cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 93 results. Next

A001082 Generalized octagonal numbers: k*(3*k-2), k=0, +- 1, +- 2, +-3, ...

Original entry on oeis.org

0, 1, 5, 8, 16, 21, 33, 40, 56, 65, 85, 96, 120, 133, 161, 176, 208, 225, 261, 280, 320, 341, 385, 408, 456, 481, 533, 560, 616, 645, 705, 736, 800, 833, 901, 936, 1008, 1045, 1121, 1160, 1240, 1281, 1365, 1408, 1496, 1541, 1633, 1680, 1776, 1825, 1925, 1976
Offset: 1

Views

Author

Keywords

Comments

Numbers of the form 3*m^2+2*m, m an integer.
3*a(n) + 1 is a perfect square.
a(n) mod 10 belongs to a periodic sequence: 0, 1, 5, 8, 6, 1, 3, 0, 6, 5, 5, 6, 0, 3, 1, 6, 8, 5, 1, 0. - Mohamed Bouhamida, Sep 04 2009
A089801 is the characteristic function. - R. J. Mathar, Oct 07 2011
Exponents of powers of q in one form of the quintuple product identity. (-x^-2 + 1) * q^0 + (x^-3 - x) * q^1 + (-x^-5 + x^3) * q^5 + (x^-6 - x^4) * q^8 + ... = Sum_{n>=0} q^(3*n^2 + 2*n) * (x^(3*n) - x^(-3*n - 2)) = Product_{k>0} (1 - x * q^(2*k - 1)) * (1 - x^-1 * q^(2*k - 1)) * (1 - q^(2*k)) * (1 - x^2 * q^(4*k)) * (1 - x^-2 * q^(4*k - 4)). - Michael Somos, Dec 21 2011
The offset 0 would also be valid here, all other entries of generalized k-gonal numbers have offset 0 (see cross references). - Omar E. Pol, Jan 12 2013
Also, x values of the Diophantine equation x(x+3)+(x+1)(x+2) = (x+y)^2+(x-y)^2. - Bruno Berselli, Mar 29 2013
Numbers n such that Sum_{i=1..n} 2*i*(n-i)/n is an integer (the addend is the harmonic mean of i and n-i). - Wesley Ivan Hurt, Sep 14 2014
Equivalently, integers of the form m*(m+2)/3 (nonnegative values of m are listed in A032766). - Bruno Berselli, Jul 18 2016
Exponents of q in the expansion of Sum_{n >= 0} ( q^n * Product_{k = 1..n} (1 - q^(2*k-1)) ) = 1 + q - q^5 - q^8 + q^16 + q^21 - - + + .... - Peter Bala, Dec 03 2020
Exponents of q in the expansion of Product_{n >= 1} (1 - q^(6*n))*(1 + q^(6*n-1))*(1 + q^(6*n-5)) = 1 + q + q^5 + q^8 + q^16 + q^21 + .... - Peter Bala, Dec 09 2020
Exponents of q in the expansion of Product_{n >= 1} (1 - q^n)^2*(1 - q^(4*n))^2 /(1 - q^(2*n)) = 1 - 2*q + 4*q^5 - 5*q^8 + 7*q^16 - + ... (a consequence of the quintuple product identity). The series coefficients are a signed version of A001651. - Peter Bala, Feb 16 2021
From Peter Bala, Nov 26 2024: (Start)
Apart from the first two terms, the exponents of q in the expansion of Sum_{n >= 1} q^(3*n+2) * (Product_{k = 2..n} 1 - q^(2*k-1)) = q^5 + q^8 - q^16 - q^21 + + - - ... (in Andrews, equation 8, replace q with q^2 and set x = q).
Exponents of q^2 in the expansion of Sum_{n >= 0} q^n / (Product_{k = 1..n+1 } 1 + q^(2*k-1)) = 1 + (q^2)^1 - (q^2)^5 - (q^2)^8 + (q^2)^16 + (q^2)^21 - - + + ... (Chen, equation 22). (End)

Examples

			For the ninth comment: 65 is in the sequence because 65 = 13*(13+2)/3 or also 65 = -15*(-15+2)/3. - _Bruno Berselli_, Jul 18 2016
		

Crossrefs

Partial sums of A022998.
Column 4 of A195152. A045944.
Sequences of generalized k-gonal numbers: A001318 (k=5), A000217 (k=6), A085787 (k=7), this sequence (k=8), A118277 (k=9), A074377 (k=10), A195160 (k=11), A195162 (k=12), A195313 (k=13), A195818 (k=14), A277082 (k=15), A274978 (k=16), A303305 (k=17), A274979 (k=18), A303813 (k=19), A218864 (k=20), A303298 (k=21), A303299 (k=22), A303303 (k=23), A303814 (k=24), A303304 (k=25), A316724 (k=26), A316725 (k=27), A303812 (k=28), A303815 (k=29), A316729 (k=30).
Cf. sequences of the form m*(m+k)/(k+1) listed in A274978. [Bruno Berselli, Jul 25 2016]

Programs

  • Haskell
    a001082 n = a001082_list !! n
    a001082_list = scanl (+) 0 $ tail a022998_list
    -- Reinhard Zumkeller, Mar 31 2012
    
  • Magma
    [n^2 - n - Floor(n/2)^2 : n in [1..50]]; // Wesley Ivan Hurt, Sep 14 2014
  • Maple
    seq(n*(n-1)-floor(n/2)^2, n=1..51); # Gary Detlefs, Feb 23 2010
  • Mathematica
    Table[If[EvenQ[n], n*(3*n-4)/4, (n-1) (3*n+1)/4], {n, 100}]
    LinearRecurrence[{1,2,-2,-1,1},{0,1,5,8,16},60] (* Harvey P. Dale, Feb 03 2024 *)
  • PARI
    {a(n) = if( n%2, (n-1) * (3*n + 1) / 4, n * (3*n - 4) / 4)};
    

Formula

a(n) = n*(3*n-4)/4 if n even, (n-1)*(3*n+1)/4 if n odd.
a(n) = n^2 - n - floor(n/2)^2.
G.f.: Sum_{n>=0} (-1)^n*[x^(a(2n+1)) + x^(a(2n+2))] = 1/1 - (x-x^2)/1 - (x^2-x^4)/1 - (x^3-x^6)/1 - ... - (x^k - x^(2k))/1 - ... (continued fraction where k=1..inf). - Paul D. Hanna, Aug 16 2002
a(n+1) = ceiling(n/2)^2 + A046092(floor(n/2)).
a(2n) = n(3n-2) = A000567(n), a(2n+1) = n(3n+2) = A045944(n). - Mohamed Bouhamida, Nov 06 2007
O.g.f.: -x^2*(x^2+4*x+1)/((x-1)^3*(1+x)^2). - R. J. Mathar, Apr 15 2008
a(n) = n^2+n-ceiling(n/2)^2 with offset 0 and a(0)=0. - Gary Detlefs, Feb 23 2010
a(n) = (6*n^2-6*n-1-(2*n-1)*(-1)^n)/8. - Luce ETIENNE, Dec 11 2014
E.g.f.: (3*x^2*exp(x) + x*exp(-x) - sinh(x))/4. - Ilya Gutkovskiy, Jul 15 2016
Sum_{n>=2} 1/a(n) = (9 + 2*sqrt(3)*Pi)/12. - Vaclav Kotesovec, Oct 05 2016
Sum_{n>=2} (-1)^n/a(n) = 3*log(3)/2 - 3/4. - Amiram Eldar, Feb 28 2022

Extensions

New sequence name from Matthew Vandermast, Apr 10 2003
Editorial changes by N. J. A. Sloane, Feb 03 2012
Edited by Omar E. Pol, Jun 09 2012

A195161 Multiples of 8 and odd numbers interleaved.

Original entry on oeis.org

0, 1, 8, 3, 16, 5, 24, 7, 32, 9, 40, 11, 48, 13, 56, 15, 64, 17, 72, 19, 80, 21, 88, 23, 96, 25, 104, 27, 112, 29, 120, 31, 128, 33, 136, 35, 144, 37, 152, 39, 160, 41, 168, 43, 176, 45, 184, 47, 192, 49, 200, 51, 208, 53, 216, 55, 224, 57, 232, 59
Offset: 0

Views

Author

Omar E. Pol, Sep 10 2011

Keywords

Comments

A008590 and A005408 interleaved. This is 8*n if n is even, n if n is odd, if n>=0.
Partial sums give the generalized 12-gonal (or dodecagonal) numbers A195162.
The moment generating function of p(x, m=2, n=1, mu=2) = 4*x*E(x, 2, 1), see A163931 and A274181, is given by M(a) = (- 4*log(1-a) - 4 * polylog(2, a))/a^2. The series expansion of M(a) leads to the sequence given above. - Johannes W. Meijer, Jul 03 2016
a(n) is also the length of the n-th line segment of the rectangular spiral whose vertices are the generalized 12-gonal numbers. - Omar E. Pol, Jul 27 2018

Crossrefs

Column 8 of A195151.
Sequences whose partial sums give the generalized n-gonal numbers, if n>=5: A026741, A001477, zero together with A080512, A022998, A195140, zero together with A165998, A195159, this sequence, A195312.
Cf. A144433.

Programs

  • Magma
    &cat[[8*n, 2*n+1]: n in [0..30]]; // Vincenzo Librandi, Sep 27 2011
    
  • Maple
    a := proc(n): (6*(-1)^n+10)*n/4 end: seq(a(n), n=0..59); # Johannes W. Meijer, Jul 03 2016
  • Mathematica
    With[{nn=30},Riffle[8*Range[0,nn],2*Range[0,nn]+1]] (* or *) LinearRecurrence[{0,2,0,-1},{0,1,8,3},60] (* Harvey P. Dale, Nov 24 2013 *)
  • PARI
    concat(0, Vec(x*(1+8*x+x^2)/((1-x)^2*(1+x)^2) + O(x^99))) \\ Altug Alkan, Jul 04 2016

Formula

a(2n) = 8n, a(2n+1) = 2n+1. [corrected by Omar E. Pol, Jul 26 2018]
a(n) = (6*(-1)^n+10)*n/4. - Vincenzo Librandi, Sep 27 2011
a(n) = 2*a(n-2)-a(n-4). G.f.: x*(1+8*x+x^2)/((1-x)^2*(1+x)^2). - Colin Barker, Aug 11 2012
From Ilya Gutkovskiy, Jul 03 2016: (Start)
a(m*2^k) = m*2^(k+2), k>0.
E.g.f.: x*(4*sinh(x) + cosh(x)).
Dirichlet g.f.: 2^(-s)*(2^s + 6)*zeta(s-1). (End)
Multiplicative with a(2^e) = 4*2^e, a(p^e) = p^e for odd prime p. - Andrew Howroyd, Jul 23 2018
a(n) = A144433(n-1) for n > 1. - Georg Fischer, Oct 14 2018

A140106 Number of noncongruent diagonals in a regular n-gon.

Original entry on oeis.org

0, 0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7, 8, 8, 9, 9, 10, 10, 11, 11, 12, 12, 13, 13, 14, 14, 15, 15, 16, 16, 17, 17, 18, 18, 19, 19, 20, 20, 21, 21, 22, 22, 23, 23, 24, 24, 25, 25, 26, 26, 27, 27, 28, 28, 29, 29, 30, 30, 31, 31, 32, 32, 33, 33, 34, 34, 35, 35, 36, 36, 37
Offset: 1

Views

Author

Andrew McFarland, Jun 03 2008

Keywords

Comments

Number of double-stars (diameter 3 trees) with n nodes. For n >= 3, number of partitions of n-2 into two parts. - Washington Bomfim, Feb 12 2011
Number of roots of the n-th Bernoulli polynomial in the left half-plane. - Michel Lagneau, Nov 08 2012
From Gus Wiseman, Oct 17 2020: (Start)
Also the number of 3-part non-strict integer partitions of n - 1. The Heinz numbers of these partitions are given by A285508. The version for partitions of any length is A047967, with Heinz numbers A013929. The a(4) = 1 through a(15) = 6 partitions are (A = 10, B = 11, C = 12):
111 211 221 222 322 332 333 433 443 444 544 554
311 411 331 422 441 442 533 552 553 644
511 611 522 622 551 633 661 662
711 811 722 822 733 833
911 A11 922 A22
B11 C11
(End)

Examples

			The square (n=4) has two congruent diagonals; so a(4)=1. The regular pentagon also has congruent diagonals; so a(5)=1. Among all the diagonals in a regular hexagon, there are two noncongruent ones; hence a(6)=2, etc.
		

Crossrefs

A001399(n-3) = A069905(n) = A211540(n+2) counts 3-part partitions.
Essentially the same as A004526.

Programs

  • Magma
    A140106:= func< n | n eq 1 select 0 else Floor((n-2)/2) >;
    [A140106(n): n in [1..80]]; // G. C. Greubel, Feb 10 2023
    
  • Maple
    with(numtheory): for n from 1 to 80 do:it:=0:
    y:=[fsolve(bernoulli(n,x) , x, complex)] : for m from 1 to nops(y) do : if Re(y[m])<0 then it:=it+1:else fi:od: printf(`%d, `,it):od:
  • Mathematica
    a[1]=0; a[n_?OddQ] := (n-3)/2; a[n_] := n/2-1; Array[a, 100] (* Jean-François Alcover, Nov 17 2015 *)
  • PARI
    a(n)=if(n>1,n\2-1,0) \\ Charles R Greathouse IV, Oct 16 2015
    
  • Python
    def A140106(n): return n-2>>1 if n>1 else 0 # Chai Wah Wu, Sep 18 2023
  • SageMath
    def A140106(n): return 0 if (n==1) else (n-2)//2
    [A140106(n) for n in range(1,81)] # G. C. Greubel, Feb 10 2023
    

Formula

a(n) = floor((n-2)/2), for n > 1, otherwise 0. - Washington Bomfim, Feb 12 2011
G.f.: x^4/(1-x-x^2+x^3). - Colin Barker, Jan 31 2012
a(n) = floor(A129194(n-1)/A022998(n)), for n > 1. - Paul Curtz, Jul 23 2017
a(n) = A001399(n-3) - A001399(n-6). Compare to A007997(n) = A001399(n-3) + A001399(n-6). - Gus Wiseman, Oct 17 2020

Extensions

More terms from Joseph Myers, Sep 05 2009

A145979 a(n) = (2*n + 4)/gcd(n,4).

Original entry on oeis.org

1, 6, 4, 10, 3, 14, 8, 18, 5, 22, 12, 26, 7, 30, 16, 34, 9, 38, 20, 42, 11, 46, 24, 50, 13, 54, 28, 58, 15, 62, 32, 66, 17, 70, 36, 74, 19, 78, 40, 82, 21, 86, 44, 90, 23, 94, 48, 98, 25, 102, 52, 106, 27, 110, 56, 114, 29, 118, 60, 122
Offset: 0

Views

Author

Paul Curtz, Oct 26 2008

Keywords

Comments

Previous name was: Square root of A061038(n+2).
a(n) = denominator(Sum_{k=1..n} 1/((k+1)*(k+2))), n > 0. This summation has a closed form of 1/2 - 1/(n+2) and numerator of A060819(n). - Gary Detlefs, Sep 16 2011
Prefixing this sequence with 2 makes it a shift of the involution b defined on positive integers by b(n) = n if 4|n, b(n) = 2n if n is odd, b(n) = n/2 if n mod 4 = 2. This sequence b, when n > 2, occurs as the number of congruent regular n-gons in various ways of making cycles of them by sticking them together along edges with constant rotation angle between the two stickings on any one n-gon. For example, it is well known that only the triangle, square and hexagon can make cycles going once around a common point. But allowing the n-gons to keep going any number of times around the common corner, they will eventually close up into a cycle for any n (since their corner interior angle is a rational multiple of Pi), and the number of n-gons in that cycle is b(n). - David Pasino, Nov 12 2017
Here is another example of b(n) in the behavior of regular polygons as said in the comment of Nov 12 2017. For integers n and k, both exceeding 2, consider congruent regular k-gon tiles arranged as a ring going once around a central region, each tile adjacent to two others by sharing an exact edge, such that, if possible for n and k, the centers of the k-gons are the vertices of a regular n-gon. Then for any given n, the numbers k for which this arrangement is possible are exactly the multiples of b(n). (In the cases where (n, k) is (3, 6) or (4, 4) or (6, 3), the central region is only a point.) - David Pasino, Feb 20 2018
The generating function of the rationals A060819(n)/a(n) = 1/2 - 1/(n+2), n >= 0, with A060819(0) = 0, mentioned in the comment on a sum by Gary Detlefs above is (1/2)*(1-hypergeom([1, 1], [3], -x/(1-x)))/(1-x) = (x*(2 - x) + 2*(1 - x)*log(1-x) )/(2*(1-x)*x^2). Thanks to him for leading me to Jolley's general remark (201) on p. 38 on such sums. - Wolfdieter Lang, Mar 08 2018
The above b(n) also relates rotoinversions (rotation + inversion through the origin) to rotoreflections (rotation + reflection in a plane normal to the rotation axis). An n-fold rotoinversion clockwise is the same as some number of b(n)-fold rotoreflections counterclockwise. The Schoenflies notation for point group symmetry common in chemistry describes improper rotations as rotoreflections, while the International (Hemann-Mauguin) notation favored in crystallography describes them as rotoinversions. - R. James Evans, Nov 06 2024

References

  • L. B. W. Jolley, Summation of Series, Second revised ed., Dover, 1961, p. 38, (201). For the sum given in the comment by Gary Detlefs.

Crossrefs

Programs

  • GAP
    List([1..70],n->(2*n+4)/Gcd(n,4)); # Muniru A Asiru, Apr 08 2018
  • Magma
    [(2*n+4)/GCD(n,4): n in [0..70]]; // Vincenzo Librandi, Jan 29 2016
    
  • Maple
    seq(denom(1/2-1/(n+2)), n=0..25); # Gary Detlefs, Sep 16 2011
  • Mathematica
    Table[(2*n + 4)/GCD[n, 4], {n, 0, 50}] (* G. C. Greubel, Jan 29 2016 *)
    LinearRecurrence[{0, 0, 0, 2, 0, 0, 0, -1}, {1, 6, 4, 10, 3, 14, 8, 18}, 70] (* Vincenzo Librandi, Jan 29 2016 *)
    CoefficientList[ Series[(-2x^7 + 2x^5 + x^4 + 10x^3 + 4x^2 + 6x + 1)/(x^4 - 1)^2, {x, 0, 60}], x] (* Robert G. Wilson v, Nov 25 2016 *)
  • PARI
    a(n) = (2*n + 4)/gcd(n,4); \\ Michel Marcus, Jan 29 2016
    
  • Sage
    a = lambda n: (2 + n) / (2 - (n % 2) / 2 - (n % 4 != 0))
    [a(n) for n in range(60)] # Peter Luschny, Jan 17 2015
    

Formula

a(2n) = A022998(n+1). a(2n+1) = A016825(n+1) = 2*A005408(n+1).
a(4n) = 2n+1 = A005408(n). a(4n+2) = A008586(n+1) = 4*A000027(n+1).
From R. J. Mathar, Dec 08 2008: (Start)
a(n) = 2*a(n-4) - a(n-8).
G.f.: (1 + 6x + 4x^2 + 10x^3 + x^4 + 2x^5 - 2x^7) / ((x-1)^2*(1+x)^2*(x^2+1)^2). (End)
a(n) = (n+2)*(11 - 5*(-1)^n - i^n - (-i)^n)/8, where i is the imaginary unit. - Bruno Berselli, Feb 25 2011
a(n) = A060819(n) + A060819(n+4). - Paul Curtz, Mar 13 2011
a(n) = (2*n + 4)/gcd(n,4). - Joerg Arndt, Jan 17 2015
E.g.f.: (1/4)*(2*(4*x+3)*cosh(x) + (3*x+16)*sinh(x) + x*sin(x) - 2*cos(x)). - G. C. Greubel, Jan 29 2016
a(n) = b(n+2), for b as in comment of Nov 12 2017. Same b is b(n) = (2n)/gcd(2n, n+2). - David Pasino, Feb 20 2018
Sum_{k=0..n} a(k) ~ (11/16) * n^2. - Amiram Eldar, Oct 09 2023

Extensions

Edited by R. J. Mathar, Dec 08 2008
New name from Joerg Arndt, Jan 17 2015

A195140 Multiples of 5 and odd numbers interleaved.

Original entry on oeis.org

0, 1, 5, 3, 10, 5, 15, 7, 20, 9, 25, 11, 30, 13, 35, 15, 40, 17, 45, 19, 50, 21, 55, 23, 60, 25, 65, 27, 70, 29, 75, 31, 80, 33, 85, 35, 90, 37, 95, 39, 100, 41, 105, 43, 110, 45, 115, 47, 120, 49, 125, 51, 130, 53, 135, 55, 140, 57, 145, 59, 150, 61, 155, 63
Offset: 0

Views

Author

Omar E. Pol, Sep 10 2011

Keywords

Comments

This is 5*n/2 if n is even, n if n is odd.
Partial sums give the generalized enneagonal numbers A118277.
a(n) is also the length of the n-th line segment of a rectangular spiral on the infinite square grid. The vertices of the spiral are the generalized enneagonal numbers. - Omar E. Pol, Jul 27 2018

Crossrefs

A008587 and A005408 interleaved.
Column 5 of A195151.
Cf. Sequences whose partial sums give the generalized n-gonal numbers, if n>=5: A026741, A001477, zero together with A080512, A022998, this sequence, zero together with A165998, A195159, A195161, A195312.

Programs

  • Magma
    &cat[[5*n,2*n+1]: n in [0..31]]; // Bruno Berselli, Sep 27 2011
    
  • Mathematica
    With[{nn=40},Riffle[5*Range[0,nn],Range[1,2nn+1,2]]] (* or *) LinearRecurrence[ {0,2,0,-1},{0,1,5,3},80] (* Harvey P. Dale, Dec 15 2014 *)
  • PARI
    a(n)=(7+3*(-1)^n)*n/4 \\ Charles R Greathouse IV, Oct 07 2015

Formula

a(2n) = 5n, a(2n+1) = 2n+1.
G.f.: x*(1+5*x+x^2) / ((x-1)^2*(x+1)^2). - Alois P. Heinz, Sep 26 2011
From Bruno Berselli, Sep 27 2011: (Start)
a(n) = (7+3*(-1)^n)*n/4.
a(n) = -a(-n) = a(n-2)*n/(n-2) = 2*a(n-2)-a(n-4).
a(n) + a(n-1) = A047336(n). (End)
Multiplicative with a(2^e) = 5*2^(e-1), a(p^e) = p^e for odd prime p. - Andrew Howroyd, Jul 23 2018
Dirichlet g.f.: zeta(s-1) * (1 + 3/2^s). - Amiram Eldar, Oct 25 2023

Extensions

Corrected and edited by Alois P. Heinz, Sep 25 2011

A195151 Square array read by antidiagonals upwards: T(n,k) = n*((k-2)*(-1)^n+k+2)/4, n >= 0, k >= 0.

Original entry on oeis.org

0, 1, 0, 0, 1, 0, 3, 1, 1, 0, 0, 3, 2, 1, 0, 5, 2, 3, 3, 1, 0, 0, 5, 4, 3, 4, 1, 0, 7, 3, 5, 6, 3, 5, 1, 0, 0, 7, 6, 5, 8, 3, 6, 1, 0, 9, 4, 7, 9, 5, 10, 3, 7, 1, 0, 0, 9, 8, 7, 12, 5, 12, 3, 8, 1, 0, 11, 5, 9, 12, 7, 15, 5, 14, 3, 9, 1, 0, 0, 11, 10, 9, 16, 7
Offset: 0

Views

Author

Omar E. Pol, Sep 14 2011

Keywords

Comments

Also square array T(n,k) read by antidiagonals in which column k lists the multiples of k and the odd numbers interleaved, n>=0, k>=0. Also square array T(n,k) read by antidiagonals in which if n is even then row n lists the multiples of (n/2), otherwise if n is odd then row n lists a constant sequence: the all n's sequence. Partial sums of the numbers of column k give the column k of A195152. Note that if k >= 1 then partial sums of the numbers of the column k give the generalized m-gonal numbers, where m = k + 4.
All columns are multiplicative. - Andrew Howroyd, Jul 23 2018

Examples

			Array begins:
.  0,   0,   0,   0,   0,   0,   0,   0,   0,   0,...
.  1,   1,   1,   1,   1,   1,   1,   1,   1,   1,...
.  0,   1,   2,   3,   4,   5,   6,   7,   8,   9,...
.  3,   3,   3,   3,   3,   3,   3,   3,   3,   3,...
.  0,   2,   4,   6,   8,  10,  12,  14,  16,  18,...
.  5,   5,   5,   5,   5,   5,   5,   5,   5,   5,...
.  0,   3,   6,   9,  12,  15,  18,  21,  24,  27,...
.  7,   7,   7,   7,   7,   7,   7,   7,   7,   7,...
.  0,   4,   8,  12,  16,  20,  24,  28,  32,  36,...
.  9,   9,   9,   9,   9,   9,   9,   9,   9,   9,...
.  0,   5,  10,  15,  20,  25,  30,  35,  40,  45,...
...
		

Crossrefs

Columns k: A026741 (k=1), A001477 (k=2), zero together with A080512 (k=3), A022998 (k=4), A195140 (k=5), zero together with A165998 (k=6), A195159 (k=7), A195161 (k=8), A195312 k=(9), A195817 (k=10), A317311 (k=11), A317312 (k=12), A317313 (k=13), A317314 k=(14), A317315 (k=15), A317316 (k=16), A317317 (k=17), A317318 (k=18), A317319 k=(19), A317320 (k=20), A317321 (k=21), A317322 (k=22), A317323 (k=23), A317324 k=(24), A317325 (k=25), A317326 (k=26).

Programs

A195159 Multiples of 7 and odd numbers interleaved.

Original entry on oeis.org

0, 1, 7, 3, 14, 5, 21, 7, 28, 9, 35, 11, 42, 13, 49, 15, 56, 17, 63, 19, 70, 21, 77, 23, 84, 25, 91, 27, 98, 29, 105, 31, 112, 33, 119, 35, 126, 37, 133, 39, 140, 41, 147, 43, 154, 45, 161, 47, 168, 49, 175, 51, 182, 53, 189, 55, 196, 57, 203, 59, 210, 61
Offset: 0

Views

Author

Omar E. Pol, Sep 10 2011

Keywords

Comments

This is 7*n if n is even, n if n is odd, if n>=0.
Partial sums give the generalized 11-gonal (or hendecagonal) numbers A195160.
a(n) is also the length of the n-th line segment of the rectangular spiral whose vertices are the generalized 11-gonal numbers. - Omar E. Pol, Jul 27 2018

Crossrefs

Cf. A008589 and A005408 interleaved.
Column k=7 of A195151.
Cf. Sequences whose partial sums give the generalized n-gonal numbers, if n>=5: A026741, A001477, zero together with A080512, A022998, A195140, zero together with A165998, this sequence, A195161.

Programs

Formula

a(2n) = 7n, a(2n+1) = 2n+1. [corrected by Omar E. Pol, Jul 26 2018]
From Bruno Berselli, Sep 14 2011: (Start)
G.f.: x*(1+7*x+x^2)/((1-x)^2*(1+x)^2).
a(n) = (5*(-1)^n+9)*n/4.
a(n) + a(n-1) = A056020(n). (End)
Multiplicative with a(2^e) = 7*2^(e-1), a(p^e) = p^e for odd prime p. - Andrew Howroyd, Jul 23 2018
Dirichlet g.f.: zeta(s-1) * (1 + 5/2^s). - Amiram Eldar, Oct 25 2023

A195312 Multiples of 9 and odd numbers interleaved.

Original entry on oeis.org

0, 1, 9, 3, 18, 5, 27, 7, 36, 9, 45, 11, 54, 13, 63, 15, 72, 17, 81, 19, 90, 21, 99, 23, 108, 25, 117, 27, 126, 29, 135, 31, 144, 33, 153, 35, 162, 37, 171, 39, 180, 41, 189, 43, 198, 45, 207, 47, 216, 49, 225, 51, 234, 53, 243, 55, 252, 57, 261, 59, 270, 61
Offset: 0

Views

Author

Omar E. Pol, Sep 14 2011

Keywords

Comments

Partial sums give the generalized 13-gonal (or tridecagonal) numbers A195313.
a(n) is also the length of the n-th line segment of a rectangular spiral on the infinite square grid. The vertices of the spiral are the generalized 13-gonal numbers. - Omar E. Pol, Jul 27 2018

Crossrefs

Column 9 of A195151.
Sequences whose partial sums give the generalized n-gonal numbers, if n>=5: A026741, A001477, zero together with A080512, A022998, A195140, zero together with A165998, A195159, A195161, this sequence.

Programs

  • Magma
    /* By definition */ &cat[[9*n,2*n+1]: n in [0..33]]; // Bruno Berselli, Sep 16 2011
    
  • Mathematica
    With[{nn=30},Riffle[9Range[0,nn],Range[1,2nn+1,2]]] (* Harvey P. Dale, Sep 24 2011 *)
  • PARI
    a(n)=(7*(-1)^n+11)*n/4 \\ Charles R Greathouse IV, Oct 07 2015

Formula

From Bruno Berselli, Sep 15 2011: (Start)
G.f.: x*(1+9*x+x^2)/((1-x)^2*(1+x)^2).
a(n) = (7*(-1)^n+11)*n/4.
a(n) + a(n-1) = A175885(n).
Sum_{i=0..n} a(i) = A195313(n). (End)
Multiplicative with a(2^e) = 9*2^(e-1), a(p^e) = p^e for odd prime p. - Andrew Howroyd, Jul 23 2018
Dirichlet g.f.: zeta(s-1) * (1 + 7/2^s). - Amiram Eldar, Oct 25 2023
E.g.f.: x*(cosh(x) + 9*sinh(x)/2). - Stefano Spezia, Jun 12 2025

A298028 Coordination sequence of Dual(3.6.3.6) tiling with respect to a trivalent node.

Original entry on oeis.org

1, 3, 12, 9, 24, 15, 36, 21, 48, 27, 60, 33, 72, 39, 84, 45, 96, 51, 108, 57, 120, 63, 132, 69, 144, 75, 156, 81, 168, 87, 180, 93, 192, 99, 204, 105, 216, 111, 228, 117, 240, 123, 252, 129, 264, 135, 276, 141, 288, 147, 300, 153, 312, 159, 324, 165, 336, 171, 348, 177, 360, 183, 372, 189, 384, 195
Offset: 0

Views

Author

N. J. A. Sloane, Jan 21 2018

Keywords

Comments

Also known as the kgd net.
This is one of the Laves tilings.

Crossrefs

Cf. A008579, A135556 (partial sums), A298026 (trivalent point).
If the initial 1 is changed to 0 we get A165988 (but we need both sequences, just as we have both A008574 and A008586).
List of coordination sequences for Laves tilings (or duals of uniform planar nets): [3,3,3,3,3.3] = A008486; [3.3.3.3.6] = A298014, A298015, A298016; [3.3.3.4.4] = A298022, A298024; [3.3.4.3.4] = A008574, A296368; [3.6.3.6] = A298026, A298028; [3.4.6.4] = A298029, A298031, A298033; [3.12.12] = A019557, A298035; [4.4.4.4] = A008574; [4.6.12] = A298036, A298038, A298040; [4.8.8] = A022144, A234275; [6.6.6] = A008458.

Programs

  • Maple
    f3:=proc(n) if n=0 then 1 elif (n mod 2) = 0 then 6*n else 3*n; fi; end;
    [seq(f3(n),n=0..80)];
  • Mathematica
    Join[{1}, LinearRecurrence[{0, 2, 0, -1}, {3, 12, 9, 24}, 80]] (* Jean-François Alcover, Mar 23 2020 *)

Formula

a(0)=1; a(2*k) = 12*k, a(2*k+1) = 6*k+3.
G.f.: 1 + 3*x*(x^2+4*x+1)/(1-x^2)^2. - Robert Israel, Jan 21 2018
a(n) = 3*A022998(n), n>0. - R. J. Mathar, Jan 29 2018

A195817 Multiples of 10 and odd numbers interleaved.

Original entry on oeis.org

0, 1, 10, 3, 20, 5, 30, 7, 40, 9, 50, 11, 60, 13, 70, 15, 80, 17, 90, 19, 100, 21, 110, 23, 120, 25, 130, 27, 140, 29, 150, 31, 160, 33, 170, 35, 180, 37, 190, 39, 200, 41, 210, 43, 220, 45, 230, 47, 240, 49, 250, 51, 260, 53, 270, 55, 280, 57, 290, 59, 300
Offset: 0

Views

Author

Omar E. Pol, Sep 29 2011

Keywords

Comments

A008592 and A005408 interleaved.
Partial sums give the generalized 14-gonal (or tetradecagonal) numbers A195818.
a(n) is also the length of the n-th line segment of a rectangular spiral on the infinite square grid. The vertices of the spiral are the generalized 14-gonal numbers. - Omar E. Pol, Jul 27 2018

Crossrefs

Column 10 of A195151.
Sequences whose partial sums give the generalized n-gonal numbers, if n>=5: A026741, A001477, zero together with A080512, A022998, A195140, zero together with A165998, A195159, A195161, A195312, this sequence.

Programs

  • Magma
    [(2*(-1)^n+3)*n: n in [0..60]]; // Vincenzo Librandi, Sep 30 2011
    
  • Mathematica
    With[{nn=30},Riffle[10*Range[0,nn],Range[1,2*nn+1,2]]] (* or *) LinearRecurrence[{0,2,0,-1},{0,1,10,3},70] (* Harvey P. Dale, Nov 24 2013 *)
  • PARI
    a(n) = (2*(-1)^n+3)*n; \\ Andrew Howroyd, Jul 23 2018

Formula

a(n) = (2*(-1)^n+3)*n. - Vincenzo Librandi, Sep 30 2011
From Bruno Berselli, Sep 30 2011: (Start)
G.f.: x*(1+10*x+x^2)/((1-x)^2*(1+x)^2).
a(n) = -a(-n) = a(n-2)*n/(n-2) = 2*a(n-2)-a(n-4).
a(n) * a(n+1) = a(n(n+1)).
a(n) + a(n+1) = A091998(n+1). (End)
a(0)=0, a(1)=1, a(2)=10, a(3)=3, a(n)=2*a(n-2)-a(n-4). - Harvey P. Dale, Nov 24 2013
Multiplicative with a(2^e) = 5*2^e, a(p^e) = p^e for odd prime p. - Andrew Howroyd, Jul 23 2018
Dirichlet g.f.: zeta(s-1) * (1 + 2^(3-s)). - Amiram Eldar, Oct 25 2023
Previous Showing 11-20 of 93 results. Next