cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 75 results. Next

A030067 The "Semi-Fibonacci sequence": a(1) = 1; a(n) = a(n/2) (n even); a(n) = a(n-1) + a(n-2) (n odd).

Original entry on oeis.org

1, 1, 2, 1, 3, 2, 5, 1, 6, 3, 9, 2, 11, 5, 16, 1, 17, 6, 23, 3, 26, 9, 35, 2, 37, 11, 48, 5, 53, 16, 69, 1, 70, 17, 87, 6, 93, 23, 116, 3, 119, 26, 145, 9, 154, 35, 189, 2, 191, 37, 228, 11, 239, 48, 287, 5, 292, 53, 345, 16, 361, 69, 430, 1, 431, 70, 501, 17, 518, 87, 605, 6, 611, 93
Offset: 1

Views

Author

Keywords

Comments

This is the "semi-Fibonacci sequence". The distinct numbers that appear are called "semi-Fibonacci numbers", and are given in A030068.
a(2n+1) >= a(2n-1) + 1 is monotonically increasing. a(2n)/n can be arbitrarily small, as a(2^n) = 1. There are probably an infinite number of primes in the sequence. - Jonathan Vos Post, Mar 28 2006
From Robert G. Wilson v, Jan 17 2014: (Start)
Positions where k occurs:
k: sequence
-:-----------------------------
1: A000079;
2: 3*A000079 = A007283;
3: 5*A000079 = A020714;
4: none in the first 10^6 terms;
5: 7*A000079 = A005009;
6: 9*A000079 = A005010;
7: none in the first 10^6 terms;
8: none in the first 10^6 terms;
9: 11*A000079 = A005015;
10: none in the first 10^6 terms;
11: 13*A000079 = A005029;
12: none in the first 10^6 terms;
(End)
Any integer N which occurs in this sequence first occurs as an odd-indexed term a(2k-1) = A030068(k-1), and thereafter at indices (2k-1)*2^j, j=1,2,3,... (Both of these statements follow immediately from the definition of even-indexed terms.) No N can occur a second time as an odd-indexed term: This follows from the definition of these terms, a(2n+1) = a(2n) + a(2n-1) = a(2n-1) + a(n), which shows that the subsequence of odd-indexed terms (A030068) is strictly increasing, and therefore equal to the range (or: set) of the semi-Fibonacci numbers. - M. F. Hasler, Mar 24 2017
The lines in the logarithmic scatterplot of the sequence corresponds to sets of indices with the same 2-adic valuation. - Rémy Sigrist, Nov 27 2017
Define the partition subsum polynomial of an integer partition m of n where m = (m_1, m_2, ...m_k) by ps(m,x) = Product_{i=1..k} (1+x^m_i). Expanding ps(m,x) gives 1+a_1 x+a_2 x^2+...+a_n x^n, where a_j is the number of ways to form the subsum j from the parts of m. Then the number of partitions m of n for which ps(m,x) has no repeated root is a(n). - George Beck, Nov 07 2018

Examples

			a(1) = 1 by definition.
a(2) = a(1) = 1.
a(3) = 1 + 1 = 2.
a(4) = a(2) = 1.
a(5) = 2 + 1 = 3.
a(6) = a(3) = 2.
a(7) = 3 + 2 = 5.
a(8) = a(4) = 1.
a(9) = 5 + 1 = 6.
a(10) = a(5) = 3.
		

Crossrefs

See A109671 for a variant.

Programs

  • Haskell
    import Data.List (transpose)
    a030067 n = a030067_list !! (n-1)
    a030067_list = concat $ transpose [scanl (+) 1 a030067_list, a030067_list]
    -- Reinhard Zumkeller, Jul 21 2013, Jul 07 2013
    
  • Maple
    f:=proc(n) option remember; if n=1 then RETURN(1) elif n mod 2 = 0 then RETURN(f(n/2)) else RETURN(f(n-1)+f(n-2)); fi; end;
  • Mathematica
    semiFibo[1] = 1; semiFibo[n_?EvenQ] := semiFibo[n] = semiFibo[n/2]; semiFibo[n_?OddQ] := semiFibo[n] = semiFibo[n - 1] + semiFibo[n - 2]; Table[semiFibo[n], {n, 80}] (* Jean-François Alcover, Aug 19 2013 *)
  • PARI
    a(n) = if(n==1, 1, if(n%2 == 0, a(n/2), a(n-1) + a(n-2)));
    vector(100, n, a(n)) \\ Altug Alkan, Oct 12 2015
    
  • Python
    a=[1]; [a.append(a[-2]+a[-1] if n%2 else a[n//2-1]) for n in range(2, 75)]
    print(a) # Michael S. Branicky, Jul 07 2022

Formula

Theorem: a(2n+1) - a(2n-1) = a(n). Proof: a(2n+1) - a(2n-1) = a(2n) + a(2n-1) - a(2n-2) - a(2n-3) = a(n) - a(n-1) + a(n-1) (induction) = a(n). - N. J. A. Sloane, May 02 2010
a(2^n - 1) = A129092(n) for n >= 1, where A129092 forms the row sums and column 0 of triangle A129100, which is defined by the nice property that column 0 of matrix power A129100^(2^k) = column k of A129100 for k > 0. - Paul D. Hanna, Dec 03 2008
G.f. g(x) satisfies (1-x^2) g(x) = (1+x-x^2) g(x^2) + x. - Robert Israel, Mar 23 2017

A095666 Pascal (1,4) triangle.

Original entry on oeis.org

4, 1, 4, 1, 5, 4, 1, 6, 9, 4, 1, 7, 15, 13, 4, 1, 8, 22, 28, 17, 4, 1, 9, 30, 50, 45, 21, 4, 1, 10, 39, 80, 95, 66, 25, 4, 1, 11, 49, 119, 175, 161, 91, 29, 4, 1, 12, 60, 168, 294, 336, 252, 120, 33, 4, 1, 13, 72, 228, 462, 630, 588, 372, 153, 37, 4, 1, 14, 85, 300, 690, 1092
Offset: 0

Views

Author

Wolfdieter Lang, Jun 11 2004

Keywords

Comments

This is the fourth member, q=4, in the family of (1,q) Pascal triangles: A007318 (Pascal (q=1)), A029635 (q=2) (but with a(0,0)=2, not 1), A095660 (q=3), A096940 (q=5), A096956 (q=6).
This is an example of a Riordan triangle (see A053121 for a comment and the 1991 Shapiro et al. reference on the Riordan group) with o.g.f. of column no. m of the type g(x)*(x*f(x))^m with f(0)=1. Therefore the o.g.f. for the row polynomials p(n,x) := Sum_{m=0..n} a(n,m)*x^m is G(z,x) = g(z)/(1 - x*z*f(z)). Here: g(x) = (4-3*x)/(1-x), f(x) = 1/(1-x), hence G(z,x) = (4-3*z)/(1-(1+x)*z).
The SW-NE diagonals give Sum_{k=0..ceiling((n-1)/2)} a(n-1-k, k) = A022095(n-2), n >= 2, with n=1 value 4. [Observation by Paul Barry, Apr 29 2004. Proof via recursion relations and comparison of inputs.]
T(2*n,n) = A029609(n) for n > 0, A029609 are the central terms of the Pascal (2,3) triangle A029600. - Reinhard Zumkeller, Apr 08 2012

Examples

			Triangle begins:
  [4];
  [1,4];
  [1,5,4];
  [1,6,9,4];
  [1,7,15,13,4];
  ...
		

Crossrefs

Row sums: A020714(n-1), n >= 1, 4 if n=0.
Alternating row sums are [4, -3, followed by 0's].
Column sequences (without leading zeros) give for m=1..9, with n >= 0: A000027(n+4), A055999(n+1), A060488(n+3), A095667-71, A095819.

Programs

  • Haskell
    a095666 n k = a095666_tabl !! n !! k
    a095666_row n = a095666_tabl !! n
    a095666_tabl = [4] : iterate
       (\row -> zipWith (+) ([0] ++ row) (row ++ [0])) [1,4]
    -- Reinhard Zumkeller, Apr 08 2012
  • Maple
    a(n,k):=(1+3*k/n)*binomial(n,k) # Mircea Merca, Apr 08 2012
  • Mathematica
    A095666[n_, k_] := If[n == k,  4, (3*k/n + 1)*Binomial[n, k]];
    Table[A095666[n, k], {n, 0, 12}, {k, 0, n}] (* Paolo Xausa, Apr 14 2025 *)

Formula

Recursion: a(n, m) = 0 if m > n, a(0, 0) = 4; a(n, 0) = 1 if n>=1; a(n, m) = a(n-1, m) + a(n-1, m-1).
G.f. column m (without leading zeros): (4-3*x)/(1-x)^(m+1), m >= 0.
a(n,k) = (1 + 3*k/n)*binomial(n,k). - Mircea Merca, Apr 08 2012

A093561 (4,1) Pascal triangle.

Original entry on oeis.org

1, 4, 1, 4, 5, 1, 4, 9, 6, 1, 4, 13, 15, 7, 1, 4, 17, 28, 22, 8, 1, 4, 21, 45, 50, 30, 9, 1, 4, 25, 66, 95, 80, 39, 10, 1, 4, 29, 91, 161, 175, 119, 49, 11, 1, 4, 33, 120, 252, 336, 294, 168, 60, 12, 1, 4, 37, 153, 372, 588, 630, 462, 228, 72, 13, 1, 4, 41, 190, 525, 960, 1218
Offset: 0

Views

Author

Wolfdieter Lang, Apr 22 2004

Keywords

Comments

The array F(4;n,m) gives in the columns m >= 1 the figurate numbers based on A016813, including the hexagonal numbers A000384 (see the W. Lang link).
This is the fourth member, d=4, in the family of triangles of figurate numbers, called (d,1) Pascal triangles: A007318 (Pascal), A029653 and A093560, for d=1..3.
This is an example of a Riordan triangle (see A093560 for a comment and A053121 for a comment and the 1991 Shapiro et al. reference on the Riordan group). Therefore the o.g.f. for the row polynomials p(n,x) = Sum_{m=0..n} a(n,m)*x^m is G(z,x) = (1+3*z)/(1-(1+x)*z).
The SW-NE diagonals give A000285(n-1) = Sum_{k=0..ceiling((n-1)/2)} a(n-1-k,k), n >= 1, with n=0 value 3. Observation by Paul Barry, Apr 29 2004. Proof via recursion relations and comparison of inputs.
For a closed-form formula for generalized Pascal's triangle see A228576. - Boris Putievskiy, Sep 09 2013
The n-th row polynomial is (4 + x)*(1 + x)^(n-1) for n >= 1. More generally, the n-th row polynomial of the Riordan array ( (1-a*x)/(1-b*x), x/(1-b*x) ) is (b - a + x)*(b + x)^(n-1) for n >= 1. - Peter Bala, Mar 02 2018

Examples

			Triangle begins
  [1];
  [4, 1];
  [4, 5, 1];
  [4, 9, 6, 1];
  ...
		

References

  • Kurt Hawlitschek, Johann Faulhaber 1580-1635, Veroeffentlichung der Stadtbibliothek Ulm, Band 18, Ulm, Germany, 1995, Ch. 2.1.4. Figurierte Zahlen.
  • Ivo Schneider, Johannes Faulhaber 1580-1635, Birkhäuser, Basel, Boston, Berlin, 1993, ch.5, pp. 109-122.

Crossrefs

Cf. Row sums: A020714(n-1), n>=1, 1 for n=0, alternating row sums are 1 for n=0, 3 for n=2 and 0 otherwise.
Columns m=1..9: A016813, A000384 (hexagonal), A002412, A002417, A034263, A051947, A050483, A052181, A055843.

Programs

  • Haskell
    a093561 n k = a093561_tabl !! n !! k
    a093561_row n = a093561_tabl !! n
    a093561_tabl = [1] : iterate
                   (\row -> zipWith (+) ([0] ++ row) (row ++ [0])) [4, 1]
    -- Reinhard Zumkeller, Aug 31 2014
    
  • Python
    from math import comb, isqrt
    def A093561(n): return comb(r:=(m:=isqrt(k:=n+1<<1))-(k<=m*(m+1)),a:=n-comb(r+1,2))*(r+3*(r-a))//r if n else 1 # Chai Wah Wu, Nov 12 2024

Formula

a(n, m) = F(4;n-m, m) for 0<= m <= n, otherwise 0, with F(4;0, 0)=1, F(4;n, 0)=4 if n>=1 and F(4;n, m) = (4*n+m)*binomial(n+m-1, m-1)/m if m>=1.
Recursion: a(n, m)=0 if m>n, a(0, 0)= 1; a(n, 0)=4 if n>=1; a(n, m)= a(n-1, m) + a(n-1, m-1).
G.f. row m (without leading zeros): (1+3*x)/(1-x)^(m+1), m>=0.
T(n, k) = C(n, k) + 3*C(n-1, k). - Philippe Deléham, Aug 28 2005
exp(x) * e.g.f. for row n = e.g.f. for diagonal n. For example, for n = 3 we have exp(x)*(4 + 9*x + 6*x^2/2! + x^3/3!) = 4 + 13*x + 28*x^2/2! + 50*x^3/3! + 80*x^4/4! + .... The same property holds more generally for Riordan arrays of the form ( f(x), x/(1 - x) ). - Peter Bala, Dec 22 2014

A094958 Numbers of the form 2^k or 5*2^k.

Original entry on oeis.org

1, 2, 4, 5, 8, 10, 16, 20, 32, 40, 64, 80, 128, 160, 256, 320, 512, 640, 1024, 1280, 2048, 2560, 4096, 5120, 8192, 10240, 16384, 20480, 32768, 40960, 65536, 81920, 131072, 163840, 262144, 327680, 524288, 655360, 1048576, 1310720, 2097152
Offset: 1

Views

Author

Ralf Stephan, Jun 01 2004

Keywords

Comments

The subset {a(1),...,a(2k)} together with a(2k+2) is the set of proper divisors of 5*2^k.
For a(n)>4: number of vertices of complete graphs that can be properly edge-colored in such a way that the edges can be partitioned into edge disjoint multicolored isomorphic spanning trees.
(Editor's note: The following 3 comments are equivalent.)
From Wouter Meeussen, Apr 10 2005: This appears to be the same sequence as "Numbers n such that n^2 is not the sum of three nonzero squares". Don Reble and Paul Pollack respond: Yes, that is correct.
Also numbers k such that k^2=a^2+b^2+c^2 has no solutions in the positive integers a, b and c. - Wouter Meeussen, Apr 20 2005
The only natural numbers which cannot be the lengths of an interior diagonal of a cuboid with natural edges. - Michael Somos, Mar 02 2004

References

  • Wacław Sierpiński, Pythagorean triangles, Dover Publications, Inc., Mineola, NY, 2003, p. 101, MR2002669.

Crossrefs

Union of A000079 and A020714.
Complement of A005767.

Programs

  • Mathematica
    With[{c=2^Range[0,30]},Union[Join[c,5c]]] (* Harvey P. Dale, Jul 15 2012 *)
  • Python
    def A094958(n): return 1<>1)+1 if n&1 else 5<<((n>>1)-2) # Chai Wah Wu, Feb 14 2025

Formula

a(1)=1, a(2)=2, a(3)=4, for n>=0, a(2n+3) = 4*2^n, a(2n+4) = 5*2^n.
Recurrence: for n>4, a(n) = 2a(n-2).
G.f.: x*(1+x)*(1+x+x^2)/(1-2x^2).
Sum_{n>=1} 1/a(n) = 12/5. - Amiram Eldar, Jan 21 2022

Extensions

Edited by T. D. Noe and M. F. Hasler, Nov 12 2010

A118416 Triangle read by rows: T(n,k) = (2*k-1)*2^(n-1), 0 < k <= n.

Original entry on oeis.org

1, 2, 6, 4, 12, 20, 8, 24, 40, 56, 16, 48, 80, 112, 144, 32, 96, 160, 224, 288, 352, 64, 192, 320, 448, 576, 704, 832, 128, 384, 640, 896, 1152, 1408, 1664, 1920, 256, 768, 1280, 1792, 2304, 2816, 3328, 3840, 4352, 512, 1536, 2560, 3584, 4608, 5632, 6656, 7680
Offset: 1

Views

Author

Reinhard Zumkeller, Apr 27 2006

Keywords

Comments

Row sums give A014477: Sum_{k=1..n} T(n,k) = A014477(n-1);
central terms give A118415; T(2*k-1,k) = A058962(k-1);
T(n,1) = A000079(n-1);
T(n,2) = A007283(n-1) for n > 1;
T(n,3) = A020714(n-1) for n > 2;
T(n,4) = A005009(n-1) for n > 3;
T(n,5) = A005010(n-1) for n > 4;
T(n,n-1) = A118417(n-1) for n > 1;
T(n,n) = A014480(n-1) = A118413(n,n);
A001511(T(n,k)) = A002024(n,k);
A003602(T(n,k)) = A002260(n,k).
The alternating row sums, Sum_{k=1..n} (-1)^(k+1)*T(n,k), are: (a) in odd rows, the central term, T(n,(n+1)/2) = A058962((n-1)/2); (b) in even rows, the negation of the average of the two central terms, -(T(2n,n) + T(2n,+1))/2 = -A018215(m/2). The absolute values of the alternating row sums give the plain row means, Sum_{k=1..n} T(n,k)/n; the alternating sign row means are (-2)^(n-1). - Gregory Gerard Wojnar, Feb 10 2024

Examples

			Triangle begins:
   1;
   2,   6;
   4,  12,  20;
   8,  24,  40,  56;
  16,  48,  80, 112, 144;
  32,  96, 160, 224, 288, 352;
  64, 192, 320, 448, 576, 704, 832;
		

Crossrefs

Programs

  • Haskell
    a118416 n k = a118416_tabl !! (n-1) !! (k-1)
    a118416_row 1 = [1]
    a118416_row n = (map (* 2) $ a118416_row (n-1)) ++ [a014480 (n-1)]
    a118416_tabl = map a118416_row [1..]
    -- Reinhard Zumkeller, Jan 22 2012
    
  • Maple
    A118416 := proc(n,k) 2^(n-1)*(2*k-1) ; end proc: # R. J. Mathar, Sep 04 2011
  • Mathematica
    Flatten[Table[(2k-1)2^(n-1),{n,10},{k,n}]] (* Harvey P. Dale, Aug 26 2014 *)
  • Python
    from math import isqrt
    def A118416(n): return (a:=(m:=isqrt(k:=n<<1))+(k>m*(m+1)))*(1-a)+(n<<1)-1<Chai Wah Wu, Jun 20 2025

Formula

T(n,k) = 2*T(n-1,k), 1 <= k < n; T(n,n) = A014480(n-1).

A070875 Binary expansion is 1x100...0 where x = 0 or 1.

Original entry on oeis.org

5, 7, 10, 14, 20, 28, 40, 56, 80, 112, 160, 224, 320, 448, 640, 896, 1280, 1792, 2560, 3584, 5120, 7168, 10240, 14336, 20480, 28672, 40960, 57344, 81920, 114688, 163840, 229376, 327680, 458752, 655360, 917504, 1310720, 1835008, 2621440
Offset: 0

Views

Author

N. J. A. Sloane, May 19 2002

Keywords

Comments

A 2-automatic sequence. - Charles R Greathouse IV, Sep 24 2012
Third row in array A228405. - Richard R. Forberg, Sep 06 2013
Conjecture: a(n) = -1 + positions of the ones in A309019(n+2) - A002487(n+2). - George Beck, Mar 26 2022
Consecutive integers for which the number of its proper nondivisors of the form 2^k (k > 0) is 2; proper nondivisors are defined in A173540 (5 has two such nondivisors: 2 and 4, 7 has 2 and 4, 10 has 4 and 8, 14 has 4 and 8, 20 has 8 and 16,...). - Lechoslaw Ratajczak, Dec 17 2024

Crossrefs

Programs

  • Magma
    [n le 2 select 2*n+3 else 2*Self(n-2): n in [1..39]]; // Bruno Berselli, Mar 01 2011
    
  • Mathematica
    Flatten@ NestList[ 2# &, {5, 7}, 19] (* Or *)
    CoefficientList[ Series[(5 + 7 x)/(1 - 2 x^2), {x, 0, 38}], x] (* Robert G. Wilson v, May 20 2002 *)
  • PARI
    a(n)=if(n%2,7,5)<<(n\2) \\ Charles R Greathouse IV, Sep 24 2012

Formula

A093873(a(n)) = 2. - Reinhard Zumkeller, Oct 13 2006
For n>1, a(n+1) = a(n) + A000010(a(n)). - Stefan Steinerberger, Dec 20 2007
From Bruno Berselli, Mar 01 2011: (Start)
G.f.: (5+7*x)/(1-2*x^2).
a(n) = (6-(-1)^n)*2^((2*n+(-1)^n-1)/4). Therefore: a(n) = 5*2^(n/2) for n even, otherwise a(n) = 7*2^((n-1)/2).
a(n) = 2*a(n-2) for n>1. (End)
a(n+1) = A063757(n) + 6. - Philippe Deléham, Apr 13 2013
a(n) = sqrt(2*a(n-1) - (-2)^(n-1)). - Richard R. Forberg, Sep 06 2013
a(n+3) = a(n+2)*a(n+1)/a(n). - Richard R. Forberg, Sep 06 2013
For n>1, a(n) = 2*phi(a(n)) + phi(phi(a(n))). - Ivan Neretin, Feb 28 2016
a(2n) = A020714(n), a(2n+1) = A005009(n); for n>0. - Yosu Yurramendi, Jun 01 2016
From Ilya Gutkovskiy, Jun 02 2016: (Start)
E.g.f.: 7*sinh(sqrt(2)*x)/sqrt(2) + 5*cosh(sqrt(2)*x).
a(n) = 2^((n-3)/2)*(5*sqrt(2)*(1 + (-1)^n) + 7*(1 - (-1)^n)). (End)
Sum_{n>=0} 1/a(n) = 24/35. - Amiram Eldar, Mar 28 2022

Extensions

Extended by Robert G. Wilson v, May 20 2002

A091629 Product of digits associated with A091628(n). Essentially the same as A007283.

Original entry on oeis.org

6, 12, 24, 48, 96, 192, 384, 768, 1536, 3072, 6144, 12288, 24576, 49152, 98304, 196608, 393216, 786432, 1572864, 3145728, 6291456, 12582912, 25165824, 50331648, 100663296, 201326592, 402653184, 805306368, 1610612736, 3221225472
Offset: 1

Views

Author

Enoch Haga, Jan 24 2004

Keywords

Comments

Sequence arising in Farideh Firoozbakht's solution to Prime Puzzle 251 - 23 is the only pointer prime (A089823) not containing digit "1".
The monotonic increasing value of successive product of digits strongly suggests that in successive n the digit 1 must be present.

Crossrefs

Sequences of the form (2*m+1)*2^n: A000079 (m=0), A007283 (m=1), A020714 (m=2), A005009 (m=3), A005010 (m=4), A005015 (m=5), A005029 (m=6), A110286 (m=7), A110287 (m=8), A110288 (m=9), A175805 (m=10), A248646 (m=11), A164161 (m=12), A175806 (m=13), A257548 (m=15).

Programs

Formula

a(n) = 3 * 2^n = product of digits of A091628(n).
From Philippe Deléham, Nov 23 2008: (Start)
a(n) = 6*2^(n-1).
a(n) = 2*a(n-1), with a(1) = 6.
G.f.: 6*x/(1-2*x). (End)
E.g.f.: 3*(exp(2*x) - 1). - G. C. Greubel, Jan 05 2023

Extensions

Edited and extended by Ray Chandler, Feb 07 2004

A334101 Numbers of the form q*(2^k), where q is one of the Fermat primes and k >= 0; Numbers n for which A329697(n) == 1.

Original entry on oeis.org

3, 5, 6, 10, 12, 17, 20, 24, 34, 40, 48, 68, 80, 96, 136, 160, 192, 257, 272, 320, 384, 514, 544, 640, 768, 1028, 1088, 1280, 1536, 2056, 2176, 2560, 3072, 4112, 4352, 5120, 6144, 8224, 8704, 10240, 12288, 16448, 17408, 20480, 24576, 32896, 34816, 40960, 49152, 65537, 65792, 69632, 81920, 98304, 131074, 131584, 139264
Offset: 1

Views

Author

Antti Karttunen, Apr 14 2020

Keywords

Comments

Numbers k that themselves are not powers of two, but for which A171462(k) = k-A052126(k) is [a power of 2].
Numbers k such that A000265(k) is in A019434.
Squares of these numbers can be found (as a subset) in A334102, and the cubes (as a subset) in A334103.

Crossrefs

Row 1 of A334100.
Cf. A019434 (primes present), A007283, A020714, A110287 (other subsequences).
Subsequence of A018900.

Programs

Formula

For all n, A000120(a(n)) = 2.

A084215 Expansion of g.f.: (1+x^2)/(1-2*x).

Original entry on oeis.org

1, 2, 5, 10, 20, 40, 80, 160, 320, 640, 1280, 2560, 5120, 10240, 20480, 40960, 81920, 163840, 327680, 655360, 1310720, 2621440, 5242880, 10485760, 20971520, 41943040, 83886080, 167772160, 335544320, 671088640, 1342177280, 2684354560, 5368709120, 10737418240
Offset: 0

Views

Author

Paul Barry, May 19 2003

Keywords

Comments

Associated with a math magic problem.
Elements are the sums of consecutive pairs of elements of A084214.

Crossrefs

Programs

  • Magma
    m:=30; R:=PowerSeriesRing(Integers(), m); Coefficients(R!((1+x^2)/(1-2*x))); // G. C. Greubel, Oct 08 2018
  • Mathematica
    Join[{1, 2, a = 5}, Table[a = 2*a, {n,0,40}]] (* Vladimir Joseph Stephan Orlovsky, Jun 09 2011 *)
    Table[Int[2^(n-2)*5],{n,0,40}] (* Taher Jamshidi, Sep 15 2012 *)
    CoefficientList[Series[(1 + x^2)/(1 - 2 x), {x, 0, 30}], x] (* G. C. Greubel, Oct 08 2018 *)
  • PARI
    x='x+O('x^30); Vec((1+x^2)/(1-2*x)) \\ G. C. Greubel, Oct 08 2018
    

Formula

a(n) = Sum_{k=0..n} 2^(n-k)*binomial(1, k/2)*(1+(-1)^k)/2. - Paul Barry, Oct 15 2004
a(n) = A020714(n-2), n > 1. - R. J. Mathar, Dec 19 2008
From Gary W. Adamson, Aug 26 2011: (Start)
a(n) is the sum of top row terms of M^n, M is an infinite square production matrix as follows:
1, 1, 0, 0, 0, 0, ...
1, 1, 1, 0, 0, 0, ...
0, 0, 0, 0, 0, 0, ...
0, 0, 0, 0, 0, 0, ...
...
E.g.: a(4) = 20 = (8 + 8 + 4) since the top row of M^4 = (8, 8, 4, 0, 0, 0, ...). (End)
a(n) = floor(2^(n-2)*5). - Taher Jamshidi, Sep 15 2012
a(n) = 2*a(n-1) for n >= 3, a(0) = 1, a(1) = 2, a(2) = 5. - Philippe Deléham, Mar 13 2013
E.g.f.: (5*exp(2*x) - 2*x - 1)/4. - Stefano Spezia, Feb 20 2023

A257113 a(1) = 2, a(2) = 3; thereafter a(n) is the sum of all the previous terms.

Original entry on oeis.org

2, 3, 5, 10, 20, 40, 80, 160, 320, 640, 1280, 2560, 5120, 10240, 20480, 40960, 81920, 163840, 327680, 655360, 1310720, 2621440, 5242880, 10485760, 20971520, 41943040, 83886080, 167772160, 335544320, 671088640, 1342177280, 2684354560, 5368709120, 10737418240
Offset: 1

Views

Author

Giovanni Teofilatto, Apr 24 2015

Keywords

Comments

Except for first three terms, a(n) is 10 times 2^(n-4).
These values comprise the tile values used in the "fives" variant of the game 2048, including 1 as the zeroth term. - Michael De Vlieger, Jul 18 2018

Crossrefs

Cf. A000079, A020714. Essenitally the same as A084215.

Programs

Formula

a(n) = A020714(n-3) for n>2.
a(n) = A146523(n-2) for n>2. - R. J. Mathar, May 14 2015
G.f.: x*(1 - x)*(2 + x) / (1 - 2*x). - Colin Barker, Nov 17 2018
Previous Showing 11-20 of 75 results. Next