A038156 a(n) = n! * Sum_{k=1..n-1} 1/k!.
0, 0, 2, 9, 40, 205, 1236, 8659, 69280, 623529, 6235300, 68588311, 823059744, 10699776685, 149796873604, 2246953104075, 35951249665216, 611171244308689, 11001082397556420, 209020565553571999, 4180411311071440000, 87788637532500240021, 1931350025715005280484
Offset: 0
Examples
a(2) = floor((2.718... - 1)*2) - 1 = 3 - 1 = 2, a(3) = floor((2.718... - 1)*6) - 1 = 10 - 1 = 9.
References
- D. E. Knuth: The Art of Computer Programming, Volume 4, Fascicle 2. Generating All Tuples and Permutations, Addison-Wesley, 2005.
Links
- Georg Fischer, Table of n, a(n) for n = 0..200 [first 28 terms from _Vincenzo Librandi_]
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 836
- G. A. Kamel, Partial Chain Topologies on Finite Sets, Computational and Applied Mathematics Journal. Vol. 1, No. 4, 2015, pp. 174-179.
- Hugo Pfoertner, FORTRAN implementation of Knuth's Algorithm L for lexicographic permutation generation.
- Wikipedia, Bogosort
- Index entries for sequences related to factorial numbers
Programs
-
Maple
a:= proc(n) option remember; `if`(n<2, 0, a(n-1)*n+n) end: seq(a(n), n=0..30); # Alois P. Heinz, Apr 11 2020
-
Mathematica
a=1; Join[{0},Table[a=(a-1)*(n+1);Abs[a],{n,0,60}]] (* Vladimir Joseph Stephan Orlovsky, Nov 20 2009; 0 prefixed by _Georg Fischer Apr 11 2020 *) Join[{0},FoldList[#1*#2 + #2 + #1 + 1 &, 0, Range@ 20]] (* Robert G. Wilson v, Feb 21 2015 *)
-
PARI
a(n)=floor((exp(1)-1)*n!-1) \\ Charles R Greathouse IV, Jun 29 2011
-
PARI
a(n)=(expm1(1)*n!-1)\1 \\ Charles R Greathouse IV, Jan 28 2014
Formula
a(n) = floor((e-1)*n!) - 1.
a(0) = a(1) = 0, a(n) = n*(a(n-1) + 1) for n>1. - Philippe Deléham, Oct 16 2009
E.g.f.: (exp(x) - 1)*x/(1 - x). - Ilya Gutkovskiy, Jan 26 2017
a(n) = A002627(n)-1, n>=1. - R. J. Mathar, Jan 03 2018
a(n) = A000522(n)-n!-1, n>=1. - P. Christopher Staecker, May 09 2024
Extensions
a(28) ff. corrected by Georg Fischer, Apr 11 2020
Comments