A286183
Number of connected induced (non-null) subgraphs of the antiprism graph with 2n nodes.
Original entry on oeis.org
3, 15, 60, 207, 663, 2038, 6107, 17983, 52272, 150407, 429223, 1216490, 3427635, 9609327, 26821668, 74576703, 206650167, 570877918, 1572754187, 4322192287, 11851474968, 32430381815, 88576465735, 241511251922, 657457204323, 1787147867343, 4851349002252
Offset: 1
Cf.
A020873 (wheel),
A059020 (ladder),
A059525 (grid),
A286139 (king),
A286182 (prism),
A286184 (helm),
A286185 (Möbius ladder),
A286186 (friendship),
A286187 (web),
A286188 (gear),
A286189 (rook),
A285765 (queen).
-
a[n_] := Block[{g = Graph@ Flatten@ Table[{i <-> Mod[i,n]+1, n+i <-> Mod[i,n] + n+1, i <-> n + Mod[i, n] + 1, i <-> n + Mod[i-1, n] + 1}, {i, n}]}, -1 + ParallelSum[ Boole@ ConnectedGraphQ@ Subgraph[g, s], {s, Subsets@ Range[2 n]}]]; Array[a, 8]
A087215
Lucas(6*n): a(n) = 18*a(n-1) - a(n-2), starting with a(0) = 2 and a(1) = 18.
Original entry on oeis.org
2, 18, 322, 5778, 103682, 1860498, 33385282, 599074578, 10749957122, 192900153618, 3461452808002, 62113250390418, 1114577054219522, 20000273725560978, 358890350005878082, 6440026026380244498, 115561578124838522882, 2073668380220713167378
Offset: 0
Nikolay V. Kosinov (kosinov(AT)unitron.com.ua), Oct 19 2003
a(4) = 103682 = 18*a(3) - a(2) = 18*5778 - 322 = (9 + sqrt(80))^4 + (9 - sqrt(80))^4 = 103681.99999035512... + 0.00000964487... = 103682.
- J. M. Borwein and P. B. Borwein, Pi and the AGM, Wiley, 1987, p. 91.
- R. P. Stanley. Enumerative combinatorics. Vol. 2, volume 62 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge, 1999.
- Colin Barker, Table of n, a(n) for n = 0..750
- Hacène Belbachir, Soumeya Merwa Tebtoub, and László Németh, Ellipse Chains and Associated Sequences, J. Int. Seq., Vol. 23 (2020), Article 20.8.5.
- P. Bhadouria, D. Jhala, and B. Singh, Binomial Transforms of the k-Lucas Sequences and its Properties, The Journal of Mathematics and Computer Science (JMCS), Volume 8, Issue 1, Pages 81-92; sequence R_4.
- Tanya Khovanova, Recursive Sequences
- A. V. Zarelua, On Matrix Analogs of Fermat's Little Theorem, Mathematical Notes, vol. 79, no. 6, 2006, pp. 783-796. Translated from Matematicheskie Zametki, vol. 79, no. 6, 2006, pp. 840-855.
- Index entries for recurrences a(n) = k*a(n - 1) +/- a(n - 2)
- Index entries for linear recurrences with constant coefficients, signature (18,-1).
Cf. Lucas(k*n):
A000032 (k = 1),
A005248 (k = 2),
A014448 (k = 3),
A056854 (k = 4),
A001946 (k = 5),
A087281 (k = 7),
A087265 (k = 8),
A087287 (k = 9),
A065705 (k = 10),
A089772 (k = 11),
A089775 (k = 12).
-
[ Lucas(6*n) : n in [0..100]]; // Vincenzo Librandi, Apr 14 2011
-
a[0] = 2; a[1] = 18; a[n_] := 18a[n - 1] - a[n - 2]; Table[ a[n], {n, 0, 15}] (* Robert G. Wilson v, Jan 30 2004 *)
Table[LucasL[6n], {n, 0, 18}] (* or *) CoefficientList[Series[2*(1 - 9*x)/(1 - 18*x + x^2), {x, 0, 17}], x] (* Indranil Ghosh, Mar 15 2017 *)
-
Vec(2*(1-9*x)/(1-18*x+x^2) + O(x^20)) \\ Colin Barker, Jan 24 2016
-
a(n) = if(n<2, 17^n + 1, 18*a(n - 1) - a(n - 2));
for(n=0, 17, print1(a(n),", ")) \\ Indranil Ghosh, Mar 15 2017
A103997
Square array T(M,N) read by antidiagonals: number of dimer tilings of a 2*M X 2*N Moebius strip.
Original entry on oeis.org
1, 1, 1, 1, 3, 1, 1, 11, 7, 1, 1, 41, 71, 18, 1, 1, 153, 769, 539, 47, 1, 1, 571, 8449, 17753, 4271, 123, 1, 1, 2131, 93127, 603126, 434657, 34276, 322, 1, 1, 7953, 1027207, 20721019, 46069729, 10894561, 276119, 843, 1, 1, 29681, 11332097, 714790675, 4974089647, 3625549353, 275770321, 2226851, 2207, 1
Offset: 0
Array begins:
1, 1, 1, 1, 1, 1, 1,
1, 3, 7, 18, 47, 123, 322,
1, 11, 71, 539, 4271, 34276, 276119,
1, 41, 769, 17753, 434657, 10894561, 275770321,
1, 153, 8449, 603126, 46069729, 3625549353, 289625349454,
1, 571, 93127, 20721019, 4974089647, 1234496016491, 312007855309063,
...
- Laura Florescu, Daniela Morar, David Perkinson, Nicholas Salter and Tianyuan Xu, Sandpiles and Dominos, El. J. Comb., 22 (2015), P1.66. See Theorem 18.
- W. T. Lu and F. Y. Wu, Dimer statistics on the Moebius strip and the Klein bottle, arXiv:cond-mat/9906154 [cond-mat.stat-mech], 1999.
- Index entries for sequences related to dominoes
-
T[M_, N_] := Product[4Sin[(4n-1)Pi/(4N)]^2 + 4Cos[m Pi/(2M+1)]^2, {n, 1, N}, {m, 1, M}];
Table[T[M - N, N] // Round, {M, 0, 9}, {N, 0, M}] // Flatten (* Jean-François Alcover, Dec 03 2018 *)
A032198
"CIK" (necklace, indistinct, unlabeled) transform of 1,2,3,4,...
Original entry on oeis.org
1, 3, 6, 13, 25, 58, 121, 283, 646, 1527, 3601, 8678, 20881, 50823, 124054, 304573, 750121, 1855098, 4600201, 11442085, 28527446, 71292603, 178526881, 447919418, 1125750145, 2833906683, 7144450566, 18036423973
Offset: 1
From _Petros Hadjicostas_, Jan 07 2018: (Start)
We give some examples to illustrate the theory of C. G. Bower about transforms given in the weblink above. We assume we have boxes of different sizes and colors that we place on a circle to form a necklace. Two boxes of the same size and same color are considered identical (indistinct and unlabeled). We do, however, change the roles of the sequences (a(n): n>=1) and (b(n): n>=1) that appear in the weblink above. We assume (a(n): n>=1) = CIK((b(n): n>=1)).
Since b(1) = 1, b(2) = 2, b(3) = 3, etc., a box that can hold 1 ball only can be of 1 color only, a box that can hold 2 balls only can be one of 2 colors only, a box that can hold 3 balls can be one of 3 colors, and so on.
To prove that a(3) = 6, we consider three cases. In the first case, we have a single box that can hold 3 balls, and thus we have 3 possibilities for the 3 colors the box can be. In the second case, we have a box that can hold 2 balls and a box that can hold 1 ball. Here, we have 2 x 1 = 2 possibilities. In the third case, we have 3 identical boxes, each of which can hold 1 ball. This gives rise to 1 possibility. Hence, a(3) = 3 + 2 + 1 = 6.
To prove that a(4) = 13, we consider 5 cases: a box with 4 balls (4 possibilities), one box with 3 balls and one box with 1 ball (3 possibilities), two identical boxes each with 2 balls (3 possibilities), one box with 2 balls and two identical boxes each with 1 ball (2 possibilities), and four identical boxes each with 1 ball (1 possibility). Thus, a(4) = 4 + 3 + 3 + 2 + 1 = 13.
(End)
- Vaclav Kotesovec, Table of n, a(n) for n = 1..1000
- A. K. Agarwal, n-colour compositions, Indian J. Pure Appl. Math. 31 (11) (2000), 1421-1427.
- C. G. Bower, Transforms (2).
- Joshua P. Bowman, Compositions with an Odd Number of Parts, and Other Congruences, J. Int. Seq (2024) Vol. 27, Art. 24.3.6. See p. 31.
- P. Flajolet and M. Soria, The Cycle Construction, SIAM J. Discr. Math., vol. 4 (1), 1991, pp. 58-60.
- P. Flajolet and M. Soria, The Cycle Construction. [pdf file]
- Meghann Moriah Gibson, Combinatorics of compositions, Master of Science, Georgia Southern University, 2017.
- Meghann Moriah Gibson, Daniel Gray, and Hua Wang, Combinatorics of n-color compositions, Discrete Mathematics 341 (2018), 3209-3226.
- Index entries for sequences related to necklaces
-
nmax = 30;
f[x_] = Sum[n*x^n, {n, 1, nmax}];
gf = Sum[(EulerPhi[n]/n)*Log[1/(1 - f[x^n])] + O[x]^nmax, {n, 1, nmax}]/x;
CoefficientList[gf, x] (* Jean-François Alcover, Jul 29 2018, after Joerg Arndt *)
-
N = 66; x = 'x + O('x^N);
f(x)=sum(n=1, N, n*x^n );
gf = sum(n=1, N, eulerphi(n)/n*log(1/(1-f(x^n))) );
v = Vec(gf)
/* Joerg Arndt, Jan 21 2013 */
A056571
Fourth power of Fibonacci numbers A000045.
Original entry on oeis.org
0, 1, 1, 16, 81, 625, 4096, 28561, 194481, 1336336, 9150625, 62742241, 429981696, 2947295521, 20200652641, 138458410000, 949005240561, 6504586067281, 44583076827136, 305577005139121, 2094455819300625, 14355614096087056
Offset: 0
- A. T. Benjamin and J. J. Quinn, Proofs that really count: the art of combinatorial proof, M.A.A. 2003, id. 31.
- Donald E. Knuth, The Art of Computer Programming. Addison-Wesley, Reading, MA, 1969, Vol. 1, p. 85, (exercise 1.2.8. Nr. 30) and p. 492 (solution).
- Hilary I. Okagbue, Muminu O. Adamu, Sheila A. Bishop and Abiodun A. Opanuga, Digit and Iterative Digit Sum of Fibonacci numbers, their identities and powers, International Journal of Applied Engineering Research ISSN 0973-4562 Volume 11, Number 6 (2016) pp. 4623-4627.
- Vincenzo Librandi, Table of n, a(n) for n = 0..151
- Mohammad K. Azarian, Fibonacci Identities as Binomial Sums II, International Journal of Contemporary Mathematical Sciences, Vol. 7, No. 42, 2012, pp. 2053-2059. Mathematical Reviews, MR2980853. Zentralblatt MATH, Zbl 1255.05004.
- Alfred Brousseau, A sequence of power formulas, Fib. Quart., Vol. 6, No. 1 (1968), pp. 81-83.
- Andrej Dujella, A bijective proof of Riordan's theorem on powers of Fibonacci numbers, Discrete Math., Vol. 199, No. 1-3 (1999), pp. 217-220. MR1675924 (99k:05016).
- Kenneth Edwards and Michael A. Allen, A new combinatorial interpretation of the Fibonacci numbers cubed, Fib. Q. 58:5 (2020) 128-134.
- Hideyuki Ohtsuka, Problem N-1220, Elementary Problems and Solutions, The Fibonacci Quarterly, Vol. 55, No. 4 (2017), p. 368; Gelin-Cesàro Identity Yields a Telescoping Product, Solution to Problem H-790 by Ramya Dutta, ibid., Vol. 56, No. 4 (2018), p. 372.
- John Riordan, Generating functions for powers of Fibonacci numbers, Duke. Math. J., Vol. 29, No. 1 (1962), pp. 5-12.
- Index to divisibility sequences
- Index entries for linear recurrences with constant coefficients, signature (5,15,-15,-5,1).
A064170
a(1) = 1; a(n+1) = product of numerator and denominator in Sum_{k=1..n} 1/a(k).
Original entry on oeis.org
1, 1, 2, 10, 65, 442, 3026, 20737, 142130, 974170, 6677057, 45765226, 313679522, 2149991425, 14736260450, 101003831722, 692290561601, 4745030099482, 32522920134770, 222915410843905, 1527884955772562, 10472279279564026, 71778070001175617, 491974210728665290
Offset: 1
1/a(1) + 1/a(2) + 1/a(3) + 1/a(4) = 1 + 1 + 1/2 + 1/10 = 13/5. So a(5) = 13 * 5 = 65.
- S. Vajda, Fibonacci & Lucas Numbers, and the Golden Section, Ellis Horwood Ltd., Chichester, 1989.
- Michael De Vlieger, Table of n, a(n) for n = 1..1199
- Christian Aebi and Grant Cairns, Lattice Equable Parallelograms, arXiv:2006.07566 [math.NT], 2020.
- Hacène Belbachir, Soumeya Merwa Tebtoub, and László Németh, Ellipse Chains and Associated Sequences, J. Int. Seq., Vol. 23 (2020), Article 20.8.5.
- Giovanni Lucca, Circle Chains Inscribed in Symmetrical Lenses and Integer Sequences, Forum Geometricorum, Volume 16 (2016) 419-427.
- C. Rossi and C. A. Tout, Were the Fibonacci Series and the Golden Section Known in Ancient Egypt?, Historia Mathematica, vol. 29 (2002), 101-113.
- Index entries for linear recurrences with constant coefficients, signature (8,-8,1).
-
A064170[1] := 1; A064170[n_] := A064170[n] = Module[{temp = Sum[1/A064170[i], {i, n - 1}]}, Numerator[temp] Denominator[temp]]; Table[A064170[n], {n, 20}](* Alonso del Arte, Sep 05 2013 *)
Join[{1}, LinearRecurrence[{8, -8, 1}, {1, 2, 10}, 23]] (* Jean-François Alcover, Sep 22 2017 *)
A075796
Numbers k such that 5*k^2 + 5 is a square.
Original entry on oeis.org
2, 38, 682, 12238, 219602, 3940598, 70711162, 1268860318, 22768774562, 408569081798, 7331474697802, 131557975478638, 2360712083917682, 42361259535039638, 760141959546795802, 13640194012307284798, 244763350261984330562, 4392100110703410665318, 78813038642399407645162
Offset: 1
- A. H. Beiler, "The Pellian." Ch. 22 in Recreations in the Theory of Numbers: The Queen of Mathematics Entertains. Dover, New York, New York, pp. 248-268, 1966.
- L. E. Dickson, History of the Theory of Numbers, Vol. II, Diophantine Analysis. AMS Chelsea Publishing, Providence, Rhode Island, 1999, pp. 341-400.
- Peter G. L. Dirichlet, Lectures on Number Theory (History of Mathematics Source Series, V. 16); American Mathematical Society, Providence, Rhode Island, 1999, pp. 139-147.
-
I:=[2,38]; [n le 2 select I[n] else 18*Self(n-1)-Self(n-2): n in [1..20]]; // Vincenzo Librandi, Nov 30 2011
-
[Lucas(6*n-3)/2: n in [1..20]]; // G. C. Greubel, Feb 13 2019
-
with(combinat); A075796:=n->fibonacci(6*n+3)+fibonacci(6*n)/2; seq(A075796(n), n=1..50); # Wesley Ivan Hurt, Nov 29 2013
-
LinearRecurrence[{18, -1}, {2, 38}, 50] (* Sture Sjöstedt, Nov 29 2011; typo fixed by Vincenzo Librandi, Nov 30 2011 *)
LucasL[6*Range[20]-3]/2 (* G. C. Greubel, Feb 13 2019 *)
CoefficientList[Series[2*(1+x)/( 1-18*x+x^2 ), {x,0,20}],x] (* Stefano Spezia, Mar 02 2019 *)
-
vector(20, n, (fibonacci(6*n-2) + fibonacci(6*n-4))/2) \\ G. C. Greubel, Feb 13 2019
-
[(fibonacci(6*n-2) + fibonacci(6*n-4))/2 for n in (1..20)] # G. C. Greubel, Feb 13 2019
A060924
Bisection of Lucas triangle A060922: odd-indexed members of column sequences of A060922 (not counting leading zeros).
Original entry on oeis.org
3, 7, 6, 18, 38, 9, 47, 158, 120, 12, 123, 566, 753, 280, 15, 322, 1880, 3612, 2568, 545, 18, 843, 5964, 15040, 16220, 7043, 942, 21, 2207, 18342, 57366, 83780, 57560, 16536, 1498, 24, 5778, 55162, 206115
Offset: 0
{3}; {7,6}; {18,38,9}; {47,158,120,12}; ...; pLo(2,x)= 2*(3+x-2*x^2).
A087265
Lucas numbers L(8*n).
Original entry on oeis.org
2, 47, 2207, 103682, 4870847, 228826127, 10749957122, 505019158607, 23725150497407, 1114577054219522, 52361396397820127, 2459871053643326447, 115561578124838522882, 5428934300813767249007, 255044350560122222180447
Offset: 0
Nikolay V. Kosinov (kosinov(AT)unitron.com.ua), Oct 19 2003
a(4) = 4870847 = 47*a(3) - a(2) = 47*103682 - 2207=((47+sqrt(2205))/2)^4 + ( (47-sqrt(2205))/2)^4 =4870846.999999794696 + 0.000000205303 = 4870847.
- J. M. Borwein and P. B. Borwein, Pi and the AGM, Wiley, 1987, p. 91.
- R. P. Stanley. Enumerative combinatorics. Vol. 2, volume 62 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge, 1999.
- Indranil Ghosh, Table of n, a(n) for n = 0..596
- Tanya Khovanova, Recursive Sequences
- A. V. Zarelua, On Matrix Analogs of Fermat's Little Theorem, Mathematical Notes, vol. 79, no. 6, 2006, pp. 783-796. Translated from Matematicheskie Zametki, vol. 79, no. 6, 2006, pp. 840-855.
- Index entries for recurrences a(n) = k*a(n - 1) +/- a(n - 2)
- Index entries for linear recurrences with constant coefficients, signature (47,-1).
-
[ Lucas(8*n) : n in [0..100]]; // Vincenzo Librandi, Apr 14 2011
-
a:= n-> (Matrix([[2,47]]). Matrix([[47,1],[ -1,0]])^(n))[1,1]:
seq(a(n), n=0..14); # Alois P. Heinz, Aug 07 2008
-
LucasL[8*Range[0,20]] (* or *) LinearRecurrence[{47,-1},{2,47},20] (* Harvey P. Dale, Oct 23 2017 *)
A098648
Expansion of (1-3*x)/(1 - 6*x + 4*x^2).
Original entry on oeis.org
1, 3, 14, 72, 376, 1968, 10304, 53952, 282496, 1479168, 7745024, 40553472, 212340736, 1111830528, 5821620224, 30482399232, 159607914496, 835717890048, 4375875682304, 22912382533632, 119970792472576, 628175224700928, 3289168178315264, 17222308171087872
Offset: 0
-
a[n_]:=(MatrixPower[{{5,1},{1,1}},n].{{2},{1}})[[2,1]]; Table[a[n],{n,0,40}] (* Vladimir Joseph Stephan Orlovsky, Feb 20 2010 *)
CoefficientList[Series[(1-3x)/(1-6x+4x^2),{x,0,30}],x] (* or *) LinearRecurrence[{6,-4},{1,3},31] (* Harvey P. Dale, Jun 06 2011 *)
Table[2^(n - 1) LucasL[2 n], {n, 0, 20}] (* Eric W. Weisstein, Mar 31 2017 *)
-
Vec((1-3*x)/(1 - 6*x + 4*x^2) + O(x^25)) \\ Jinyuan Wang, Jul 24 2021
Comments