cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 80 results. Next

A238166 Decimal expansion of sum_(n>=1) H(n,2)/n^4 where H(n,2) = A007406(n)/A007407(n) is the n-th harmonic number of order 2.

Original entry on oeis.org

1, 1, 0, 5, 8, 2, 6, 4, 4, 4, 4, 3, 8, 8, 1, 7, 8, 5, 4, 0, 0, 8, 8, 4, 5, 7, 6, 8, 8, 7, 6, 6, 8, 0, 9, 8, 4, 5, 4, 9, 7, 9, 6, 2, 4, 2, 4, 1, 9, 6, 0, 4, 1, 5, 3, 5, 1, 7, 2, 9, 7, 9, 4, 0, 5, 6, 3, 8, 0, 6, 4, 6, 1, 8, 3, 0, 7, 0, 1, 4, 6, 9, 3, 3, 8, 6, 0, 1, 7, 7, 2, 5, 3, 9, 0, 0, 5, 7, 5, 7
Offset: 1

Views

Author

Jean-François Alcover, Feb 19 2014

Keywords

Examples

			1.1058264444388178540088457688766809845497962424196...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[Zeta[3]^2 - 1/3*Zeta[6], 10, 100][[1]]
  • PARI
    zeta(3)^2-Pi^6/2835 /* Michel Marcus, Jul 04 2014 */

Formula

Equals zeta(3)^2 - zeta(6)/3.

A244664 Decimal expansion of Sum_{n >= 1} H(n,2)/n^2 where H(n,2) = A007406(n)/A007407(n) is the n-th harmonic number of order 2.

Original entry on oeis.org

1, 8, 9, 4, 0, 6, 5, 6, 5, 8, 9, 9, 4, 4, 9, 1, 8, 3, 5, 1, 5, 3, 0, 0, 6, 4, 6, 8, 9, 4, 7, 0, 4, 3, 8, 2, 9, 8, 5, 5, 8, 1, 4, 1, 6, 5, 8, 5, 7, 7, 7, 2, 0, 8, 8, 4, 4, 5, 2, 0, 8, 3, 7, 7, 0, 2, 7, 2, 1, 1, 0, 7, 8, 3, 2, 7, 1, 9, 5, 4, 8, 1, 4, 7, 4, 5, 9, 1, 8, 6, 2, 8, 9, 7, 9, 7, 4, 8, 5, 5
Offset: 1

Views

Author

Jean-François Alcover, Jul 04 2014

Keywords

Examples

			1.894065658994491835153006468947043829855814165857772088445208377027211...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[7/4*Zeta[4], 10, 100] // First
  • PARI
    7*zeta(4)/4 \\ Michel Marcus, Jul 04 2014

Formula

Equals 7*Pi^4/360 = (7/4)*A013662.
From Peter Bala, Jul 27 2025: (Start)
Series acceleration formula:
Let s(n) = Sum_{k = 1..n} H(k,2)/k^2 and S(n) = Sum_{k = 1..n} (-1)^(n+k)*binomial(n, k)*binomial(n+k, k)*s(n+k). It appears that S(n) converges much more rapidly to 7*Pi^4/360 than s(n).
For example, s(50) = 1.8(61...) is only correct to 2 decimal digits, while S(50) = 1.89406565899449183515 30064689470(06...) is correct to 32 decimal digits. (End)

A093689 Least k such that prime(n) divides A007406(k), the numerator of the k-th generalized harmonic number H(k,2) = Sum_{i=1..k} 1/i^2.

Original entry on oeis.org

2, 3, 5, 6, 8, 9, 11, 14, 15, 15, 4, 11, 23, 26, 6, 30, 33, 35, 36, 39, 41, 44, 15, 50, 51, 39, 54, 56, 23, 65, 44, 69, 37, 75, 25, 61, 61, 86, 89, 85, 95, 96, 98, 99, 99, 111, 113, 114, 116, 119, 60, 125, 128, 131, 50, 135, 138, 140, 141, 146, 27, 43, 156, 158, 165, 168
Offset: 3

Views

Author

T. D. Noe, Apr 09 2004

Keywords

Comments

Wolstenholme's theorem states that prime p > 3 divides A007406(p-1). It is not difficult to show that this implies p also divides A007406((p-1)/2). In most instances, a(n) = (prime(n)-1)/2. Exceptions occur for primes in A093690, which have a smaller a(n).
Note that if p divides A007406(k) for k < (p-1)/2, then p divides A007406(p-k-1).
Another interesting observation: it appears that p=7 is the only prime that divides A007406(k) for some k > p-1; 7 divides A007406(26) = 23507608254234781649. Also note that when p > 3 and 2p-1 are both prime, they divide A007406(p-1).

Crossrefs

Programs

  • Mathematica
    nn=1000; t=Numerator[HarmonicNumber[Range[nn], 2]]; Table[p=Prime[n]; i=1; While[i0, i++ ]; i, {n, 3, PrimePi[nn]}]

A123751 Primes in A007406.

Original entry on oeis.org

5, 266681, 40799043101, 86364397717734821, 36190908596780862323291147613117849902036356128879432564211412588793094572280300268379995976006474252029, 334279880945246012373031736295774418479420559664800307123320901500922509788908032831003901108510816091067151027837158805812525361841612048446489305085140033
Offset: 1

Views

Author

Alexander Adamchuk, Oct 11 2006

Keywords

Comments

A007406 lists the Wolstenholme numbers.
Numbers k such that A007406(k) is prime are listed in A111354.

Examples

			A007406 begins {1, 5, 49, 205, 5269, 5369, 266681, 1077749, 9778141, ...}.
Thus a(1) = 5 because A007406(2) = 5 is prime but A007406(1) = 1 is not prime.
a(2) = 266681 because A007406(7) = 266681 is prime but all A007406(k) are composite for 2 < k < 7.
		

Crossrefs

Programs

  • Mathematica
    Do[f=Numerator[Sum[1/i^2,{i,1,n}]]; If[PrimeQ[f],Print[{n,f}]],{n,1,250}]

Formula

a(n) = A007406(A111354(n)).

A370774 Denominator of the n-th partial sum of the generalized harmonic numbers A007406/A007407.

Original entry on oeis.org

1, 4, 18, 144, 600, 3600, 44100, 78400, 635040, 254016, 12806640, 153679680, 1855133280, 8657288640, 16232416200, 519437318400, 8339854723200, 150117385017600, 541923759913536, 516117866584320
Offset: 1

Views

Author

R. J. Mathar, May 01 2024

Keywords

Comments

Partial sums of A007406/A007407 are 1, 9/4, 65/18, 725/144, 3899/600, 28763/3600, ...

Crossrefs

Cf. A120286 (numerators).

Programs

  • Maple
    A007406_7 := proc(n)
        local i;
        add(1/i^2,i=1..n) ;
    end proc:
    A370774 := proc(n)
        add( A007406_7(i),i=1..n) ;
        denom(%) ;
    end proc:
    seq(A370774(n),n=1..20) ;
  • Mathematica
    Table[-EulerGamma + HarmonicNumber[1 + n, 2] + n*HarmonicNumber[1 + n, 2] - PolyGamma[0, 2 + n], {n, 1, 20}] // Denominator (* Vaclav Kotesovec, May 02 2024 *)
  • PARI
    a(n) = denominator(sum(k=1, n, sum(i=1, k, 1/i^2))); \\ Michel Marcus, May 01 2024
    
  • Python
    from fractions import Fraction
    def A370774(n): return sum(Fraction(n-i+1,i**2) for i in range(1,n+1)).denominator # Chai Wah Wu, May 01 2024

A093690 Primes p that divide A007406(k), the numerator of the k-th generalized harmonic number H(k,2) = Sum 1/i^2 for i=1..k, for some k < (p-1)/2.

Original entry on oeis.org

37, 41, 43, 59, 97, 107, 127, 137, 149, 157, 163, 167, 181, 211, 241, 269, 307, 311, 373, 383, 419, 421, 433, 457, 467, 479, 487, 491, 499, 547, 563, 569, 571, 577, 601, 617, 619, 643, 653, 659, 677, 709, 727, 739, 787, 797, 811, 821, 859, 863, 883, 911, 929
Offset: 1

Views

Author

T. D. Noe, Apr 09 2004

Keywords

Comments

Because these primes are analogous to the irregular primes A000928 that divide the numerators of Bernoulli numbers, they might be called H2-irregular primes. Also see A092194. The density of these primes is about 0.4 - close to the density of irregular primes.

Crossrefs

Cf. A092194 (primes p that divide A001008(k) for some k < p-1), A093689 (least k such that prime(n) divides A007406(k)).

Programs

  • Mathematica
    nn=1000; t=Numerator[HarmonicNumber[Range[nn], 2]]; lst = {}; Do[p=Prime[n]; i=1; While[i<(p-1)/2 && Mod[t[[i]], p]>0, i++ ]; If[i<(p-1)/2, AppendTo[lst, p]], {n, 3, PrimePi[nn]}]; lst

A119621 Wolstenholme numbers A007406 ( numerator of Sum 1/k^2, k = 1..(p-1)/2 ) divided by prime p>3.

Original entry on oeis.org

1, 7, 479, 413, 63397, 514639, 10410343, 1411432849, 6620481151, 6454614084953, 421950627598601, 8222379104323, 3989306589962303, 443539778381788333, 148124338024667050948691, 143366612154851808752629
Offset: 3

Views

Author

Alexander Adamchuk, Jun 07 2006

Keywords

Comments

Wolstenholme numbers A007406(n) (numerator of Sum 1/k^2, k = 1..n) are divisible by prime p > 3 for n = (p-1)/2. a(n) = A007406((p-1)/2) / p, where p = Prime[n] > 3.

Examples

			A007406(n) begins 1, 5, 49, 205, 5269, 5369, 266681, 1077749, 9778141,..
a(3) = A007406( (5-1)/2 ) / 5 = 1
a(4) = A007406( (7-1)/2 ) / 7 = 49 / 7 = 7
a(5) = A007406( (11-1)/2 ) / 11 = 5269 / 11 = 479
		

Crossrefs

Cf. A007406.

Programs

  • Mathematica
    Table[Numerator[Sum[1/i^2,{i,1,(Prime[n]-1)/2}]]/Prime[n],{n,3,25}]

Formula

a(n) = numerator[ Sum[ 1/i^2, {i,1,(Prime[n]-1)/2} ] ] / Prime[n] for n > 3.

A013661 Decimal expansion of Pi^2/6 = zeta(2) = Sum_{m>=1} 1/m^2.

Original entry on oeis.org

1, 6, 4, 4, 9, 3, 4, 0, 6, 6, 8, 4, 8, 2, 2, 6, 4, 3, 6, 4, 7, 2, 4, 1, 5, 1, 6, 6, 6, 4, 6, 0, 2, 5, 1, 8, 9, 2, 1, 8, 9, 4, 9, 9, 0, 1, 2, 0, 6, 7, 9, 8, 4, 3, 7, 7, 3, 5, 5, 5, 8, 2, 2, 9, 3, 7, 0, 0, 0, 7, 4, 7, 0, 4, 0, 3, 2, 0, 0, 8, 7, 3, 8, 3, 3, 6, 2, 8, 9, 0, 0, 6, 1, 9, 7, 5, 8, 7, 0
Offset: 1

Views

Author

Keywords

Comments

"In 1736 he [Leonard Euler, 1707-1783] discovered the limit to the infinite series, Sum 1/n^2. He did it by doing some rather ingenious mathematics using trigonometric functions that proved the series summed to exactly Pi^2/6. How can this be? ... This demonstrates one of the most startling characteristics of mathematics - the interconnectedness of, seemingly, unrelated ideas." - Clawson [See Hardy and Wright, Theorems 332 and 333. - N. J. A. Sloane, Jan 20 2017]
Also dilogarithm(1). - Rick L. Shepherd, Jul 21 2004
Also Integral_{x>=0} x/(exp(x)-1) dx. [Abramowitz-Stegun, 23.2.7., for s=2, p. 807]
For the partial sums see the fractional sequence A007406/A007407.
Pi^2/6 is also the length of the circumference of a circle whose diameter equals the ratio of volume of an ellipsoid to the circumscribed cuboid. Pi^2/6 is also the length of the circumference of a circle whose diameter equals the ratio of surface area of a sphere to the circumscribed cube. - Omar E. Pol, Oct 07 2011
1 < n^2/(eulerphi(n)*sigma(n)) < zeta(2) for n > 1. - Arkadiusz Wesolowski, Sep 04 2012
Volume of a sphere inscribed in a cube of volume Pi. More generally, Pi^x/6 is the volume of an ellipsoid inscribed in a cuboid of volume Pi^(x-1). - Omar E. Pol, Feb 17 2016
Surface area of a sphere inscribed in a cube of surface area Pi. More generally, Pi^x/6 is the surface area of a sphere inscribed in a cube of surface area Pi^(x-1). - Omar E. Pol, Feb 19 2016
zeta(2)+1 is a weighted average of the integers, n > 2, using zeta(n)-1 as the weights for each n. We have: Sum_{n >= 2} (zeta(n)-1) = 1 and Sum_{n >= 2} n*(zeta(n)-1) = zeta(2)+1. - Richard R. Forberg, Jul 14 2016
zeta(2) is the expected value of sigma(n)/n. - Charlie Neder, Oct 22 2018
Graham shows that a rational number x can be expressed as a finite sum of reciprocals of distinct squares if and only if x is in [0, Pi^2/6-1) U [1, Pi^2/6). See section 4 for other results and Theorem 5 for the underlying principle. - Charles R Greathouse IV, Aug 04 2020
From Peter Bala, Aug 24 2025: (Start)
By definition, zeta(2) = lim_{n -> oo} s(n), where s(n) = Sum_{k = 1..n} 1/k^2. The convergence is slow. For example, s(50) = 1.6(25...) is only correct to 1 decimal digit.
Let S(n) = Sum_{k = 0..n} (-1)^(n+k)*binomial(n, k)*binomial(n+k, k)*s(n+k). It appears that S(n) converges to zeta(2) much more rapidly. For example, S(50) = 1.64493406684822643647241516664602(137...) gives zeta(2) correct to 32 decimal digits. Cf. A073004. (End)

Examples

			1.6449340668482264364724151666460251892189499012067984377355582293700074704032...
		

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 811.
  • F. Aubonnet, D. Guinin and B. Joppin, Précis de Mathématiques, Analyse 2, Classes Préparatoires, Premier Cycle Universitaire, Bréal, 1990, Exercice 908, pages 82 and 91-92.
  • Calvin C. Clawson, Mathematical Mysteries, The Beauty and Magic of Numbers, Perseus Books, 1996, p. 97.
  • John H. Conway and Richard K. Guy, The Book of Numbers, New York: Springer-Verlag, 1996. See p. 262.
  • W. Dunham, Euler: The Master of Us All, The Mathematical Association of America, Washington, D.C., 1999, p. xxii.
  • Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, Sections 1.4.1 and 5.16, pp. 20, 365.
  • Hardy and Wright, 'An Introduction to the Theory of Numbers'. See Theorems 332 and 333.
  • A. A. Markoff, Mémoire sur la transformation de séries peu convergentes en séries très convergentes, Mém. de l'Acad. Imp. Sci. de St. Pétersbourg, XXXVII, 1890.
  • Paulo Ribenboim, The Little Book of Bigger Primes, Springer-Verlag NY 2004. See pp. 10, 161-162.
  • G. F. Simmons, Calculus Gems, Section B.15, B.24, pp. 270-271, 323-325, McGraw Hill, 1992.
  • Arnold Walfisz, Weylsche Exponentialsummen in der neueren Zahlentheorie, Deutscher Verlag der Wissenschaften, Berlin, 1963, p. 99, Satz 1.
  • A. Weil, Number theory: an approach through history; from Hammurapi to Legendre, Birkhäuser, Boston, 1984; see p. 261.
  • David Wells, The Penguin Dictionary of Curious and Interesting Numbers, Revised Edition, Penguin Books, London, England, 1997, page 23.

Crossrefs

Cf. A001008 (H(n): numerators), A002805 (denominators), A013679 (continued fraction), A002117 (zeta(3)), A013631 (cont.frac. for zeta(3)), A013680 (cont.frac. for zeta(4)), 1/A059956, A108625, A142995, A142999.
Cf. A000290.

Programs

  • Magma
    pi:=Pi(RealField(110)); Reverse(Intseq(Floor(10^105*pi^2/6))); // Vincenzo Librandi, Oct 13 2015
    
  • Maple
    evalf(Pi^2/6,120); # Muniru A Asiru, Oct 25 2018
    # Calculates an approximation with n exact decimal places (small deviation
    # in the last digits are possible). Goes back to ideas of A. A. Markoff 1890.
    zeta2 := proc(n) local q, s, w, v, k; q := 0; s := 0; w := 1; v := 4;
    for k from 2 by 2 to 7*n/2 do
        w := w*v/k;
        q := q + v;
        v := v + 8;
        s := s + 1/(w*q);
    od; 12*s; evalf[n](%) end:
    zeta2(1000); # Peter Luschny, Jun 10 2020
  • Mathematica
    RealDigits[N[Pi^2/6, 100]][[1]]
    RealDigits[Zeta[2],10,120][[1]] (* Harvey P. Dale, Jan 08 2021 *)
  • Maxima
    fpprec : 100$ ev(bfloat(zeta(2)))$ bfloat(%); /* Martin Ettl, Oct 21 2012 */
    
  • PARI
    default(realprecision, 200); Pi^2/6
    
  • PARI
    default(realprecision, 200); dilog(1)
    
  • PARI
    default(realprecision, 200); zeta(2)
    
  • PARI
    A013661(n)={localprec(n+2); Pi^2/.6\10^n%10} \\ Corrected and improved by M. F. Hasler, Apr 20 2021
    
  • PARI
    default(realprecision, 20080); x=Pi^2/6; for (n=1, 20000, d=floor(x); x=(x-d)*10; write("b013661.txt", n, " ", d)); \\ Harry J. Smith, Apr 29 2009
    
  • PARI
    sumnumrat(1/x^2, 1) \\ Charles R Greathouse IV, Jan 20 2022
    
  • Python
    # Use some guard digits when computing.
    # BBP formula (3 / 16) P(2, 64, 6, (16, -24, -8, -6,  1, 0)).
    from decimal import Decimal as dec, getcontext
    def BBPzeta2(n: int) -> dec:
        getcontext().prec = n
        s = dec(0); f = dec(1); g = dec(64)
        for k in range(int(n * 0.5536546824812272) + 1):
            sixk = dec(6 * k)
            s += f * ( dec(16) / (sixk + 1) ** 2 - dec(24) / (sixk + 2) ** 2
                     - dec(8)  / (sixk + 3) ** 2 - dec(6)  / (sixk + 4) ** 2
                     + dec(1)  / (sixk + 5) ** 2 )
            f /= g
        return (s * dec(3)) / dec(16)
    print(BBPzeta2(2000))  # Peter Luschny, Nov 01 2023

Formula

Limit_{n->oo} (1/n)*(Sum_{k=1..n} frac((n/k)^(1/2))) = zeta(2) and in general we have lim_{n->oo} (1/n)*(Sum_{k=1..n} frac((n/k)^(1/m))) = zeta(m), m >= 2. - Yalcin Aktar, Jul 14 2005
Equals Integral_{x=0..1} (log(x)/(x-1)) dx or Integral_{x>=1} (log(x/(x-1))/x) dx. - Jean-François Alcover, May 30 2013
For s >= 2 (including Complex), zeta(s) = Product_{n >= 1} prime(n)^s/(prime(n)^s - 1). - Fred Daniel Kline, Apr 10 2014
Also equals 1 + Sum_{n>=0} (-1)^n*StieltjesGamma(n)/n!. - Jean-François Alcover, May 07 2014
zeta(2) = Sum_{n>=1} ((floor(sqrt(n)) - floor(sqrt(n-1)))/n). - Mikael Aaltonen, Jan 10 2015
zeta(2) = Sum_{n>=1} (((sqrt(5)-1)/2/sqrt(5))^n/n^2) + Sum_{n>=1} (((sqrt(5)+1)/2/sqrt(5))^n/ n^2) + log((sqrt(5)-1)/2/sqrt(5))log((sqrt(5)+1)/2/sqrt(5)). - Seiichi Kirikami, Oct 14 2015
The above formula can also be written zeta(2) = dilog(x) + dilog(y) + log(x)*log(y) where x = (1-1/sqrt(5))/2 and y=(1+1/sqrt(5))/2. - Peter Luschny, Oct 16 2015
zeta(2) = Integral_{x>=0} 1/(1 + e^x^(1/2)) dx, because (1 - 1/2^(s-1))*Gamma[1 + s]*Zeta[s] = Integral_{x>=0} 1/(1 + e^x^(1/s)) dx. After Jean-François Alcover in A002162. - Mats Granvik, Sep 12 2016
zeta(2) = Product_{n >= 1} (144*n^4)/(144*n^4 - 40*n^2 + 1). - Fred Daniel Kline, Oct 29 2016
zeta(2) = lim_{n->oo} (1/n) * Sum_{k=1..n} A017665(k)/A017666(k). - Dimitri Papadopoulos, May 10 2019 [See the Walfisz reference, and a comment in A284648, citing also the Sándor et al. Handbook. - Wolfdieter Lang, Aug 22 2019]
Equals Sum_{k>=1} H(k)/(k*(k+1)), where H(k) = A001008(k)/A002805(k) is the k-th harmonic number. - Amiram Eldar, Aug 16 2020
Equals (8/3)*(1/2)!^4 = (8/3)*Gamma(3/2)^4. - Gary W. Adamson, Aug 17 2021
Equals ((m+1)/m) * Integral_{x=0..1} log(Sum {k=0..m} x^k )/x dx, m > 0 (Aubonnet reference). - _Bernard Schott, Feb 11 2022
Equals 1 + Sum_{n>=1} n*(zeta(n+2)-1). - Richard R. Forberg, Jun 04 2023; improved by Natalia L. Skirrow, Jul 25 2025
Equals Psi'(1) where Psi'(x) is the trigamma function (by Abramowitz Stegun 6.4.2). - Andrea Pinos, Oct 22 2024
Equals Integral_{x=0..1} Integral_{y=0..1} 1/(1 - x*y) dy dx. - Kritsada Moomuang, May 22 2025
Equals 1 + Sum_{n>=1} 1/(n^2*(n+1)). - Natalia L. Skirrow, Jul 25 2025

Extensions

Edited by N. J. A. Sloane, Nov 22 2023

A001008 a(n) = numerator of harmonic number H(n) = Sum_{i=1..n} 1/i.

Original entry on oeis.org

1, 3, 11, 25, 137, 49, 363, 761, 7129, 7381, 83711, 86021, 1145993, 1171733, 1195757, 2436559, 42142223, 14274301, 275295799, 55835135, 18858053, 19093197, 444316699, 1347822955, 34052522467, 34395742267, 312536252003, 315404588903, 9227046511387
Offset: 1

Views

Author

Keywords

Comments

H(n)/2 is the maximal distance that a stack of n cards can project beyond the edge of a table without toppling.
By Wolstenholme's theorem, p^2 divides a(p-1) for all primes p > 3.
From Alexander Adamchuk, Dec 11 2006: (Start)
p divides a(p^2-1) for all primes p > 3.
p divides a((p-1)/2) for primes p in A001220.
p divides a((p+1)/2) or a((p-3)/2) for primes p in A125854.
a(n) is prime for n in A056903. Corresponding primes are given by A067657. (End)
a(n+1) is the numerator of the polynomial A[1, n](1) where the polynomial A[genus 1, level n](m) is defined to be Sum_{d = 1..n - 1} m^(n - d)/d. (See the Mathematica procedure generating A[1, n](m) below.) - Artur Jasinski, Oct 16 2008
Better solutions to the card stacking problem have been found by M. Paterson and U. Zwick (see link). - Hugo Pfoertner, Jan 01 2012
a(n) = A213999(n, n-1). - Reinhard Zumkeller, Jul 03 2012
a(n) coincides with A175441(n) if and only if n is not from the sequence A256102. The quotient a(n) / A175441(n) for n in A256102 is given as corresponding entry of A256103. - Wolfdieter Lang, Apr 23 2015
For a very short proof that the Harmonic series diverges, see the Goldmakher link. - N. J. A. Sloane, Nov 09 2015
All terms are odd while corresponding denominators (A002805) are all even for n > 1 (proof in Pólya and Szegő). - Bernard Schott, Dec 24 2021

Examples

			H(n) = [ 1, 3/2, 11/6, 25/12, 137/60, 49/20, 363/140, 761/280, 7129/2520, ... ].
Coincidences with A175441: the first 19 entries coincide because 20 is the first entry of A256102. Indeed, a(20)/A175441(20) = 55835135 / 11167027 = 5 = A256103(1). - _Wolfdieter Lang_, Apr 23 2015
		

References

  • John H. Conway and Richard K. Guy, The Book of Numbers, New York: Springer-Verlag, 1996. See pp. 258-261.
  • H. W. Gould, Combinatorial Identities, Morgantown Printing and Binding Co., 1972, # 1.45, page 6, #3.122, page 36.
  • R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics. Addison-Wesley, Reading, MA, 1990, p. 259.
  • G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers. 3rd ed., Oxford Univ. Press, 1954, page 347.
  • D. E. Knuth, The Art of Computer Programming. Addison-Wesley, Reading, MA, Vol. 1, p. 615.
  • G. Pólya and G. Szegő, Problems and Theorems in Analysis, volume II, Springer, reprint of the 1976 edition, 1998, problem 251, p. 154.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A145609-A145640. - Artur Jasinski, Oct 16 2008
Cf. A003506. - Paul Curtz, Nov 30 2013
The following fractions are all related to each other: Sum 1/n: A001008/A002805, Sum 1/prime(n): A024451/A002110 and A106830/A034386, Sum 1/nonprime(n): A282511/A282512, Sum 1/composite(n): A250133/A296358.
Cf. A195505.

Programs

  • GAP
    List([1..30],n->NumeratorRat(Sum([1..n],i->1/i))); # Muniru A Asiru, Dec 20 2018
  • Haskell
    import Data.Ratio ((%), numerator)
    a001008 = numerator . sum . map (1 %) . enumFromTo 1
    a001008_list = map numerator $ scanl1 (+) $ map (1 %) [1..]
    -- Reinhard Zumkeller, Jul 03 2012
    
  • Magma
    [Numerator(HarmonicNumber(n)): n in [1..30]]; // Bruno Berselli, Feb 17 2016
    
  • Maple
    A001008 := proc(n)
        add(1/k,k=1..n) ;
        numer(%) ;
    end proc:
    seq( A001008(n),n=1..40) ; # Zerinvary Lajos, Mar 28 2007; R. J. Mathar, Dec 02 2016
  • Mathematica
    Table[Numerator[HarmonicNumber[n]], {n, 30}]
    (* Procedure generating A[1,n](m) (see Comments section) *) m =1; aa = {}; Do[k = 0; Do[k = k + m^(r - d)/d, {d, 1, r - 1}]; AppendTo[aa, k], {r, 1, 20}]; aa (* Artur Jasinski, Oct 16 2008 *)
    Numerator[Accumulate[1/Range[25]]] (* Alonso del Arte, Nov 21 2018 *)
    Numerator[Table[((n - 1)/2)*HypergeometricPFQ[{1, 1, 2 - n}, {2, 3}, 1] + 1, {n, 1, 29}]] (* Artur Jasinski, Jan 08 2021 *)
  • PARI
    A001008(n) = numerator(sum(i=1,n,1/i)) \\ Michael B. Porter, Dec 08 2009
    
  • PARI
    H1008=List(1); A001008(n)={for(k=#H1008,n-1,listput(H1008,H1008[k]+1/(k+1))); numerator(H1008[n])} \\ about 100x faster for n=1..1500. - M. F. Hasler, Jul 03 2019
    
  • Python
    from sympy import Integer
    [sum(1/Integer(i) for i in range(1, n + 1)).numerator() for n in range(1, 31)]  # Indranil Ghosh, Mar 23 2017
    
  • Sage
    def harmonic(a, b):  # See the F. Johansson link.
        if b - a == 1:
            return 1, a
        m = (a+b)//2
        p, q = harmonic(a,m)
        r, s = harmonic(m,b)
        return p*s+q*r, q*s
    def A001008(n): H = harmonic(1,n+1); return numerator(H[0]/H[1])
    [A001008(n) for n in (1..29)] # Peter Luschny, Sep 01 2012
    

Formula

H(n) ~ log n + gamma + O(1/n). [See Hardy and Wright, Th. 422.]
log n + gamma - 1/n < H(n) < log n + gamma + 1/n [follows easily from Hardy and Wright, Th. 422]. - David Applegate and N. J. A. Sloane, Oct 14 2008
G.f. for H(n): log(1-x)/(x-1). - Benoit Cloitre, Jun 15 2003
H(n) = sqrt(Sum_{i = 1..n} Sum_{j = 1..n} 1/(i*j)). - Alexander Adamchuk, Oct 24 2004
a(n) is the numerator of Gamma/n + Psi(1 + n)/n = Gamma + Psi(n), where Psi is the digamma function. - Artur Jasinski, Nov 02 2008
H(n) = 3/2 + 2*Sum_{k = 0..n-3} binomial(k+2, 2)/((n-2-k)*(n-1)*n), n > 1. - Gary Detlefs, Aug 02 2011
H(n) = (-1)^(n-1)*(n+1)*n*Sum_{k = 0..n-1} k!*Stirling2(n-1, k) * Stirling1(n+k+1,n+1)/(n+k+1)!. - Vladimir Kruchinin, Feb 05 2013
H(n) = n*Sum_{k = 0..n-1} (-1)^k*binomial(n-1,k)/(k+1)^2. (Wenchang Chu) - Gary Detlefs, Apr 13 2013
H(n) = (1/2)*Sum_{k = 1..n} (-1)^(k-1)*binomial(n,k)*binomial(n+k, k)/k. (H. W. Gould) - Gary Detlefs, Apr 13 2013
E.g.f. for H(n) = a(n)/A002805(n): (gamma + log(x) - Ei(-x)) * exp(x), where gamma is the Euler-Mascheroni constant, and Ei(x) is the exponential integral. - Vladimir Reshetnikov, Apr 24 2013
H(n) = residue((psi(-s)+gamma)^2/2, {s, n}) where psi is the digamma function and gamma is the Euler-Mascheroni constant. - Jean-François Alcover, Feb 19 2014
H(n) = Sum_{m >= 1} n/(m^2 + n*m) = gamma + digamma(1+n), numerators and denominators. (see Mathworld link on Digamma). - Richard R. Forberg, Jan 18 2015
H(n) = (1/2) Sum_{j >= 1} Sum_{k = 1..n} ((1 - 2*k + 2*n)/((-1 + k + j*n)*(k + j*n))) + log(n) + 1/(2*n). - Dimitri Papadopoulos, Jan 13 2016
H(n) = (n!)^2*Sum_{k = 1..n} 1/(k*(n-k)!*(n+k)!). - Vladimir Kruchinin, Mar 31 2016
a(n) = Stirling1(n+1, 2) / gcd(Stirling1(n+1, 2), n!) = A000254(n) / gcd(A000254(n), n!). - Max Alekseyev, Mar 01 2018
From Peter Bala, Jan 31 2019: (Start)
H(n) = 1 + (1 + 1/2)*(n-1)/(n+1) + (1/2 + 1/3)*(n-1)*(n-2)/((n+1)*(n+2)) + (1/3 + 1/4)*(n-1)*(n-2)*(n-3)/((n+1)*(n+2)*(n+3)) + ... .
H(n)/n = 1 + (1/2^2 - 1)*(n-1)/(n+1) + (1/3^2 - 1/2^2)*(n-1)*(n-2)/((n+1)*(n+2)) + (1/4^2 - 1/3^2)*(n-1)*(n-2)*(n-3)/((n+1)*(n+2)*(n+3)) + ... .
For odd n >= 3, (1/2)*H((n-1)/2) = (n-1)/(n+1) + (1/2)*(n-1)*(n-3)/((n+1)*(n+3)) + 1/3*(n-1)*(n-3)*(n-5)/((n+1)*(n+3)*(n+5)) + ... . Cf. A195505. See the Bala link in A036970. (End)
H(n) = ((n-1)/2) * hypergeom([1,1,2-n], [2,3], 1) + 1. - Artur Jasinski, Jan 08 2021
Conjecture: for nonzero m, H(n) = (1/m)*Sum_{k = 1..n} ((-1)^(k+1)/k) * binomial(m*k,k)*binomial(n+(m-1)*k,n-k). The case m = 1 is well-known; the case m = 2 is given above by Detlefs (dated Apr 13 2013). - Peter Bala, Mar 04 2022
a(n) = the (reduced) numerator of the continued fraction 1/(1 - 1^2/(3 - 2^2/(5 - 3^2/(7 - ... - (n-1)^2/(2*n-1))))). - Peter Bala, Feb 18 2024
H(n) = Sum_{k=1..n} (-1)^(k-1)*binomial(n,k)/k (H. W. Gould). - Gary Detlefs, May 28 2024

Extensions

Edited by Max Alekseyev, Oct 21 2011
Changed title, deleting the incorrect name "Wolstenholme numbers" which conflicted with the definition of the latter in both Weisstein's World of Mathematics and in Wikipedia, as well as with OEIS A007406. - Stanislav Sykora, Mar 25 2016

A002805 Denominators of harmonic numbers H(n) = Sum_{i=1..n} 1/i.

Original entry on oeis.org

1, 2, 6, 12, 60, 20, 140, 280, 2520, 2520, 27720, 27720, 360360, 360360, 360360, 720720, 12252240, 4084080, 77597520, 15519504, 5173168, 5173168, 118982864, 356948592, 8923714800, 8923714800, 80313433200, 80313433200, 2329089562800, 2329089562800, 72201776446800
Offset: 1

Views

Author

Keywords

Comments

H(n)/2 is the maximal distance that a stack of n cards can project beyond the edge of a table without toppling.
If n is not in {1, 2, 6} then a(n) has at least one prime factor other than 2 or 5. E.g., a(5) = 60 has a prime factor 3 and a(7) = 140 has a prime factor 7. This implies that every H(n) = A001008(n)/A002805(n), n not from {1, 2, 6}, has an infinite decimal representation. For a proof see the J. Havil reference. - Wolfdieter Lang, Jun 29 2007
a(n) = A213999(n,n-1). - Reinhard Zumkeller, Jul 03 2012
From Wolfdieter Lang, Apr 16 2015: (Start)
a(n)/A001008(n) = 1/H(n) is the solution of the following version of the classical cistern and pipes problem. A cistern is connected to n different pipes of water. For the k-th pipe it takes k time units (say, days) to fill the empty cistern, for k = 1, 2, ..., n. How long does it take for the n pipes together to fill the empty cistern? 1/H(n) gives the answer as a fraction of the time unit.
In general, if the k-th pipe needs d(k) days to fill the empty cistern then all pipes together need 1/Sum_{k=1..n} 1/d(k) = HM(d(1), ..., d(n))/n days, where HM denotes the harmonic mean HM. For the described problem, HM(1, 2, ..., n)/n = A102928(n)/(n*A175441(n)) = 1/H(n).
For a classical cistern and pipes problem see, e.g., the Hunger-Vogel reference (in Greek and German) given in A256101, problem 27, p. 29, where n = 3, and d(1), d(2) and d(3) are 6, 4 and 3 days. On p. 97 of this reference one finds remarks on the history of such problems (called in German 'Brunnenaufgabe'). (End)
From Wolfdieter Lang, Apr 17 2015: (Start)
An example of the above mentioned cistern and pipes problems appears in Chiu Chang Suan Shu (nine books on arithmetic) in book VI, problem 26. The numbers are there 1/2, 1, 5/2, 3 and 5 (days) and the result is 15/75 (day). See the reference (in German) on p. 68.
A historical account on such cistern problems is found in the Johannes Tropfke reference, given in A256101, section 4.2.1.2 Zisternenprobleme (Leistungsprobleme), pp. 578-579.
In Fibonacci's Liber Abaci such problems appear on p. 281 and p. 284 of L. E. Sigler's translation. (End)
All terms > 1 are even while corresponding numerators (A001008) are all odd (proof in Pólya and Szegő). - Bernard Schott, Dec 24 2021

Examples

			H(n) = [ 1, 3/2, 11/6, 25/12, 137/60, 49/20, 363/140, 761/280, 7129/2520, ... ] = A001008/A002805.
		

References

  • Chiu Chang Suan Shu, Neun Bücher arithmetischer Technik, translated and commented by Kurt Vogel, Ostwalds Klassiker der exakten Wissenschaften, Band 4, Friedr. Vieweg & Sohn, Braunschweig, 1968, p. 68.
  • John H. Conway and Richard K. Guy, The Book of Numbers, New York: Springer-Verlag, 1996. See pp. 258-261.
  • R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics. Addison-Wesley, Reading, MA, 1990, p. 259.
  • J. Havil, Gamma, (in German), Springer, 2007, p. 35-6; Gamma: Exploring Euler's Constant, Princeton Univ. Press, 2003.
  • D. E. Knuth, The Art of Computer Programming. Addison-Wesley, Reading, MA, Vol. 1, p. 615.
  • G. Pólya and G. Szegő, Problems and Theorems in Analysis, volume II, Springer, reprint of the 1976 edition, 1998, problem 251, p. 154.
  • L. E. Sigler, Fibonacci's Liber Abaci, Springer, 2003, pp. 281, 284.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A001008 (numerators), A075135, A025529, A203810, A203811, A203812.
Partial sums: A027612/A027611 = 1, 5/2, 13/3, 77/12, 87/10, 223/20,...
The following fractions are all related to each other: Sum 1/n: A001008/A002805, Sum 1/prime(n): A024451/A002110 and A106830/A034386, Sum 1/nonprime(n): A282511/A282512, Sum 1/composite(n): A250133/A296358, Sum 1/n^2: A007406/A007407, Sum 1/n^3: A007408/A007409.

Programs

  • GAP
    List([1..30],n->DenominatorRat(Sum([1..n],i->1/i))); # Muniru A Asiru, Dec 20 2018
    
  • Haskell
    import Data.Ratio ((%), denominator)
    a002805 = denominator . sum . map (1 %) . enumFromTo 1
    a002805_list = map denominator $ scanl1 (+) $ map (1 %) [1..]
    -- Reinhard Zumkeller, Jul 03 2012
    
  • Magma
    [Denominator(HarmonicNumber(n)): n in [1..40]]; // Vincenzo Librandi, Apr 16 2015
    
  • Maple
    seq(denom(sum((2*k-1)/k, k=1..n), n=1..30); # Gary Detlefs, Jul 18 2011
    f:=n->denom(add(1/k, k=1..n)); # N. J. A. Sloane, Nov 15 2013
  • Mathematica
    Denominator[ Drop[ FoldList[ #1 + 1/#2 &, 0, Range[ 30 ] ], 1 ] ] (* Harvey P. Dale, Feb 09 2000 *)
    Table[Denominator[HarmonicNumber[n]], {n, 1, 40}] (* Stefan Steinerberger, Apr 20 2006 *)
    Denominator[Accumulate[1/Range[25]]] (* Alonso del Arte, Nov 21 2018 *)
  • PARI
    a(n)=denominator(sum(k=2,n,1/k)) \\ Charles R Greathouse IV, Feb 11 2011
    
  • Python
    from fractions import Fraction
    def a(n): return sum(Fraction(1, i) for i in range(1, n+1)).denominator
    print([a(n) for n in range(1, 30)]) # Michael S. Branicky, Dec 24 2021
  • Sage
    def harmonic(a, b): # See the F. Johansson link.
        if b - a == 1 : return 1, a
        m = (a+b)//2
        p, q = harmonic(a,m)
        r, s = harmonic(m,b)
        return p*s+q*r, q*s
    def A002805(n) : H = harmonic(1,n+1); return denominator(H[0]/H[1])
    [A002805(n) for n in (1..29)] # Peter Luschny, Sep 01 2012
    

Formula

a(n) = Denominator(Sum_{k=1..n} (2*k-1)/k). - Gary Detlefs, Jul 18 2011
a(n) = n! / gcd(Stirling1(n+1, 2), n!) = n! / gcd(A000254(n),n!). - Max Alekseyev, Mar 01 2018
a(n) = the (reduced) denominator of the continued fraction 1/(1 - 1^2/(3 - 2^2/(5 - 3^2/(7 - ... - (n-1)^2/(2*n-1))))). - Peter Bala, Feb 18 2024

Extensions

Definition edited by Daniel Forgues, May 19 2010
Showing 1-10 of 80 results. Next