, 9, 30, 70, 135, 231, 364, 540, 765, 1045, ... A002414
1, 10, 34, 80, 155, 266, 420, 624, 885, 1210, ... A007584
See
A257199 for another version of this array.
-
vector(vector(poly_coeff(Taylor((1+kx)/(1-x)^4,x,11),x,n),n,0,11),k,-1,10) VECTOR(VECTOR(comb(k+2,2)+comb(k+2,3)n, k, 0, 11), n, 0, 11)
-
A080851 := proc(n,k)
binomial(k+3,3)+(n-1)*binomial(k+2,3) ;
end proc:
seq( seq(A080851(d-k,k),k=0..d),d=0..12) ; # R. J. Mathar, Oct 01 2021
-
pyramidalFigurative[ ngon_, rank_] := (3 rank^2 + rank^3 (ngon - 2) - rank (ngon - 5))/6; Table[ pyramidalFigurative[n-k-1, k], {n, 4, 15}, {k, n-3}] // Flatten (* Robert G. Wilson v, Sep 15 2015 *)
A016061
a(n) = n*(n+1)*(4*n+5)/6.
Original entry on oeis.org
0, 3, 13, 34, 70, 125, 203, 308, 444, 615, 825, 1078, 1378, 1729, 2135, 2600, 3128, 3723, 4389, 5130, 5950, 6853, 7843, 8924, 10100, 11375, 12753, 14238, 15834, 17545, 19375, 21328, 23408, 25619, 27965, 30450, 33078, 35853, 38779, 41860
Offset: 0
- P. Jena and S. N. Behera, Clusters and Nanostructured Materials, Nova Science Publishers, 1996.
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- David N. Blauch, Crystal Structure of Zinc Blende.
- Qëndrim R. Gashi, Travis Schedler and David E. Speyer, Looping of the numbers game and the alcoved hypercube, arXiv:0909.5324v1 [math.RT], 2009.
- Johan Kok, Introduction to total chromatic vertex stress of graphs, Open J. Disc. Appl. Math. (ODAM, 2023) Vol. 6, No. 2, 32-38. See p. 34.
- T. P. Martin, Shells of atoms, Phys. Reports, Vol. 273 (1996), pp. 199-241, see p. 233.
- Gloria Olive, Problem #504, Factorizations and Sums, Two-Year College Math. Jnl., Vol. 25 (1994), pp. 244-245.
- Index entries for linear recurrences with constant coefficients, signature (4,-6,4,-1).
-
I:=[0,3,13,34]; [n le 4 select I[n] else 4*Self(n-1)-6*Self(n-2)+4*Self(n-3)-Self(n-4): n in [1..40]]; // Vincenzo Librandi, Jul 25 2013
-
A016061 := proc(n)
n*(n+1)*(4*n+5)/6 ;
end proc: # R. J. Mathar, Sep 26 2013
-
CoefficientList[Series[x (3 + x) / (1 - x)^4, {x, 0, 40}], x] (* Vincenzo Librandi, Jul 25 2013 *)
Table[n(n+1)(4*n+5)/6, {n,0,100}] (* Wesley Ivan Hurt, Sep 25 2013 *)
-
v=vector(40,i,t(i)); s=0; forstep(i=2,40,2,s+=v[i]; print1(s","))
A237616
a(n) = n*(n + 1)*(5*n - 4)/2.
Original entry on oeis.org
0, 1, 18, 66, 160, 315, 546, 868, 1296, 1845, 2530, 3366, 4368, 5551, 6930, 8520, 10336, 12393, 14706, 17290, 20160, 23331, 26818, 30636, 34800, 39325, 44226, 49518, 55216, 61335, 67890, 74896, 82368, 90321, 98770, 107730, 117216, 127243, 137826, 148980, 160720
Offset: 0
After 0, the sequence is provided by the row sums of the triangle:
1;
2, 16;
3, 32, 31;
4, 48, 62, 46;
5, 64, 93, 92, 61;
6, 80, 124, 138, 122, 76;
7, 96, 155, 184, 183, 152, 91;
8, 112, 186, 230, 244, 228, 182, 106;
9, 128, 217, 276, 305, 304, 273, 212, 121;
10, 144, 248, 322, 366, 380, 364, 318, 242, 136; etc.,
where (r = row index, c = column index):
T(r,r) = T(c,c) = 15*r-14 and T(r,c) = T(r-1,c)+T(r,r) = (r-c+1)*T(r,r), with r>=c>0.
- E. Deza and M. M. Deza, Figurate numbers, World Scientific Publishing (2012), page 93 (fifteenth row of the table).
Cf. sequences with formula n*(n+1)*(k*n-k+3)/6:
A000217 (k=0),
A000292 (k=1),
A000330 (k=2),
A002411 (k=3),
A002412 (k=4),
A002413 (k=5),
A002414 (k=6),
A007584 (k=7),
A007585 (k=8),
A007586 (k=9),
A007587 (k=10),
A050441 (k=11),
A172073 (k=12),
A177890 (k=13),
A172076 (k=14), this sequence (k=15),
A172078(k=16),
A237617 (k=17),
A172082 (k=18),
A237618 (k=19),
A172117(k=20),
A256718 (k=21),
A256716 (k=22),
A256645 (k=23),
A256646(k=24),
A256647 (k=25),
A256648 (k=26),
A256649 (k=27),
A256650(k=28).
-
List([0..40], n-> n*(n+1)*(5*n-4)/2); # G. C. Greubel, Aug 30 2019
-
[n*(n+1)*(5*n-4)/2: n in [0..40]];
-
I:=[0,1,18,66]; [n le 4 select I[n] else 4*Self(n-1)-6*Self(n-2)+4*Self(n-3)-Self(n-4): n in [1..50]]; // Vincenzo Librandi, Feb 12 2014
-
seq(n*(n+1)*(5*n-4)/2, n=0..40); # G. C. Greubel, Aug 30 2019
-
Table[n(n+1)(5n-4)/2, {n, 0, 40}]
CoefficientList[Series[x (1+14x)/(1-x)^4, {x, 0, 40}], x] (* Vincenzo Librandi, Feb 12 2014 *)
LinearRecurrence[{4,-6,4,-1},{0,1,18,66},50] (* Harvey P. Dale, Jan 11 2015 *)
-
a(n)=n*(n+1)*(5*n-4)/2 \\ Charles R Greathouse IV, Sep 24 2015
-
[n*(n+1)*(5*n-4)/2 for n in (0..40)] # G. C. Greubel, Aug 30 2019
A004188
a(n) = n*(3*n^2 - 1)/2.
Original entry on oeis.org
0, 1, 11, 39, 94, 185, 321, 511, 764, 1089, 1495, 1991, 2586, 3289, 4109, 5055, 6136, 7361, 8739, 10279, 11990, 13881, 15961, 18239, 20724, 23425, 26351, 29511, 32914, 36569, 40485, 44671, 49136, 53889, 58939, 64295, 69966, 75961
Offset: 0
Albert D. Rich (Albert_Rich(AT)msn.com)
- E. Deza and M. M. Deza, Figurate numbers, World Scientific Publishing (2012), page 140.
- T. P. Martin, Shells of atoms, Phys. Reports, 273 (1996), 199-241, eq. (11).
1/12*t*(n^3-n)+n for t = 2, 4, 6, ... gives
A004006,
A006527,
A006003,
A005900,
A004068,
A000578,
A004126,
A000447,
A004188,
A004466,
A004467,
A007588,
A062025,
A063521,
A063522,
A063523.
-
[n*(3*n^2-1)/2: n in [0..50]]; //Vincenzo Librandi, May 15 2011
-
seq(binomial(2*n+1,3)+binomial(n+1,3), n=0..37); # Zerinvary Lajos, Jan 21 2007
-
Table[n(3n^2-1)/2,{n,0,80}] (* Vladimir Joseph Stephan Orlovsky, Apr 18 2011 *)
LinearRecurrence[{4,-6,4,-1},{0,1,11,39},40] (* Harvey P. Dale, Jul 19 2019 *)
-
vector(40, n, n*(3*n^2-1)/2)
A002418
4-dimensional figurate numbers: a(n) = (5*n-1)*binomial(n+2,3)/4.
Original entry on oeis.org
0, 1, 9, 35, 95, 210, 406, 714, 1170, 1815, 2695, 3861, 5369, 7280, 9660, 12580, 16116, 20349, 25365, 31255, 38115, 46046, 55154, 65550, 77350, 90675, 105651, 122409, 141085, 161820, 184760, 210056, 237864, 268345, 301665, 337995
Offset: 0
- Albert H. Beiler, Recreations in the Theory of Numbers, Dover, NY, 1964, p. 195.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992, arXiv:0911.4975 [math.NT], 2009.
- Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992.
- Luis Verde-Star, A Matrix Approach to Generalized Delannoy and Schröder Arrays, J. Int. Seq., Vol. 24 (2021), Article 21.4.1.
- Index entries for linear recurrences with constant coefficients, signature (5,-10,10,-5, 1).
- Index to sequences related to pyramidal numbers.
Cf.
A093562 ((5, 1) Pascal, column m=4).
Cf.
A220212 for a list of sequences produced by the convolution of the natural numbers with the k-gonal numbers.
-
List([0..40],n->(5*n-1)*Binomial(n+2,3)/4); # Muniru A Asiru, Mar 18 2019
-
[(5*n - 1)*Binomial(n + 2, 3)/4: n in [0..40]]; // Vincenzo Librandi, Oct 17 2012
-
/* A000027 convolved with A000566: */ A000566:=func; [&+[(n-i+1)*A000566(i): i in [0..n]]: n in [0..35]]; // Bruno Berselli, Dec 06 2012
-
Table[(5n-1) Binomial[n+2,3]/4,{n,0,40}] (* or *) LinearRecurrence[ {5,-10,10,-5,1},{0,1,9,35,95},40] (* Harvey P. Dale, Oct 16 2012 *)
CoefficientList[Series[x*(1 + 4*x)/(1 - x)^5, {x, 0, 40}], x] (* Vincenzo Librandi, Oct 17 2012 *)
-
a(n)=(5*n-1)*binomial(n+2,3)/4 \\ Charles R Greathouse IV, Sep 24 2015
-
[(5*n-1)*binomial(n+2,3)/4 for n in (0..40)] # G. C. Greubel, Jul 03 2019
A211790
Rectangular array: R(k,n) = number of ordered triples (w,x,y) with all terms in {1,...,n} and w^k
Original entry on oeis.org
1, 7, 1, 23, 7, 1, 54, 22, 7, 1, 105, 51, 22, 7, 1, 181, 97, 50, 22, 7, 1, 287, 166, 96, 50, 22, 7, 1, 428, 263, 163, 95, 50, 22, 7, 1, 609, 391, 255, 161, 95, 50, 22, 7, 1, 835, 554, 378, 253, 161, 95, 50, 22, 7, 1, 1111, 756, 534, 374, 252, 161, 95, 50, 22, 7
Offset: 1
Northwest corner:
1, 7, 23, 54, 105, 181, 287, 428, 609
1, 7, 22, 51, 97, 166, 263, 391, 554
1, 7, 22, 50, 96, 163, 255, 378, 534
1, 7, 22, 50, 95, 161, 253, 374, 528
1, 7, 22, 50, 95, 161, 252, 373, 527
For n=2 and k>=1, the 7 triples (w,x,y) are (1,1,1), (1,1,2), (1,2,1), (1,2,2), (2,1,2), (2,2,1), (2,2,2).
-
z = 48;
t[k_, n_] := Module[{s = 0},
(Do[If[w^k < x^k + y^k, s = s + 1],
{w, 1, #}, {x, 1, #}, {y, 1, #}] &[n]; s)];
Table[t[1, n], {n, 1, z}] (* A004068 *)
Table[t[2, n], {n, 1, z}] (* A211635 *)
Table[t[3, n], {n, 1, z}] (* A211650 *)
TableForm[Table[t[k, n], {k, 1, 12}, {n, 1, 16}]]
Flatten[Table[t[k, n - k + 1], {n, 1, 12}, {k, 1, n}]] (* A211790 *)
Table[n (n + 1) (4 n - 1)/6,
{n, 1, z}] (* row-limit sequence, A002412 *)
(* Peter J. C. Moses, Apr 13 2012 *)
A094728
Triangle read by rows: T(n,k) = n^2 - k^2, 0 <= k < n.
Original entry on oeis.org
1, 4, 3, 9, 8, 5, 16, 15, 12, 7, 25, 24, 21, 16, 9, 36, 35, 32, 27, 20, 11, 49, 48, 45, 40, 33, 24, 13, 64, 63, 60, 55, 48, 39, 28, 15, 81, 80, 77, 72, 65, 56, 45, 32, 17, 100, 99, 96, 91, 84, 75, 64, 51, 36, 19, 121, 120, 117, 112, 105, 96, 85, 72, 57, 40, 21
Offset: 1
n=3: T(3,x) = 9+8*x+5*x^2.
Triangle begins:
1;
4, 3;
9, 8, 5;
16, 15, 12, 7;
25, 24, 21, 16, 9;
36, 35, 32, 27, 20, 11;
49, 48, 45, 40, 33, 24, 13;
64, 63, 60, 55, 48, 39, 28, 15;
81, 80, 77, 72, 65, 56, 45, 32, 17;
... etc. - _Philippe Deléham_, Mar 07 2013
-
[n^2-k^2: k in [0..n-1], n in [1..15]]; // G. C. Greubel, Mar 12 2024
-
Table[n^2 - k^2, {n,12}, {k,0,n-1}]//Flatten (* Michael De Vlieger, Nov 25 2015 *)
-
flatten([[n^2-k^2 for k in range(n)] for n in range(1,16)]) # G. C. Greubel, Mar 12 2024
A033994
a(n) = n*(n+1)*(5*n+1)/6.
Original entry on oeis.org
2, 11, 32, 70, 130, 217, 336, 492, 690, 935, 1232, 1586, 2002, 2485, 3040, 3672, 4386, 5187, 6080, 7070, 8162, 9361, 10672, 12100, 13650, 15327, 17136, 19082, 21170, 23405, 25792, 28336, 31042, 33915, 36960, 40182, 43586, 47177, 50960, 54940
Offset: 1
- A. H. Beiler, Recreations in the Theory of Numbers, Dover, N.Y., 1964, pp. 194-196.
-
a:=List([1..40],n->n*(n+1)*(5*n+1)/6);; Print(a); # Muniru A Asiru, Jan 01 2019
-
[n*(n+1)*(5*n+1)/6 : n in [1..40]]; // Vincenzo Librandi, Jan 01 2019
-
[n*(n+1)*(5*n+1)/6$n=1..40]; # Muniru A Asiru, Jan 01 2019
-
Table[Range[x].Range[x+1,2x],{x,40}] (* or *) LinearRecurrence[{4,-6,4,-1},{2,11,32,70},40] (* Harvey P. Dale, Jun 01 2018 *)
-
a(n) = n*(n+1)*(5*n+1)/6;
Comments