cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 152 results. Next

A286183 Number of connected induced (non-null) subgraphs of the antiprism graph with 2n nodes.

Original entry on oeis.org

3, 15, 60, 207, 663, 2038, 6107, 17983, 52272, 150407, 429223, 1216490, 3427635, 9609327, 26821668, 74576703, 206650167, 570877918, 1572754187, 4322192287, 11851474968, 32430381815, 88576465735, 241511251922, 657457204323, 1787147867343, 4851349002252
Offset: 1

Views

Author

Giovanni Resta, May 04 2017

Keywords

Crossrefs

Cf. A020873 (wheel), A059020 (ladder), A059525 (grid), A286139 (king), A286182 (prism), A286184 (helm), A286185 (Möbius ladder), A286186 (friendship), A286187 (web), A286188 (gear), A286189 (rook), A285765 (queen).

Programs

  • Mathematica
    a[n_] := Block[{g = Graph@ Flatten@ Table[{i <-> Mod[i,n]+1, n+i <-> Mod[i,n] + n+1, i <-> n + Mod[i, n] + 1, i <-> n + Mod[i-1, n] + 1}, {i, n}]}, -1 + ParallelSum[ Boole@ ConnectedGraphQ@ Subgraph[g, s], {s, Subsets@ Range[2 n]}]]; Array[a, 8]

Formula

a(n) = 8*a(n-1) - 24*a(n-2) + 34*a(n-3) - 24*a(n-4) + 8*a(n-5) - a(n-6), for n > 6 (conjectured).
a(n) = A005248(n) - 2*n + 2*n*A001906(n) (conjectured). - Eric W. Weisstein, May 08 2017
G.f.: x*(3 - 9*x + 12*x^2 - 15*x^3 + 9*x^4 - 2*x^5) / ((1 - x)^2*(1 - 3*x + x^2)^2) (conjectured). - Colin Barker, May 30 2017

Extensions

a(17)-a(27) from Andrew Howroyd, May 20 2017

A087215 Lucas(6*n): a(n) = 18*a(n-1) - a(n-2), starting with a(0) = 2 and a(1) = 18.

Original entry on oeis.org

2, 18, 322, 5778, 103682, 1860498, 33385282, 599074578, 10749957122, 192900153618, 3461452808002, 62113250390418, 1114577054219522, 20000273725560978, 358890350005878082, 6440026026380244498, 115561578124838522882, 2073668380220713167378
Offset: 0

Views

Author

Nikolay V. Kosinov (kosinov(AT)unitron.com.ua), Oct 19 2003

Keywords

Comments

a(n+1)/a(n) converges to 9 + sqrt(80) = 17.9442719... a(0)/a(1) = 2/18; a(1)/a(2) = 18/322; a(2)/a(3) = 322/5778; a(3)/a(4) = 5778/103682; etc.
Lim_{n -> oo} a(n)/a(n+1) = 0.05572809000084... = 1/(9 + sqrt(80)) = 9 - sqrt(80).
From Peter Bala, Oct 13 2019: (Start)
Let F(x) = Product_{n >= 0} (1 + x^(4*n+1))/(1 + x^(4*n+3)). Let Phi = (1/2)*(sqrt(5) - 1). This sequence gives the partial denominators in the simple continued fraction expansion of the number F(Phi^6) = 1.0555459720... = 1 + 1/(18 + 1/(322 + 1/(5778 + ...))).
Also F(-Phi^6) = 0.9444348576... has the continued fraction representation 1 - 1/(18 - 1/(322 - 1/(5788 - ...))) and the simple continued fraction expansion 1/(1 + 1/((18 - 2) + 1/(1 + 1/((322 - 2) + 1/(1 + 1/((5788 - 2) + 1/(1 + ...))))))).
F(Phi^6)*F(-Phi^6) = 0.9968944099... has the simple continued fraction expansion 1/(1 + 1/((18^2 - 4) + 1/(1 + 1/((322^2 - 4) + 1/(1 + 1/((5788^2 - 4) + 1/(1 + ...))))))).
1/2 + (1/2)*F(Phi^6)/F(-Phi^6) = 1.0588241282... has the simple continued fraction expansion 1 + 1/((18 - 2) + 1/(1 + 1/((5778 - 2) + 1/(1 + 1/(1860498 - 2) + 1/(1 + ...))))). (End)

Examples

			a(4) = 103682 = 18*a(3) - a(2) = 18*5778 - 322 = (9 + sqrt(80))^4 + (9 - sqrt(80))^4 = 103681.99999035512... + 0.00000964487... = 103682.
		

References

  • J. M. Borwein and P. B. Borwein, Pi and the AGM, Wiley, 1987, p. 91.
  • R. P. Stanley. Enumerative combinatorics. Vol. 2, volume 62 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge, 1999.

Crossrefs

Cf. A074919.
Row 2 * 2 of array A188645.
Cf. Lucas(k*n): A000032 (k = 1), A005248 (k = 2), A014448 (k = 3), A056854 (k = 4), A001946 (k = 5), A087281 (k = 7), A087265 (k = 8), A087287 (k = 9), A065705 (k = 10), A089772 (k = 11), A089775 (k = 12).

Programs

  • Magma
    [ Lucas(6*n) : n in [0..100]]; // Vincenzo Librandi, Apr 14 2011
    
  • Mathematica
    a[0] = 2; a[1] = 18; a[n_] := 18a[n - 1] - a[n - 2]; Table[ a[n], {n, 0, 15}] (* Robert G. Wilson v, Jan 30 2004 *)
    Table[LucasL[6n], {n, 0, 18}]  (* or *) CoefficientList[Series[2*(1 - 9*x)/(1 - 18*x + x^2), {x, 0, 17}], x] (* Indranil Ghosh, Mar 15 2017 *)
  • PARI
    Vec(2*(1-9*x)/(1-18*x+x^2) + O(x^20)) \\ Colin Barker, Jan 24 2016
    
  • PARI
    a(n) = if(n<2, 17^n + 1, 18*a(n - 1) - a(n - 2));
    for(n=0, 17, print1(a(n),", ")) \\ Indranil Ghosh, Mar 15 2017

Formula

a(n) = A000032(6*n).
a(n) = 18*a(n-1) - a(n-2), starting with a(0) = 2 and a(1) = 18.
a(n) = (9 + sqrt(80))^n + (9 - sqrt(80))^n.
G.f.: 2*(1-9*x)/(1-18*x+x^2). - Philippe Deléham, Nov 17 2008
a(n) = 2*A023039(n). - R. J. Mathar, Oct 22 2010
From Peter Bala, Oct 13 2019: (Start)
a(n) = F(6*n+6)/F(6) - F(6*n-6)/F(6) = A049660(n+1) - A049660(n-1).
a(n) = trace(M^n), where M is the 2 X 2 matrix [0, 1; 1, 1]^6 = [5, 8; 8, 13].
Consequently the Gauss congruences hold: a(n*p^k) = a(n*p^(k-1)) ( mod p^k ) for all prime p and positive integers n and k. See Zarelua and also Stanley (Ch. 5, Ex. 5.2(a) and its solution).
16*Sum_{n >= 1} 1/(a(n) - 20/a(n)) = 1: (20 = Lucas(6) + 2 and 16 = Lucas(6) - 2)
20*Sum_{n >= 1} (-1)^(n+1)/(a(n) + 16/a(n)) = 1.
Series acceleration formulas for sum of reciprocals:
Sum_{n >= 1} 1/a(n) = 1/16 - 20*Sum_{n >= 1} 1/(a(n)*(a(n)^2 - 20)).
Sum_{n >= 1} (-1)^(n+1)/a(n) = 1/20 + 16*Sum_{n >= 1} (-1)^(n+1)/(a(n)*(a(n)^2 + 16)).
Sum_{n >= 1} 1/a(n) = ( (theta_3(9-4*sqrt(5)))^2 - 1 )/4 and
Sum_{n >= 1} (-1)^(n+1)/a(n) = ( 1 - (theta_3(4*sqrt(5)-9))^2 )/4,
where theta_3(x) = 1 + 2*Sum_{n >= 1} x^(n^2) (see A000122). Cf. A153415 and A003499.
x*exp(Sum_{n >= 1} a(n)*x^/n) = x + 18*x^2 + 323*x^3 + ... is the o.g.f. for A049660. (End)
E.g.f.: 2*exp(9*x)*cosh(4*sqrt(5)*x). - Stefano Spezia, Oct 18 2019
a(n) = L(2n-1)^2 * F(2n+1) + L(2n+1)^2 * F(2n-1), where F(n) = A000045(n) and L(n) = A000032(n). - Diego Rattaggi, Nov 12 2020
From Peter Bala, Apr 16 2025: (Start)
a(n) = Lucas(2*n)^3 - 3*Lucas(2*n) = 2*T(3, (1/2)*Lucas(2*n)), where T(k, x) denotes the k-th Chebyshev polynomial of the first kind; more generally, for k >= 0, Lucas(2*k*n) = 2*T(k, Lucas(2*n)/2).
Sum_{n >= 1} 1/a(n) = (1/4) * (theta_3(9 - sqrt(80))^2 - 1) and
Sum_{n >= 1} (-1)^(n+1)/a(n) = (1/4) * (1 - theta_3(sqrt(80) - 9)^2), where theta_3(x) = 1 + 2*Sum_{n >= 1} x^(n^2) (see A000122). See Borwein and Borwein, Proposition 3.5 (i), p. 91. Cf. A153415 and A003499. (End)

A103997 Square array T(M,N) read by antidiagonals: number of dimer tilings of a 2*M X 2*N Moebius strip.

Original entry on oeis.org

1, 1, 1, 1, 3, 1, 1, 11, 7, 1, 1, 41, 71, 18, 1, 1, 153, 769, 539, 47, 1, 1, 571, 8449, 17753, 4271, 123, 1, 1, 2131, 93127, 603126, 434657, 34276, 322, 1, 1, 7953, 1027207, 20721019, 46069729, 10894561, 276119, 843, 1, 1, 29681, 11332097, 714790675, 4974089647, 3625549353, 275770321, 2226851, 2207, 1
Offset: 0

Views

Author

Ralf Stephan, Feb 26 2005

Keywords

Examples

			Array begins:
  1,   1,     1,        1,          1,             1,               1,
  1,   3,     7,       18,         47,           123,             322,
  1,  11,    71,      539,       4271,         34276,          276119,
  1,  41,   769,    17753,     434657,      10894561,       275770321,
  1, 153,  8449,   603126,   46069729,    3625549353,    289625349454,
  1, 571, 93127, 20721019, 4974089647, 1234496016491, 312007855309063,
  ...
		

Crossrefs

Rows include A005248, A103998.
Columns 1..7 give A001835(n+1), A334135, A334179, A334180, A334181, A334182, A334183.
Main diagonal gives A334124.

Programs

  • Mathematica
    T[M_, N_] := Product[4Sin[(4n-1)Pi/(4N)]^2 + 4Cos[m Pi/(2M+1)]^2, {n, 1, N}, {m, 1, M}];
    Table[T[M - N, N] // Round, {M, 0, 9}, {N, 0, M}] // Flatten (* Jean-François Alcover, Dec 03 2018 *)

Formula

T(M, N) = Product_{m=1..M} (Product_{n=1..N} 4*sin(Pi*(4*n-1)/(4*N))^2 + 4*cos(Pi*m/(2*M + 1))^2).
For k > 0, T(n,k) = 2^n * sqrt(Resultant(U_{2*n}(x/2), T_{2*k}(i*x/2))), where T_n(x) is a Chebyshev polynomial of the first kind, U_n(x) is a Chebyshev polynomial of the second kind and i = sqrt(-1). - Seiichi Manyama, Apr 15 2020

A032198 "CIK" (necklace, indistinct, unlabeled) transform of 1,2,3,4,...

Original entry on oeis.org

1, 3, 6, 13, 25, 58, 121, 283, 646, 1527, 3601, 8678, 20881, 50823, 124054, 304573, 750121, 1855098, 4600201, 11442085, 28527446, 71292603, 178526881, 447919418, 1125750145, 2833906683, 7144450566, 18036423973
Offset: 1

Views

Author

Keywords

Examples

			From _Petros Hadjicostas_, Jan 07 2018: (Start)
We give some examples to illustrate the theory of C. G. Bower about transforms given in the weblink above. We assume we have boxes of different sizes and colors that we place on a circle to form a necklace. Two boxes of the same size and same color are considered identical (indistinct and unlabeled). We do, however, change the roles of the sequences (a(n): n>=1) and (b(n): n>=1) that appear in the weblink above. We assume (a(n): n>=1) = CIK((b(n): n>=1)).
Since b(1) = 1, b(2) = 2, b(3) = 3, etc., a box that can hold 1 ball only can be of 1 color only, a box that can hold 2 balls only can be one of 2 colors only, a box that can hold 3 balls can be one of 3 colors, and so on.
To prove that a(3) = 6, we consider three cases. In the first case, we have a single box that can hold 3 balls, and thus we have 3 possibilities for the 3 colors the box can be. In the second case, we have a box that can hold 2 balls and a box that can hold 1 ball. Here, we have 2 x 1 = 2 possibilities. In the third case, we have 3 identical boxes, each of which can hold 1 ball. This gives rise to 1 possibility. Hence, a(3) = 3 + 2 + 1 = 6.
To prove that a(4) = 13, we consider 5 cases: a box with 4 balls (4 possibilities), one box with 3 balls and one box with 1 ball (3 possibilities), two identical boxes each with 2 balls (3 possibilities), one box with 2 balls and two identical boxes each with 1 ball (2 possibilities), and four identical boxes each with 1 ball (1 possibility). Thus, a(4) = 4 + 3 + 3 + 2 + 1 = 13.
(End)
		

Crossrefs

Programs

  • Mathematica
    nmax = 30;
    f[x_] = Sum[n*x^n, {n, 1, nmax}];
    gf = Sum[(EulerPhi[n]/n)*Log[1/(1 - f[x^n])] + O[x]^nmax, {n, 1, nmax}]/x;
    CoefficientList[gf, x] (* Jean-François Alcover, Jul 29 2018, after Joerg Arndt *)
  • PARI
    N = 66;  x = 'x + O('x^N);
    f(x)=sum(n=1, N, n*x^n );
    gf = sum(n=1, N, eulerphi(n)/n*log(1/(1-f(x^n)))  );
    v = Vec(gf)
    /* Joerg Arndt, Jan 21 2013 */

Formula

a(n) = 1/n*Sum_{d divides n} phi(n/d)*A004146(d). - Vladeta Jovovic, Feb 15 2003
From Petros Hadjicostas, Jan 07 2018: (Start)
a(n) = -2 + (1/n)*Sum_{d|n} phi(n/d)*A005248(d) = -2 + (1/n)*Sum_{d|n} phi(n/d)*L(2*d), where L(n) = A000032(n) is the usual Lucas sequence.
G.f.: -Sum_{n >= 1} (phi(n)/n)*log(1 - B(x^n)), where B(x) = x + 2*x^2 + 3*x^3 + 4*x^4 + ... = x/(1-x)^2.
G.f.: -2*x/(1 - x) - Sum_{n>=1} (phi(n)/n)*log(1 - 3*x^n + x^(2*n)).
(End)
From Petros Hadjicostas, Jun 19 2019: (Start)
According to Gibson et al. (2018), a(n) is the number of m-color cyclic compositions of n where each part of size m has m possible colors. This is nothing else than the CIK transform of the sequence 1, 2, 3, 4, ...
Using the theory of Flajolet and Soria (1991), Gibson et al. (2018, Eq. (1.1)) proved that the g.f. of a(n) is Sum_{s >= 1} (phi(s)/s) * log((1 - x^s)^2/(1 - 3*x^s + x^(2*s))), which is exactly the same g.f. as the ones above.
Gibson et al. (2018, p. 3210) also proved that a(n) ~ (2/(3-sqrt(5)))^n/n for large n. See also Chapter 3 in Gibson (2017).
(End)

A056571 Fourth power of Fibonacci numbers A000045.

Original entry on oeis.org

0, 1, 1, 16, 81, 625, 4096, 28561, 194481, 1336336, 9150625, 62742241, 429981696, 2947295521, 20200652641, 138458410000, 949005240561, 6504586067281, 44583076827136, 305577005139121, 2094455819300625, 14355614096087056
Offset: 0

Views

Author

Wolfdieter Lang, Jul 10 2000

Keywords

Comments

Divisibility sequence; that is, if n divides m, then a(n) divides a(m).
a(n+1) is the number of tilings of an n-board (a board with dimensions n X 1) using (1/4,3/4)-fences and quarter-squares (1/4 X 1 pieces, always placed so that the shorter sides are horizontal). A (w,g)-fence is a tile composed of two w X 1 pieces separated by a gap of width g. a(n+1) also equals the number of tilings of an n-board using (1/8,3/8)-fences and (1/8,7/8)-fences. - Michael A. Allen, Jan 11 2022

References

  • A. T. Benjamin and J. J. Quinn, Proofs that really count: the art of combinatorial proof, M.A.A. 2003, id. 31.
  • Donald E. Knuth, The Art of Computer Programming. Addison-Wesley, Reading, MA, 1969, Vol. 1, p. 85, (exercise 1.2.8. Nr. 30) and p. 492 (solution).
  • Hilary I. Okagbue, Muminu O. Adamu, Sheila A. Bishop and Abiodun A. Opanuga, Digit and Iterative Digit Sum of Fibonacci numbers, their identities and powers, International Journal of Applied Engineering Research ISSN 0973-4562 Volume 11, Number 6 (2016) pp. 4623-4627.

Crossrefs

First differences of A005969.
Fourth row of array A103323.

Programs

Formula

a(n) = F(n)^4 = A007598(n)^2, F(n) = A000045(n).
G.f.: x*p(4, x)/q(4, x) with p(4, x) := sum(A056588(3, m)*x^m, m=0..3) = 1 - 4*x - 4*x^2 + x^3 = (1+x)*(1 - 5*x + x^2) and q(4, x) := Sum_{m=0..5} A055870(5, m)*x^m = 1 - 5*x - 15*x^2 + 15*x^3 + 5*x^4 - x^5 = (1-x)*(1 + 3*x + x^2)*(1 - 7*x + x^2) (denominator factorization deduced from Riordan result).
Recursion (cf. Knuth's exercise): 1*a(n) - 5*a(n-1) - 15*a(n-2) + 15*a(n-3) + 5*a(n-4) - 1*a(n-5) = 0, n >= 5; inputs: a(n), n=0..4.
(1/25)*((-1)^n*(2*F(2*n-2) - 6*F(2*n+1)) + 2*F(4*n-1) + F(4*n) + 6). - Ralf Stephan, May 14 2004
a(n) = F(n-2)*F(n-1)*F(n+1)*F(n+2) + 1 = A244855(n)+1.
Sum_{j=0..n} binomial(n,j)*a(j) = (3^n*A005248(n) - 4*(-1)^n*A000032(n) + 6*2^n)/25. Sum_{j=0..n} (-1)^j*binomial(n,j)*a(j) = -5^((n+1)/2-2)*(A001906(n) + 4*A000045(n)) if n odd. - R. J. Mathar, Oct 16 2006
a(n) = (F(n)*F(3n) - 3*F(n)^2*(-1)^n)/5. - Gary Detlefs, Dec 26 2010
Product_{n>=3} (1 - 1/a(n)) = phi^5/12, where phi is the golden ratio (A001622)(Ohtsuka, 2017). - Amiram Eldar, Dec 02 2021

A064170 a(1) = 1; a(n+1) = product of numerator and denominator in Sum_{k=1..n} 1/a(k).

Original entry on oeis.org

1, 1, 2, 10, 65, 442, 3026, 20737, 142130, 974170, 6677057, 45765226, 313679522, 2149991425, 14736260450, 101003831722, 692290561601, 4745030099482, 32522920134770, 222915410843905, 1527884955772562, 10472279279564026, 71778070001175617, 491974210728665290
Offset: 1

Views

Author

Leroy Quet, Sep 19 2001

Keywords

Comments

The numerator and denominator in the definition have no common divisors >1.
Also denominators in a system of Egyptian fraction for ratios of consecutive Fibonacci numbers: 1/2 = 1/2, 3/5 = 1/2 + 1/10, 8/13 = 1/2 + 1/10 + 1/65, 21/34 = 1/2 + 1/10 + 1/65 + 1/442 etc. (Rossi and Tout). - Barry Cipra, Jun 06 2002
a(n)-1 is a square. - Sture Sjöstedt, Nov 04 2011
From Wolfdieter Lang, May 26 2020: (Start)
Partial sums of the reciprocals: Sum_{k=1..n} 1/a(k) equal 1 for n=1, and F(2*n - 1)/F(2*n - 3) for n >= 2, with F = A000045. Proof by induction. Hence a(n) = 1 for n=1, and F(2*n - 3)*F(2*n - 5) for n >= 2, with F(-1) = 1 (gcd(F(n), F(n+1)) = 1). See the comment by Barry Cipra.
Thus a(n) = 1, for n = 1, and a(n) = 1 + F(2*(n-2))^2, for n >= 2 (by Cassini-Simson for even index, e.g., Vajda, p. 178 eq.(28)). See the Sture Sjöstedt comment.
The known G.f. of {F(2*n)^2} from A049684 leds then to the conjectured formula by R. J. Mathar below, and this proves also the recurrence given there..
From the partial sums the series Sum_{k>=1} 1/a(k) converges to 1 + phi, with phi = A001622. See the formulas by Gary W. Adamson and Diego Rattaggi below. (End)

Examples

			1/a(1) + 1/a(2) + 1/a(3) + 1/a(4) = 1 + 1 + 1/2 + 1/10 = 13/5. So a(5) = 13 * 5 = 65.
		

References

  • S. Vajda, Fibonacci & Lucas Numbers, and the Golden Section, Ellis Horwood Ltd., Chichester, 1989.

Crossrefs

Cf. A033890 (first differences). - R. J. Mathar, Jul 03 2009

Programs

Formula

a(n) = Fibonacci(2*n-5)*Fibonacci(2*n-3), for n >= 3. - Barry Cipra, Jun 06 2002
Sum_{n>=3} 1/a(n) = 2/(1+sqrt(5)) = phi - 1, with phi = A001622. - Gary W. Adamson, Jun 07 2003
Conjecture: a(n) = 8*a(n-1)-8*a(n-2)+a(n-3), n>4. G.f.: -x*(2*x^2+x^3-7*x+1)/((x-1)*(x^2-7*x+1)). - R. J. Mathar, Jul 03 2009 [For a proof see the W. Lang comment above.]
a(n+1) = (A005248(n)^2 - A001906(n)^2)/4, for n => 0. - Richard R. Forberg, Sep 05 2013
From Diego Rattaggi, Apr 21 2020: (Start)
a(n) = 1 + A049684(n-2) for n>1.
Sum_{n>=2} 1/a(n) = phi = (1+sqrt(5))/2 = A001622.
Sum_{n>=1} 1/a(n) = phi^2 = 1 + phi. (End) [See a comment above for the proof]
a(n) = F(2*n - 3)*F(2*n - 5) = 1 + F(2*(n - 2))^2, for n >= 2, with F(-1) = 1. See the W. Lang comments above. - Wolfdieter Lang, May 26 2020

A075796 Numbers k such that 5*k^2 + 5 is a square.

Original entry on oeis.org

2, 38, 682, 12238, 219602, 3940598, 70711162, 1268860318, 22768774562, 408569081798, 7331474697802, 131557975478638, 2360712083917682, 42361259535039638, 760141959546795802, 13640194012307284798, 244763350261984330562, 4392100110703410665318, 78813038642399407645162
Offset: 1

Views

Author

Gregory V. Richardson, Oct 13 2002

Keywords

Comments

Bisection of A001077; a(n) = A001077(2*n-1). - Greg Dresden, Jun 08 2021
From Peter Bala, Aug 25 2022: (Start)
The aerated sequence (b(n))n>=1 = [2, 0, 38, 0, 682, 0, 1238, 0, ...] is a fourth-order linear divisibility sequence; that is, if n | m then b(n) | b(m). The sequence (1/2)*(b(n))n>=1 is the case P1 = 0, P2 = -16, Q = -1 of the 3-parameter family of divisibility sequences found by Williams and Guy. See A100047. (End)

References

  • A. H. Beiler, "The Pellian." Ch. 22 in Recreations in the Theory of Numbers: The Queen of Mathematics Entertains. Dover, New York, New York, pp. 248-268, 1966.
  • L. E. Dickson, History of the Theory of Numbers, Vol. II, Diophantine Analysis. AMS Chelsea Publishing, Providence, Rhode Island, 1999, pp. 341-400.
  • Peter G. L. Dirichlet, Lectures on Number Theory (History of Mathematics Source Series, V. 16); American Mathematical Society, Providence, Rhode Island, 1999, pp. 139-147.

Crossrefs

Programs

  • Magma
    I:=[2,38]; [n le 2 select I[n] else 18*Self(n-1)-Self(n-2): n in [1..20]]; // Vincenzo Librandi, Nov 30 2011
    
  • Magma
    [Lucas(6*n-3)/2: n in [1..20]]; // G. C. Greubel, Feb 13 2019
    
  • Maple
    with(combinat); A075796:=n->fibonacci(6*n+3)+fibonacci(6*n)/2; seq(A075796(n), n=1..50); # Wesley Ivan Hurt, Nov 29 2013
  • Mathematica
    LinearRecurrence[{18, -1}, {2, 38}, 50] (* Sture Sjöstedt, Nov 29 2011; typo fixed by Vincenzo Librandi, Nov 30 2011 *)
    LucasL[6*Range[20]-3]/2 (* G. C. Greubel, Feb 13 2019 *)
    CoefficientList[Series[2*(1+x)/( 1-18*x+x^2 ), {x,0,20}],x] (* Stefano Spezia, Mar 02 2019 *)
  • PARI
    vector(20, n, (fibonacci(6*n-2) + fibonacci(6*n-4))/2) \\ G. C. Greubel, Feb 13 2019
    
  • Sage
    [(fibonacci(6*n-2) + fibonacci(6*n-4))/2 for n in (1..20)] # G. C. Greubel, Feb 13 2019

Formula

a(n) = (((9 + 4*sqrt(5))^n - (9 - 4*sqrt(5))^n) + ((9 + 4*sqrt(5))^(n-1) - (9 - 4*sqrt(5))^(n-1)))/(4*sqrt(5)).
a(n) = 18*a(n-1) - a(n-2).
a(n) = 2*A049629(n-1).
Limit_{n->oo} a(n)/a(n-1) = 8*phi + 1 = 9 + 4*sqrt(5).
a(n+1) = 9*a(n) + 4*sqrt(5)*sqrt((a(n)^2+1)). - Richard Choulet, Aug 30 2007
G.f.: 2*x*(1 + x)/(1 - 18*x + x^2). - Richard Choulet, Oct 09 2007
From Johannes W. Meijer, Jul 01 2010: (Start)
a(n) = A000045(6*n+3) + A000045(6*n)/2.
a(n) = 2*A167808(6*n+4) - A167808(6*n+6).
Limit_{k->oo} a(n+k)/a(k) = A023039(n)*A060645(n)*sqrt(5).
(End)
5*A007805(n)^2 - 1 = a(n+1)^2. - Sture Sjöstedt, Nov 29 2011
From Peter Bala, Nov 29 2013: (Start)
a(n) = Lucas(6*n - 3)/2.
Sum_{n >= 1} 1/(a(n) + 5/a(n)) = 1/4. Compare with A002878, A005248, A023039. (End)
Limit_{n->oo} a(n)/A007805(n-1) = sqrt(5). - A.H.M. Smeets, May 29 2017
E.g.f.: (exp((9 - 4*sqrt(5))*x)*(- 5 + 2*sqrt(5) + (5 + 2*sqrt(5))*exp(8*sqrt(5)*x)))/(2*sqrt(5)). - Stefano Spezia, Feb 13 2019
Sum_{n > 0} 1/a(n) = (1/log(9 - 4*sqrt(5)))*(- 17 - 38/sqrt(5))*sqrt(5*(9 - 4*sqrt(5)))*(- 9 + 4*sqrt(5))*(psi_{9 - 4*sqrt(5)}(1/2) - psi_{9 - 4*sqrt(5)}(1/2 - (I*Pi)/log(9 - 4*sqrt(5)))) approximately equal to 0.527868600269500798938265500122302016..., where psi_q(x) is the q-digamma function. - Stefano Spezia, Feb 25 2019
a(n) = sinh((6*n - 3)*arccsch(2)). - Peter Luschny, May 25 2022

A060924 Bisection of Lucas triangle A060922: odd-indexed members of column sequences of A060922 (not counting leading zeros).

Original entry on oeis.org

3, 7, 6, 18, 38, 9, 47, 158, 120, 12, 123, 566, 753, 280, 15, 322, 1880, 3612, 2568, 545, 18, 843, 5964, 15040, 16220, 7043, 942, 21, 2207, 18342, 57366, 83780, 57560, 16536, 1498, 24, 5778, 55162, 206115
Offset: 0

Views

Author

Wolfdieter Lang, Apr 20 2001

Keywords

Comments

Row sums give A060927. Column sequences (without leading zeros) are, for m=0..5: A005248(n+1), 2*A061171, A061172, 4*A061173, A061174, 2*A061175.
Companion triangle A060923 (even part).

Examples

			{3}; {7,6}; {18,38,9}; {47,158,120,12}; ...; pLo(2,x)= 2*(3+x-2*x^2).
		

Crossrefs

Cf. A005248.

Formula

a(n, m) = A060922(2*n+1-m, m).
a(n, m) = ((2*n-m+1)*A060923(n, m-1) + 2*(2*(2*n+1)-3*m)*a(n-1, m-1) + 4*(2*n-m)*A060923(n-1, m-1))/(5*m), m >= n >= 1; a(n, 0) = A005248(n); otherwise 0.
G.f. for column m >= 0: x^m*pLo(m+1, x)/(1-3*x+x^2)^(m+1), where pLo(n, x) := Sum_{m=0..n+floor((n-1)/2)} A061187(n-1, m)*x^m are the row polynomials of the (signed) staircase A061187.
T(n,k) = 3*T(n-1,k) + 2*T(n-1,k-1) - T(n-2,k) + 2*T(n-2,k-1) - T(n-2,k-2) + 4*T(n-3,k-2), T(0,0) = 3, T(1,0) = 7, T(1,1) = 6, T(2,0) = 18, T(2,1) = 38, T(2,2) = 9, T(n,k) = 0 if k < 0 or if k > n. - Philippe Deléham, Jan 21 2014

A087265 Lucas numbers L(8*n).

Original entry on oeis.org

2, 47, 2207, 103682, 4870847, 228826127, 10749957122, 505019158607, 23725150497407, 1114577054219522, 52361396397820127, 2459871053643326447, 115561578124838522882, 5428934300813767249007, 255044350560122222180447
Offset: 0

Views

Author

Nikolay V. Kosinov (kosinov(AT)unitron.com.ua), Oct 19 2003

Keywords

Comments

a(n+1)/a(n) converges to (47+sqrt(2205))/2 = 46.9787137... a(0)/a(1)=2/47; a(1)/a(2)=47/2207; a(2)/a(3)=2207/103682; a(3)/a(4)=103682/4870847; etc. Lim_{n->infinity} a(n)/a(n+1) = 0.02128623625... = 2/(47+sqrt(2205)) = (47-sqrt(2205))/2.
a(n) = a(-n). - Alois P. Heinz, Aug 07 2008
From Peter Bala, Oct 14 2019: (Start)
Let F(x) = Product_{n >= 0} (1 + x^(4*n+1))/(1 + x^(4*n+3)). Let Phi = 1/2*(sqrt(5) - 1). This sequence gives the partial denominators in the simple continued fraction expansion of the number F(Phi^8) = 1.0212763906... = 1 + 1/(47 + 1/(2207 + 1/(103682 + ...))).
Also F(-Phi^8) = 0.9787231991... has the continued fraction representation 1 - 1/(47 - 1/(2207 - 1/(103682 - ...))) and the simple continued fraction expansion 1/(1 + 1/((47 - 2) + 1/(1 + 1/((2207 - 2) + 1/(1 + 1/((103682 - 2) + 1/(1 + ...))))))).
F(Phi^8)*F(-Phi^8) = 0.9995468962... has the simple continued fraction expansion 1/(1 + 1/((47^2 - 4) + 1/(1 + 1/((2207^2 - 4) + 1/(1 + 1/((103682^2 - 4) + 1/(1 + ...))))))).
1/2 + 1/2*F(Phi^8)/F(-Phi^8) = 1.0217391349... has the simple continued fraction expansion 1 + 1/((47 - 2) + 1/(1 + 1/((103682 - 2) + 1/(1 + 1/(228826127 - 2) + 1/(1 + ...))))). (End)

Examples

			a(4) = 4870847 = 47*a(3) - a(2) = 47*103682 - 2207=((47+sqrt(2205))/2)^4 + ( (47-sqrt(2205))/2)^4 =4870846.999999794696 + 0.000000205303 = 4870847.
		

References

  • J. M. Borwein and P. B. Borwein, Pi and the AGM, Wiley, 1987, p. 91.
  • R. P. Stanley. Enumerative combinatorics. Vol. 2, volume 62 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge, 1999.

Crossrefs

Cf. A000032. Cf. Lucas(k*n): A005248 (k = 2), A014448 (k = 3), A056854 (k = 4), A001946 (k = 5), A087215 (k = 6), A087281 (k = 7), A087287 (k = 9), A065705 (k = 10), A089772 (k = 11), A089775 (k = 12).
a(n) = A000032(8n).

Programs

  • Magma
    [ Lucas(8*n) : n in [0..100]]; // Vincenzo Librandi, Apr 14 2011
  • Maple
    a:= n-> (Matrix([[2,47]]). Matrix([[47,1],[ -1,0]])^(n))[1,1]:
    seq(a(n), n=0..14);  # Alois P. Heinz, Aug 07 2008
  • Mathematica
    LucasL[8*Range[0,20]] (* or *) LinearRecurrence[{47,-1},{2,47},20] (* Harvey P. Dale, Oct 23 2017 *)

Formula

a(n) = 47*a(n-1) - a(n-2), starting with a(0) = 2 and a(1) = 47.
a(n) = ((47+sqrt(2205))/2)^n + ((47-sqrt(2205))/2)^n
(a(n))^2 = a(2n)+2.
G.f.: (2-47*x)/(1-47*x+x^2). - Alois P. Heinz, Aug 07 2008
From Peter Bala, Oct 14 2019: (Start)
a(n) = F(8*n+8)/F(8) - F(8*n-8)/F(8) = A049668(n+1) - A049668(n-1).
a(n) = trace(M^n), where M is the 2 X 2 matrix [0, 1; 1, 1]^8 = [13, 21; 21, 34].
Consequently the Gauss congruences hold: a(n*p^k) = a(n*p^(k-1)) ( mod p^k ) for all prime p and positive integers n and k. See Zarelua and also Stanley (Ch. 5, Ex. 5.2(a) and its solution).
45*Sum_{n >= 1} 1/(a(n) - 49/a(n)) = 1: (49 = Lucas(8) + 2 and 45 = Lucas(8) - 2)
49*Sum_{n >= 1} (-1)^(n+1)/(a(n) + 45/a(n)) = 1.
x*exp(Sum_{n >= 1} a(n)*x^/n) = x + 47*x^2 + 2208*x^3 + ... is the o.g.f. for A049668. (End)
E.g.f.: 2*exp(47*x/2)*cosh(21*sqrt(5)*x/2). - Stefano Spezia, Oct 18 2019
From Peter Bala, Apr 16 2025: (Start)
a(n) = Lucas(2*n)^4 - 4*Lucas(2*n)^2 + 2 = 2*T(4, (1/2)*Lucas(2*n)), where T(k, x) denotes the k-th Chebyshev polynomial of the first kind; more generally, for k >= 0, Lucas(2*k*n) = 2*T(k, Lucas(2*n)/2).
Sum_{n >= 1} 1/a(n) = (1/4) * (theta_3( (47 - sqrt(2205))/2 )^2 - 1) and
Sum_{n >= 1} (-1)^(n+1)/a(n) = (1/4) * (1 - theta_3( (sqrt(2205) - 47)/2 )^2),
where theta_3(x) = 1 + 2*Sum_{n >= 1} x^(n^2) (see A000122). See Borwein and Borwein, Proposition 3.5 (i), p. 91. Cf. A153415 and A003499. (End)

Extensions

Terms a(22)-a(27) from John W. Layman, Jun 14 2004

A098648 Expansion of (1-3*x)/(1 - 6*x + 4*x^2).

Original entry on oeis.org

1, 3, 14, 72, 376, 1968, 10304, 53952, 282496, 1479168, 7745024, 40553472, 212340736, 1111830528, 5821620224, 30482399232, 159607914496, 835717890048, 4375875682304, 22912382533632, 119970792472576, 628175224700928, 3289168178315264, 17222308171087872
Offset: 0

Views

Author

Paul Barry, Sep 18 2004

Keywords

Comments

Binomial transform of A001077. Second binomial transform of A084057. Third binomial transform of 1/(1-5*x^2). Let A=[1,1,1,1;3,1,-1,-3;3,-1,-1,3;1,-1,1,-1], the 4 X 4 Krawtchouk matrix. Then a(n)=trace((16(A*A`)^(-1))^n)/4.

Crossrefs

Cf. A098647.

Programs

  • Mathematica
    a[n_]:=(MatrixPower[{{5,1},{1,1}},n].{{2},{1}})[[2,1]]; Table[a[n],{n,0,40}] (* Vladimir Joseph Stephan Orlovsky, Feb 20 2010 *)
    CoefficientList[Series[(1-3x)/(1-6x+4x^2),{x,0,30}],x] (* or *) LinearRecurrence[{6,-4},{1,3},31] (* Harvey P. Dale, Jun 06 2011 *)
    Table[2^(n - 1) LucasL[2 n], {n, 0, 20}] (* Eric W. Weisstein, Mar 31 2017 *)
  • PARI
    Vec((1-3*x)/(1 - 6*x + 4*x^2) + O(x^25)) \\ Jinyuan Wang, Jul 24 2021

Formula

E.g.f.: exp(3*x)*cosh(sqrt(5)*x).
a(n) = ((3-sqrt(5))^n + (3+sqrt(5))^n)/2.
a(n) = 2*(3*a(n-1) - 2*a(n-2)). - Lekraj Beedassy, Oct 22 2004
a(n) = A084326(n+1) - 3*A084326(n). - R. J. Mathar, Nov 10 2013
a(n) = 2^(n-1)*Lucas(2*n) = 2^(n-1)*A005248(n), n>0. - Eric W. Weisstein, Mar 31 2017
Previous Showing 31-40 of 152 results. Next