cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 32 results. Next

A157014 Expansion of x*(1-x)/(1 - 22*x + x^2).

Original entry on oeis.org

1, 21, 461, 10121, 222201, 4878301, 107100421, 2351330961, 51622180721, 1133336644901, 24881784007101, 546265911511321, 11992968269241961, 263299036011811821, 5780585823990618101, 126909589091781786401, 2786230374195208682721, 61170158643202809233461
Offset: 1

Views

Author

Paul Weisenhorn, Feb 21 2009

Keywords

Comments

This sequence is part of a solution of a general problem involving 2 equations, three sequences a(n), b(n), c(n) and a constant A:
A * c(n)+1 = a(n)^2,
(A+1) * c(n)+1 = b(n)^2, where solutions are given by the recurrences:
a(1) = 1, a(2) = 4*A+1, a(n) = (4*A+2)*a(n-1)-a(n-2) for n>2, resulting in a(n) terms 1, 4*A+1, 16*A^2+12*A+1, 64*A^3+80*A^2+24*A+1, ...;
b(1) = 1, b(2) = 4*A+3, b(n) = (4*A+2)*b(n-1)-b(n-2) for n>2, resulting in b(n) terms 1, 4*A+3, 16*A^2+20*A+5, 64*A^3+112*A^2+56*A+7, ...;
c(1) = 0, c(2) = 16*A+8, c(3) = (16*A^2+16*A+3)*c(2), c(n) = (16*A^2+16*A+3) * (c(n-1)-c(n-2)) + c(n-3) for n>3, resulting in c(n) terms 0, 16*A+8, 256*A^3+384*A^2+176*A+24, 4096*A^5 + 10240*A^4 + 9472*A^3 + 3968*A^2 + 736*A + 48, ... .
A157014 is the a(n) sequence for A=5.
For other A values the a(n), b(n) and c(n) sequences are in the OEIS:
A a-sequence b-sequence c-sequence
2 A072256 A054320(n-1) A045502(n-1)
9 A097315(n-1) A097314(n-1) A157881
Positive values of x (or y) satisfying x^2 - 22xy + y^2 + 20 = 0. - Colin Barker, Feb 19 2014
From Klaus Purath, Apr 22 2025: (Start)
Nonnegative solutions to the Diophantine equation 5*b(n)^2 - 6*a(n)^2 = -1. The corresponding b(n) are A133283(n). Note that (b(n+1)^2 - b(n)*b(n+2))/4 = 6 and (a(n)*a(n+2) - a(n+1)^2)/4 = 5.
(a(n) + b(n))/2 = (b(n+1) - a(n+1))/2 = A077421(n-1) = Lucas U(22,1). Also b(n)*a(n+1) - b(n+1)*a(n) = -2.
a(n)=(t(i+2*n-1) + t(i))/(t(i+n) + t(i+n-1)) as long as t(i+n) + t(i+n-1) != 0 for any integer i and n >= 1 where (t) is a sequence satisfying t(i+3) = 21*t(i+2) - 21*t(i+1) + t(i) or t(i+2) = 22*t(i+1) - t(i) without regard to initial values and including this sequence itself. (End)

Crossrefs

Cf. similar sequences listed in A238379.

Programs

  • GAP
    a:=[1,21];; for n in [3..20] do a[n]:=22*a[n-1]-a[n-2]; od; a; # G. C. Greubel, Jan 14 2020
  • Magma
    I:=[1,21]; [n le 2 select I[n] else 22*Self(n-1)-Self(n-2): n in [1..20]]; // Vincenzo Librandi, Feb 21 2014
    
  • Maple
    seq( simplify(ChebyshevU(n-1,11) - ChebyshevU(n-2,11)), n=1..20); # G. C. Greubel, Jan 14 2020
  • Mathematica
    CoefficientList[Series[(1-x)/(1-22x+x^2), {x,0,20}], x] (* Vincenzo Librandi, Feb 21 2014 *)
    a[c_, n_] := Module[{},
       p := Length[ContinuedFraction[ Sqrt[ c]][[2]]];
       d := Denominator[Convergents[Sqrt[c], n p]];
       t := Table[d[[1 + i]], {i, 0, Length[d] - 1, p}];
       Return[t];
    ] (* Complement of A041049 *)
    a[30, 20] (* Gerry Martens, Jun 07 2015 *)
    Table[ChebyshevU[n-1, 11] - ChebyshevU[n-2, 11], {n,20}] (* G. C. Greubel, Jan 14 2020 *)
  • PARI
    Vec((1-x)/(1-22*x+x^2)+O(x^20)) \\ Charles R Greathouse IV, Sep 23 2012
    
  • Sage
    [chebyshev_U(n-1,11) - chebyshev_U(n-2,11) for n in (1..20)] # G. C. Greubel, Jan 14 2020
    

Formula

G.f.: x*(1-x)/(1-22*x+x^2).
a(1) = 1, a(2) = 21, a(n) = 22*a(n-1) - a(n-2) for n>2.
5*A157460(n)+1 = a(n)^2 for n>=1.
6*A157460(n)+1 = A133283(n)^2 for n>=1.
a(n) = (6+sqrt(30)-(-6+sqrt(30))*(11+2*sqrt(30))^(2*n))/(12*(11+2*sqrt(30))^n). - Gerry Martens, Jun 07 2015
a(n) = ChebyshevU(n-1, 11) - ChebyshevU(n-2, 11). - G. C. Greubel, Jan 14 2020

Extensions

Edited by Alois P. Heinz, Sep 09 2011

A041006 Numerators of continued fraction convergents to sqrt(6).

Original entry on oeis.org

2, 5, 22, 49, 218, 485, 2158, 4801, 21362, 47525, 211462, 470449, 2093258, 4656965, 20721118, 46099201, 205117922, 456335045, 2030458102, 4517251249, 20099463098, 44716177445, 198964172878, 442644523201, 1969542265682, 4381729054565, 19496458483942
Offset: 0

Views

Author

Keywords

Comments

Interspersion of 2 sequences, 2*A054320 and A001079. - Gerry Martens, Jun 10 2015

Crossrefs

Cf. A041007 (denominators).
Analog for other sqrt(m): A001333 (m=2), A002531 (m=3), A001077 (m=5), A041008 (m=7), A041010 (m=8), A005667 (m=10), A041014 (m=11), ..., A042936 (m=1000).

Programs

  • Magma
    I:=[2, 5, 22, 49]; [n le 4 select I[n] else 10*Self(n-2)-Self(n-4): n in [1..30]]; // Vincenzo Librandi, Jun 10 2015
    
  • Mathematica
    Table[Numerator[FromContinuedFraction[ContinuedFraction[Sqrt[6],n]]],{n,1,50}] (* Vladimir Joseph Stephan Orlovsky, Mar 16 2011 *)
    LinearRecurrence[{0, 10, 0, -1}, {2, 5, 22, 49}, 50] (* Vincenzo Librandi, Jun 10 2015 *)
  • PARI
    A41006=contfracpnqn(c=contfrac(sqrt(6)), #c)[1, ][^-1] \\ Discard possibly incorrect last element. NB: a(n)=A41006[n+1]! M. F. Hasler, Nov 01 2019
    
  • PARI
    \\ For correct index & more terms:
    A041006(n)={n<#A041006|| A041006=extend(A041006, [2, 10; 4, -1], n\.8); A041006[n+1]}
    extend(A, c, N)={for(n=#A+1, #A=Vec(A, N), A[n]=[A[n-i]|i<-c[, 1]]*c[, 2]); A} \\ M. F. Hasler, Nov 01 2019

Formula

From M. F. Hasler, Feb 13 2009: (Start)
a(2n) = 2*A142238(2n) = A041038(2n)/2;
a(2n-1) = A142238(2n-1) = A041038(2n-1) = A001079(n). (End)
G.f.: (2 + 5*x + 2*x^2 - x^3)/(1 - 10*x^2 + x^4).
a(n) = ((2 + sqrt(6))^(n+1) + (2 - sqrt(6))^(n+1))/2^(ceiling(n/2) + 1). - Robert FERREOL, Oct 13 2024
E.g.f.: sqrt(2)*sinh(sqrt(2)*x)*(cosh(sqrt(3)*x) + sqrt(3)*sinh(sqrt(3)*x)) + cosh(sqrt(2)*x)*(2*cosh(sqrt(3)*x) + sqrt(3)*sinh(sqrt(3)*x)). - Stefano Spezia, Oct 14 2024

Extensions

More terms from Vincenzo Librandi, Jun 10 2015

A077289 Triangular numbers that are 1/6 of another triangular number.

Original entry on oeis.org

0, 1, 6, 105, 595, 10296, 58311, 1008910, 5713890, 98862891, 559902916, 9687554415, 54864771885, 949281469786, 5376187741821, 93019896484620, 526811533926580, 9115000574022981, 51622154137063026, 893177036357767525, 5058444293898249975, 87522234562487194476
Offset: 0

Views

Author

Bruce Corrigan (scentman(AT)myfamily.com), Nov 03 2002

Keywords

Comments

The triangular numbers multiplied by 6 are in A077290.

Examples

			b(3)=14 so a(3) = 14*15/2 = 105, etc.
		

Crossrefs

Programs

  • Maple
    f := gfun:-rectoproc({a(-2) = 1, a(-1) = 0, a(0) = 0, a(1) = 1, a(n) = 98*a(n-2)-a(n-4)+7}, a(n), remember); map(f, [`$`(0 .. 1000)])[]; # Vladimir Pletser, Feb 19 2021
  • Mathematica
    tr6Q[n_]:= IntegerQ[1/2 (Sqrt[1+48n]-1)]; Select[Accumulate[ Range[0,1380000]],tr6Q]  (* Harvey P. Dale, Apr 21 2011 *)
  • PARI
    T(n)=n*(n+1)\2;
    istriang(n)=issquare(8*n+1);
    for(n=0, 10^10, t=T(n); if ( t%6==0 && istriang(t\6), print1(t\6, ", ") ) );
    \\ Joerg Arndt, Jul 03 2013
    
  • PARI
    concat(0, Vec(-x*(x^2+5*x+1) / ((x-1)*(x^2-10*x+1)*(x^2+10*x+1)) + O(x^100))) \\ Colin Barker, May 15 2015

Formula

Let b(n) be A077288. Then a(n)=b(n)*(b(n)+1)/2.
G.f.: -x*(x^2+5*x+1) / ((x-1)*(x^2-10*x+1)*(x^2+10*x+1)). - Colin Barker, Jul 02 2013
a(n) = 98*a(n-2) - a(n-4) + 7. - Vladimir Pletser, Feb 19 2021
96*a(n) = 9*A072256(n+1) -2*(-1)^n*A054320(n) -7. - R. J. Mathar, Oct 01 2021

A160682 The list of the A values in the common solutions to 13*k+1 = A^2 and 17*k+1 = B^2.

Original entry on oeis.org

1, 14, 209, 3121, 46606, 695969, 10392929, 155197966, 2317576561, 34608450449, 516809180174, 7717529252161, 115246129602241, 1720974414781454, 25699370092119569, 383769576967012081, 5730844284413061646, 85578894689228912609, 1277952576054020627489
Offset: 1

Views

Author

Paul Weisenhorn, May 23 2009

Keywords

Comments

This summarizes the case C=13 of common solutions to C*k+1=A^2, (C+4)*k+1=B^2.
The 2 equations are equivalent to the Pell equation x^2-C*(C+4)*y^2=1,
with x=(C*(C+4)*k+C+2)/2; y=A*B/2 and with smallest values x(1) = (C+2)/2, y(1)=1/2.
Generic recurrences are:
A(j+2)=(C+2)*A(j+1)-A(j) with A(1)=1; A(2)=C+1.
B(j+2)=(C+2)*B(j+1)-B(j) with B(1)=1; B(2)=C+3.
k(j+3)=(C+1)*(C+3)*( k(j+2)-k(j+1) )+k(j) with k(1)=0; k(2)=C+2; k(3)=(C+1)*(C+2)*(C+3).
x(j+2)=(C^2+4*C+2)*x(j+1)-x(j) with x(1)=(C+2)/2; x(2)=(C^2+4*C+1)*(C+2)/2;
Binet-type of solutions of these 2nd order recurrences are:
R=C^2+4*C; S=C*sqrt(R); T=(C+2); U=sqrt(R); V=(C+4)*sqrt(R);
A(j)=((R+S)*(T+U)^(j-1)+(R-S)*(T-U)^(j-1))/(R*2^j);
B(j)=((R+V)*(T+U)^(j-1)+(R-V)*(T-U)^(j-1))/(R*2^j);
x(j)+sqrt(R)*y(j)=((T+U)*(C^2*4*C+2+(C+2)*sqrt(R))^(j-1))/2^j;
k(j)=(((T+U)*(R+2+T*U)^(j-1)+(T-U)*(R+2-T*U)^(j-1))/2^j-T)/R. [Paul Weisenhorn, May 24 2009]
.C -A----- -B----- -k-----
For n>=2, a(n) equals the permanent of the (2n-2)X(2n-2) tridiagonal matrix with sqrt(13)'s along the main diagonal, and 1's along the superdiagonal and the subdiagonal. [John M. Campbell, Jul 08 2011]
Positive values of x (or y) satisfying x^2 - 15xy + y^2 + 13 = 0. - Colin Barker, Feb 11 2014

Crossrefs

Cf. similar sequences listed in A238379.

Programs

  • Magma
    I:=[1,14]; [n le 2 select I[n] else 15*Self(n-1)-Self(n-2): n in [1..30]]; // Vincenzo Librandi, Feb 12 2014
    
  • Mathematica
    LinearRecurrence[{15,-1},{1,14},20] (* Harvey P. Dale, Oct 08 2012 *)
    CoefficientList[Series[(1 - x)/(1 - 15 x + x^2), {x, 0, 40}], x] (* Vincenzo Librandi, Feb 12 2014 *)
  • PARI
    a(n) = round((2^(-1-n)*((15-sqrt(221))^n*(13+sqrt(221))+(-13+sqrt(221))*(15+sqrt(221))^n))/sqrt(221)) \\ Colin Barker, Jul 25 2016

Formula

a(n) = 15*a(n-1)-a(n-2).
G.f.: (1-x)*x/(1-15*x+x^2).
a(n) = (2^(-1-n)*((15-sqrt(221))^n*(13+sqrt(221))+(-13+sqrt(221))*(15+sqrt(221))^n))/sqrt(221). - Colin Barker, Jul 25 2016

Extensions

Edited, extended by R. J. Mathar, Sep 02 2009
First formula corrected by Harvey P. Dale, Oct 08 2012

A129818 Riordan array (1/(1+x), x/(1+x)^2), inverse array is A039599.

Original entry on oeis.org

1, -1, 1, 1, -3, 1, -1, 6, -5, 1, 1, -10, 15, -7, 1, -1, 15, -35, 28, -9, 1, 1, -21, 70, -84, 45, -11, 1, -1, 28, -126, 210, -165, 66, -13, 1, 1, -36, 210, -462, 495, -286, 91, -15, 1, -1, 45, -330, 924, -1287, 1001, -455, 120, -17, 1, 1, -55, 495, -1716, 3003, -3003, 1820, -680, 153, -19, 1
Offset: 0

Views

Author

Philippe Deléham, Jun 09 2007

Keywords

Comments

This sequence is up to sign the same as A129818. - T. D. Noe, Sep 30 2011
Row sums: A057078. - Philippe Deléham, Jun 11 2007
Subtriangle of the triangle given by (0, -1, 0, -1, 0, 0, 0, 0, 0, 0, 0, ...) DELTA (1, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, ...) where DELTA is the operator defined in A084938. - Philippe Deléham, Mar 19 2012
This triangle provides the coefficients of powers of x^2 for the even-indexed Chebyshev S polynomials (see A049310): S(2*n,x) = Sum_{k=0..n} T(n,k)*x^(2*k), n >= 0. - Wolfdieter Lang, Dec 17 2012
If L(x^n) := C(n) = A000108(n) (Catalan numbers), then the polynomials P_n(x) := Sum_{k=0..n} T(n,k)*x^k are orthogonal with respect to the inner product given by (f(x),g(x)) := L(f(x)*g(x)). - Michael Somos, Jan 03 2019

Examples

			Triangle T(n,k) begins:
  n\k  0   1    2     3     4     5    6    7    8   9 10 ...
   0:  1
   1: -1   1
   2:  1  -3    1
   3: -1   6   -5     1
   4:  1 -10   15    -7     1
   5: -1  15  -35    28    -9     1
   6:  1 -21   70   -84    45   -11    1
   7: -1  28 -126   210  -165    66  -13    1
   8:  1 -36  210  -462   495  -286   91  -15    1
   9: -1  45 -330   924 -1287  1001 -455  120  -17   1
  10:  1 -55  495 -1716  3003 -3003 1820 -680  153 -19  1
  ... Reformatted by _Wolfdieter Lang_, Dec 17 2012
Recurrence from the A-sequence A115141:
15 = T(4,2) = 1*6 + (-2)*(-5) + (-1)*1.
(0, -1, 0, -1, 0, 0, ...) DELTA (1, 0, 1, -1, 0, 0, ...) begins:
  1
  0,  1
  0, -1,   1
  0,  1,  -3,   1
  0, -1,   6,  -5,  1
  0,  1, -10,  15, -7,  1
  0, -1,  15, -35, 28, -9, 1. - _Philippe Deléham_, Mar 19 2012
Row polynomial for n=3 in terms of x^2: S(6,x) = -1 + 6*x^2 -5*x^4 + 1*x^6, with Chebyshev's S polynomial. See a comment above. - _Wolfdieter Lang_, Dec 17 2012
Boas-Buck type recurrence: -35 = T(5,2) = (5/3)*(-1*1 +1*(-5) - 1*15) = -3*7 = -35. - _Wolfdieter Lang_, Jun 03 2020
		

Crossrefs

Programs

  • Maple
    # The function RiordanSquare is defined in A321620.
    RiordanSquare((1 - sqrt(1 - 4*x))/(2*x), 10):
    LinearAlgebra[MatrixInverse](%); # Peter Luschny, Jan 04 2019
  • Mathematica
    max = 10; Flatten[ CoefficientList[#, y] & /@ CoefficientList[ Series[ (1 + x)/(1 + (2 - y)*x + x^2), {x, 0, max}], x]] (* Jean-François Alcover, Sep 29 2011, after Wolfdieter Lang *)
  • Sage
    @CachedFunction
    def A129818(n,k):
        if n< 0: return 0
        if n==0: return 1 if k == 0 else 0
        h = A129818(n-1,k) if n==1 else 2*A129818(n-1,k)
        return A129818(n-1,k-1) - A129818(n-2,k) - h
    for n in (0..9): [A129818(n,k) for k in (0..n)] # Peter Luschny, Nov 20 2012

Formula

T(n,k) = (-1)^(n-k)*A085478(n,k) = (-1)^(n-k)*binomial(n+k,2*k).
Sum_{k=0..n} T(n,k)*A000531(k) = n^2, with A000531(0)=0. - Philippe Deléham, Jun 11 2007
Sum_{k=0..n} T(n,k)*x^k = A033999(n), A057078(n), A057077(n), A057079(n), A005408(n), A002878(n), A001834(n), A030221(n), A002315(n), A033890(n), A057080(n), A057081(n), A054320(n), A097783(n), A077416(n), A126866(n), A028230(n+1) for x = 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16, respectively. - Philippe Deléham, Nov 19 2009
O.g.f.: (1+x)/(1+(2-y)*x+x^2). - Wolfdieter Lang, Dec 15 2010
O.g.f. column k with leading zeros (Riordan array, see NAME): (1/(1+x))*(x/(1+x)^2)^k, k >= 0. - Wolfdieter Lang, Dec 15 2010
From Wolfdieter Lang, Dec 20 2010: (Start)
Recurrences from the Z- and A-sequences for Riordan arrays. See the W. Lang link under A006232 for details and references.
T(n,0) = -1*T(n-1,0), n >= 1, from the o.g.f. -1 for the Z-sequence (trivial result).
T(n,k) = Sum_{j=0..n-k} A(j)*T(n-1,k-1+j), n >= k >= 1, with A(j):= A115141(j) = [1,-2,-1,-2,-5,-14,...], j >= 0 (o.g.f. 1/c(x)^2 with the A000108 (Catalan) o.g.f. c(x)). (End)
T(n,k) = (-1)^n*A123970(n,k). - Philippe Deléham, Feb 18 2012
T(n,k) = -2*T(n-1,k) + T(n-1,k-1) - T(n-2,k), T(0,0) = T(1,1) = 1, T(1,0) = -1, T(n,k) = 0 if k < 0 or if k > n. - Philippe Deléham, Mar 19 2012
A039599(m,n) = Sum_{k=0..n} T(n,k) * C(k+m) where C(n) are the Catalan numbers. - Michael Somos, Jan 03 2019
Equals the matrix inverse of the Riordan square (cf. A321620) of the Catalan numbers. - Peter Luschny, Jan 04 2019
Boas-Buck type recurrence for column k >= 0 (see Aug 10 2017 comment in A046521 with references): T(n,k) = ((1 + 2*k)/(n - k))*Sum_{j = k..n-1} (-1)^(n-j)*T(j,k), with input T(n,n) = 1, and T(n,k) = 0 for n < k. - Wolfdieter Lang, Jun 03 2020

A142238 Numerators of continued fraction convergents to sqrt(3/2).

Original entry on oeis.org

1, 5, 11, 49, 109, 485, 1079, 4801, 10681, 47525, 105731, 470449, 1046629, 4656965, 10360559, 46099201, 102558961, 456335045, 1015229051, 4517251249, 10049731549, 44716177445, 99482086439, 442644523201, 984771132841, 4381729054565, 9748229241971
Offset: 0

Views

Author

N. J. A. Sloane, Oct 05 2008, following a suggestion from Rob Miller (rmiller(AT)AmtechSoftware.net)

Keywords

Comments

From Charlie Marion, Jan 07 2009: (Start)
In general, denominators, a(k,n) and numerators, b(k,n), of continued
fraction convergents to sqrt((k+1)/k) may be found as follows:
a(k,0) = 1, a(k,1) = 2k; for n>0, a(k,2n) = 2*a(k,2n-1)+a(k,2n-2)
and a(k,2n+1)=(2k)*a(k,2n)+a(k,2n-1);
b(k,0) = 1, b(k,1) = 2k+1; for n>0, b(k,2n) = 2*b(k,2n-1)+b(k,2n-2)
and b(k,2n+1)=(2k)*b(k,2n)+b(k,2n-1).
For example, the convergents to sqrt(3/2) start 1/1, 5/4, 11/9,
49/40, 109/89.
In general, if a(k,n) and b(k,n) are the denominators and numerators,
respectively, of continued fraction convergents to sqrt((k+1)/k)
as defined above, then
k*a(k,2n)^2-a(k,2n-1)*a(k,2n+1)=k=k*a(k,2n-2)*a(k,2n)-a(k,2n-1)^2 and
b(k,2n-1)*b(k,2n+1)-k*b(k,2n)^2=k+1=b(k,2n-1)^2-k*b(k,2n-2)*b(k,2n);
for example, if k=2 and n=3, then b(2,n)=a(n) and
2*a(2,6)^2-a(2,5)*a(2,7)=2*881^2-396*3920=2;
2*a(2,4)*a(2,6)-a(2,5)^2=2*89*881-396^2=2;
b(2,5)*b(2,7)-2*b(2,6)^2=485*4801-2*1079^2=3;
b(2,5)^2-2*b(2,4)*b(2,6)=485^2-2*109*1079=3.

Examples

			The initial convergents are 1, 5/4, 11/9, 49/40, 109/89, 485/396, 1079/881, 4801/3920, 10681/8721, 47525/38804, 105731/86329, ...
		

Crossrefs

Programs

  • Maple
    with(numtheory): cf := cfrac (sqrt(3)/sqrt(2),100): [seq(nthnumer(cf,i), i=0..50)]; [seq(nthdenom(cf,i), i=0..50)]; [seq(nthconver(cf,i), i=0..50)];
  • Mathematica
    Numerator[Convergents[Sqrt[3/2], 30]] (* Bruno Berselli, Nov 11 2013 *)
    LinearRecurrence[{0,10,0,-1},{1,5,11,49},30] (* Harvey P. Dale, Dec 30 2017 *)
  • PARI
    a(n)=([0,1,0,0; 0,0,1,0; 0,0,0,1; -1,0,10,0]^n*[1;5;11;49])[1,1] \\ Charles R Greathouse IV, Jun 21 2015

Formula

G.f.'s for numerators and denominators are -(1+5*x+x^2-x^3)/(-1-x^4+10*x^2) and -(1+4*x-x^2)/(-1-x^4+10*x^2).
a(2n) = A041006(2n)/2 = A054320(n), a(2n-1) = A041006(2n-1) = A041038(2n-1) = A001079(n). - M. F. Hasler, Feb 14 2009

A031138 Numbers k such that 1^5 + 2^5 + ... + k^5 is a square.

Original entry on oeis.org

1, 13, 133, 1321, 13081, 129493, 1281853, 12689041, 125608561, 1243396573, 12308357173, 121840175161, 1206093394441, 11939093769253, 118184844298093, 1169909349211681, 11580908647818721, 114639177128975533, 1134810862641936613, 11233469449290390601
Offset: 1

Views

Author

Ignacio Larrosa Cañestro, entry revised Feb 27 2000

Keywords

Comments

Partial sums of A004291 or convolution of A040000 with A054320. - R. J. Mathar, Oct 26 2009
This is a 6th-degree Diophantine equation 12*m^2 = n^2*(n+1)^2*(2*n^2 + 2*n - 1) which reduces to the generalized Pell equation 6*q^2 = (2*n + 1)^2 - 3 where q = 3*m/(n*(n+1)), so there is no surprise that the solutions satisfy a linear recurrent equation. - Charles R Greathouse IV, Max Alekseyev, Oct 22 2012
Also k such that k^2 + (k+1)^2 is equal to the sum of three consecutive squares, for example 13^2 + 14^2 = 10^2 + 11^2 + 12^2. - Colin Barker, Sep 06 2015

Examples

			a(2) = 13 because 1^5+2^5+...13^5 = 1001^2; a(1) = 1 because 1^5 = 1^2.
		

Crossrefs

Programs

  • Magma
    [Round(-1/2 + ((3 - Sqrt(6))/4)*(5 + 2*Sqrt(6))^n + ((3 + Sqrt(6) )/4)*(5 - 2*Sqrt(6))^n): n in [0..50]]; // G. C. Greubel, Nov 04 2017
  • Mathematica
    LinearRecurrence[{11,-11,1},{1,13,133},20 ] (* Harvey P. Dale, Oct 23 2012 *)
  • PARI
    isok(n) = issquare(sum(i=1, n, i^5)); \\ Michel Marcus, Dec 28 2013
    
  • PARI
    Vec(x*(1+x)^2/((1-x)*(x^2-10*x+1)) + O(x^40)) \\ Colin Barker, Sep 06 2015
    

Formula

a(n) = 11*(a(n-1) - a(n-2)) + a(n-3).
a(n) = -1/2 + ((3 - sqrt(6))/4)*(5 + 2*sqrt(6))^n + ((3 + sqrt(6))/4)*(5 - 2*sqrt(6))^n.
a(n)^2 + (a(n) + 1)^2 = (b(n) - 1)^2 + b(n)^2 + (b(n) + 1)^2 = c(n) = 3*d(n) + 2; where b(n) is A054320, c(n) is A007667 and d(n) is A006061.
a(n) = 10*a(n-1) - a(n-2) + 4; a(0) = a(1) = 1. Also sum of first a(n) fifth powers is a square m^2, where m has factors A000217{a(n)} and A054320(n). - Lekraj Beedassy, Jul 08 2002
contfrac(sqrt(6)/A054320(n))[4]/2 - Thomas Baruchel, Dec 02 2003
G.f.: x*(1+x)^2/((1-x)*(x^2-10*x+1)). - R. J. Mathar, Oct 26 2009

A077416 Chebyshev S-sequence with Diophantine property.

Original entry on oeis.org

1, 13, 155, 1847, 22009, 262261, 3125123, 37239215, 443745457, 5287706269, 63008729771, 750817050983, 8946795882025, 106610733533317, 1270382006517779, 15137973344680031, 180385298129642593
Offset: 0

Views

Author

Wolfdieter Lang, Nov 29 2002

Keywords

Comments

7*b(n)^2 - 5*a(n)^2 = 2 with companion sequence b(n) = A077417(n), n>=0.
a(n) = L(n,-12)*(-1)^n, where L is defined as in A108299; see also A077417 for L(n,+12). - Reinhard Zumkeller, Jun 01 2005
The aerated sequence (b(n))n>=1 = [1, 0, 13, 0, 155, 0, 1857, 0, ...] is a fourth-order linear divisibility sequence; that is, if n | m then b(n) | b(m). It is the case P1 = 0, P2 = -10, Q = -1 of the 3-parameter family of divisibility sequences found by Williams and Guy. See A100047. - Peter Bala, May 12 2025

Crossrefs

Cf. A054320(n-1) with companion A072256(n), n>=1.

Programs

  • Magma
    I:=[1, 13]; [n le 2 select I[n] else 12*Self(n-1) - Self(n-2): n in [1..30]]; // G. C. Greubel, Jan 18 2018
  • Mathematica
    LinearRecurrence[{12,-1},{1,13},30] (* Harvey P. Dale, Apr 03 2013 *)
  • PARI
    x='x+O('x^30); Vec((1+x)/(1-12*x+x^2)) \\ G. C. Greubel, Jan 18 2018
    
  • Sage
    [(lucas_number2(n,12,1)-lucas_number2(n-1,12,1))/10 for n in range(1, 18)] # Zerinvary Lajos, Nov 10 2009
    

Formula

a(n) = 12*a(n-1) - a(n-2), a(-1)=-1, a(0)=1.
a(n) = S(n, 12) + S(n-1, 12) = S(2*n, sqrt(14)) with S(n, x) := U(n, x/2) Chebyshev's polynomials of the second kind. See A049310. S(-1, x)=0, S(n, 12) = A004191(n).
G.f.: (1+x)/(1-12*x+x^2).
a(n) = (ap^(2*n+1) - am^(2*n+1))/(ap - am) with ap := (sqrt(7)+sqrt(5))/sqrt(2) and am := (sqrt(7)-sqrt(5))/sqrt(2).
a(n) = Sum_{k=0..n} (-1)^k * binomial(2*n-k,k) * 14^(n-k).
a(n) = sqrt((7*A077417(n)^2 - 2)/5).
From Peter Bala, May 09 2025: (Start)
a(n) = Dir(n, 6), where Dir(n, x) denotes the n-th row polynomial of the triangle A244419.
a(n)^2 - 12*a(n)*a(n+1) + a(n+1)^2 = 14.
More generally, for real x, a(n+x)^2 - 12*a(n+x)*a(n+x+1) + a(n+x+1)^2 = 14, where a(n) := (ap^(2*n+1) - am^(2*n+1))/(ap - am), ap := sqrt(7/2) + sqrt(5/2) and am := sqrt(7/2) - sqrt(5/2), as given above.
Sum_{n >= 1} (-1)^(n+1)/(a(n) - 1/a(n)) = 1/14 (telescoping series).
Product_{n >= 1} (a(n) + 1)/(a(n) - 1) = sqrt(7/5) (telescoping product). (End)

A244419 Coefficient triangle of polynomials related to the Dirichlet kernel. Rising powers. Riordan triangle ((1+z)/(1+z^2), 2*z/(1+z^2)).

Original entry on oeis.org

1, 1, 2, -1, 2, 4, -1, -4, 4, 8, 1, -4, -12, 8, 16, 1, 6, -12, -32, 16, 32, -1, 6, 24, -32, -80, 32, 64, -1, -8, 24, 80, -80, -192, 64, 128, 1, -8, -40, 80, 240, -192, -448, 128, 256, 1, 10, -40, -160, 240, 672, -448, -1024, 256, 512, -1, 10, 60, -160, -560, 672, 1792, -1024, -2304, 512, 1024
Offset: 0

Views

Author

Wolfdieter Lang, Jul 29 2014

Keywords

Comments

This is the row reversed version of A180870. See also A157751 and A228565.
The Dirichlet kernel is D(n,x) = Sum_{k=-n..n} exp(i*k*x) = 1 + 2*Sum_{k=1..n} T(n,x) = S(n, 2*y) + S(n-1, 2*y) = S(2*n, sqrt(2*(1+y))) with y = cos(x), n >= 0, with the Chebyshev polynomials T (A053120) and S (A049310). This triangle T(n, k) gives in row n the coefficients of the polynomial Dir(n,y) = D(n,x=arccos(y)) = Sum_{m=0..n} T(n,m)*y^m. See A180870, especially the Peter Bala comments and formulas.
This is the Riordan triangle ((1+z)/(1+z^2), 2*z/(1+z^2)) due to the o.g.f. for Dir(n,y) given by (1+z)/(1 - 2*y*z + z^2) = G(z)/(1 - y*F(z)) with G(z) = (1+z)/(1+z^2) and F(z) = 2*z/(1+z^2) (see the Peter Bala formula under A180870). For Riordan triangles and references see the W. Lang link 'Sheffer a- and z- sequences' under A006232.
The A- and Z- sequences of this Riordan triangle are (see the mentioned W. Lang link in the preceding comment also for the references): The A-sequence has o.g.f. 1+sqrt(1-x^2) and is given by A(2*k+1) = 0 and A(2*k) [2, -1/2, -1/8, -1/16, -5/128, -7/256, -21/1024, -33/2048, -429/32768, -715/65536, ...], k >= 0. (See A098597 and A046161.)
The Z-sequence has o.g.f. sqrt((1-x)/(1+x)) and is given by
[1, -1, 1/2, -1/2, 3/8, -3/8, 5/16, -5/16, 35/128, -35/128, ...]. (See A001790 and A046161.)
The column sequences are A057077, 2*(A004526 with even numbers signed), 4*A008805 (signed), 8*A058187 (signed), 16*A189976 (signed), 32*A189980 (signed) for m = 0, 1, ..., 5.
The row sums give A005408 (from the o.g.f. due to the Riordan property), and the alternating row sums give A033999.
The row polynomials Dir(n, x), n >= 0, give solutions to the diophantine equation (a + 1)*X^2 - (a - 1)*Y^2 = 2 by virtue of the identity (a + 1)*Dir(n, -a)^2 - (a - 1)*Dir(n, a)^2 = 2, which is easily proved inductively using the recurrence Dir(n, a) = (1 + a)*(-1)^(n-1)*Dir(n-1, -a) + a*Dir(n-1, a) given below by Wolfdieter Lang. - Peter Bala, May 08 2025

Examples

			The triangle T(n,m) begins:
  n\m  0   1   2    3    4    5    6     7     8    9    10 ...
  0:   1
  1:   1   2
  2:  -1   2   4
  3:  -1  -4   4    8
  4:   1  -4 -12    8   16
  5:   1   6 -12  -32   16   32
  6:  -1   6  24  -32  -80   32   64
  7:  -1  -8  24   80  -80 -192   64   128
  8:   1  -8 -40   80  240 -192 -448   128   256
  9:   1  10 -40 -160  240  672 -448 -1024   256  512
  10: -1  10  60 -160 -560  672 1792 -1024 -2304  512  1024
  ...
Example for A-sequence recurrence: T(3,1) = Sum_{j=0..2} A(j)*T(2,j) = 2*(-1) + 0*2 + (-1/2)*4 = -4. Example for Z-sequence recurrence: T(4,0) = Sum_{j=0..3} Z(j)*T(3,j) = 1*(-1) + (-1)*(-4) + (1/2)*4 + (-1/2)*8 = +1. (For the A- and Z-sequences see a comment above.)
Example for the alternate recurrence: T(4,2) = 2*T(3,1) - T(3,2) = 2*(-4) - 4 = -12. T(4,3) = 0*T(3,2) + T(3,3) = T(3,3) = 8. - _Wolfdieter Lang_, Jul 30 2014
		

Crossrefs

Dir(n, x) : A005408 (x = 1), A002878 (x = 3/2), A001834 (x = 2), A030221 (x = 5/2), A002315 (x = 3), A033890 (x = 7/2), A057080 (x = 4), A057081 (x = 9/2), A054320 (x = 5), A077416 (x = 6), A028230 (x = 7), A159678 (x = 8), A049629 (x = 9), A083043 (x = 10),
(-1)^n * Dir(n, x): A122367 (x = -3/2); A079935 (x = -2), A004253 (x = -5/2), A001653 (x = -3), A049685 (x = -7/2), A070997 (x = -4), A070998 (x = -9/2), A072256(n+1) (x = -5).

Programs

  • Mathematica
    T[n_, k_] := T[n, k] = Which[k == 0, (-1)^Quotient[n, 2], (0 <= n && n < k) || (n == -1 && k == 1), 0, True, 2 T[n-1, k-1] - T[n-2, k]];
    Table[T[n, k], {n, 0, 11}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jun 28 2019, from Sage *)
  • Sage
    def T(n, k):
        if k == 0: return (-1)^(n//2)
        if (0 <= n and n < k) or (n == -1 and k == 1): return 0
        return 2*T(n-1, k-1) - T(n-2, k)
    for n in range(11): [T(n,k) for k in (0..n)] # Peter Luschny, Jul 29 2014

Formula

T(n, m) = [y^m] Dir(n,y) for n >= m >= 0 and 0 otherwise, with the polynomials Dir(y) defined in a comment above.
T(n, m) = 2^m*(S(n,m) + S(n-1,m)) with the entries S(n,m) of A049310 given there explicitly.
O.g.f. for polynomials Dir(y) see a comment above (Riordan triangle ((1+z)/(1+z^2), 2*z/(1+z^2))).
O.g.f. for column m: ((1 + x)/(1 + x^2))*(2*x/(1 + x^2))^m, m >= 0, (Riordan property).
Recurrence for the polynomials: Dir(n, y) = 2*y*Dir(n-1, y) - Dir(n-2, y), n >= 1, with input D(-1, y) = -1 and D(0, y) = 1.
Triangle three-term recurrence: T(n,m) = 2*T(n-1,m-1) - T(n-2,m) for n >= m >= 1 with T(n,m) = 0 if 0 <= n < m, T(0,0) = 1, T(-1,1) = 0 and T(n,0) = A057077(n) = (-1)^(floor(n/2)).
From Wolfdieter Lang, Jul 30 2014: (Start)
In analogy to A157751 one can derive a recurrence for the row polynomials Dir(n, y) = Sum_{m=0..n} T(n,m)*y^m also using a negative argument but only one recursive step: Dir(n,y) = (1+y)*(-1)^(n-1)*Dir(n-1,-y) + y*Dir(n-1,y), n >= 1, Dir(0,y) = 1 (Dir(-1,y) = -1). See also A180870 from where this formula can be derived by row reversion.
This entails another triangle recurrence T(n,m) = (1 + (-1)^(n-m))*T(n-1,m-1) - (-1)^(n-m)*T(n-1,m), for n >= m >= 1 with T(n,m) = 0 if n < m and T(n,0) = (-1)^floor(n/2). (End)
From Peter Bala, Aug 14 2022: (Start)
The row polynomials Dir(n,x), n >= 0, are related to the Chebyshev polynomials of the first kind T(n,x) by the binomial transform as follows:
(2^n)*(x - 1)^(n+1)*Dir(n,x) = (-1) * Sum_{k = 0..2*n+1} binomial(2*n+1,k)*T(k,-x).
Note that Sum_{k = 0..2*n} binomial(2*n,k)*T(k,x) = (2^n)*(1 + x)^n*T(n,x). (End)
From Peter Bala, May 04 2025: (Start)
For n >= 1, the n-th row polynomial Dir(n, x) = (-1)^n * (U(n, -x) - U(n-1, -x)) = U(2*n, sqrt((1+x)/2)), where U(n, x) denotes the n-th Chebyshev polynomial of the second kind.
For n >= 1 and x < 1, Dir(n, x) = (-1)^n * sqrt(2/(1 - x )) * T(2*n+1, sqrt((1 - x)/2)), where T(n, x) denotes the n-th Chebyshev polynomial of the first kind.
Dir(n, x)^2 - 2*x*Dir(n, x)*Dir(n+1, x) + Dir(n+1, x)^2 = 2*(1 + x).
Dir(n, x) = (-1)^n * R(n, -2*(x+1)), where R(n, x) is the n-th row polynomial of the triangle A085478.
Dir(n, x) = Sum_{k = 0..n} (-1)^(n+k) * binomial(n+k, 2*k) * (2*x + 2)^k. (End)

A046173 Indices of square numbers that are also pentagonal.

Original entry on oeis.org

1, 99, 9701, 950599, 93149001, 9127651499, 894416697901, 87643708742799, 8588189040096401, 841554882220704499, 82463790268588944501, 8080609891439495856599, 791817305570802005002201, 77590015336047156994359099, 7603029685627050583442189501
Offset: 1

Views

Author

Keywords

Comments

As n increases, this sequence is approximately geometric with common ratio r = lim_{n->oo} a(n)/a(n-1) = (sqrt(2) + sqrt(3))^4 = 49 + 20 * sqrt(6). - Ant King, Nov 07 2011
a(n)^2 is of the form (2*m-1)*(3*m-2), and the corresponding values of m are 1, 41, 3961, 388081, 38027921, 3726348121, 365144087881, ..., with closed form ((5-2*sqrt(6))^(2n-1)+(5+2*sqrt(6))^(2n-1)+14)/24 (for n>0). - Bruno Berselli, Dec 12 2013
The terms of this sequence satisfy the Diophantine equation m^2 = k * (3k-1)/2, which is equivalent to (6k-1)^2 - 6*(2*m)^2 = 1. Now, with x=6k-1 and y=2*m, we get the Pell-Fermat equation x^2 - 6*y^2 = 1. The solutions (x,y) of this equation are respectively in A046174 and A046175. The indices m=y/2 of the square numbers which are also pentagonal are the terms of this sequence, the indices k=(x+1)/6 of the pentagonal numbers which are also square are in A046172, and the pentagonal square numbers are in A036353. - Bernard Schott, Mar 10 2019
Also, this sequence is related to A302330 by (sqrt(2) + sqrt(3))^(4*n-2) = A302330(n-1)*5 + a(n)*sqrt(24). - Bruno Berselli, Oct 29 2019

Examples

			G.f. = x + 99*x^2 + 9701*x^3 + 950599*x^4 + 93149001*x^5 + ...
99 is a term because 99^2 = 9801 = (1/2) * 81 * (3*81 - 1), so 9801 is the 99th square number, also the 81st pentagonal number, and the second pentagonal square number after 1. - _Bernard Schott_, Mar 10 2019
		

References

  • E. Deza and M. M. Deza, Figurate numbers, World Scientific Publishing (2012), page 35.

Crossrefs

Cf. A036353 (pentagonal square numbers), A046172 (indices of pentagonal numbers that are also square).
Cf. A046174, A046175 (solutions of x^2 - 6*y^2 = 1).
Cf. A302330.

Programs

  • Mathematica
    CoefficientList[Series[(1 + x)/(1 - 98* x + x^2), {x, 0, 30}], x] (* T. D. Noe, Aug 01 2011 *)
    LinearRecurrence[{98, -1}, {1, 99}, 30] (* Harvey P. Dale, Jul 31 2017 *)
  • PARI
    {a(n) = subst( poltchebi(n) - poltchebi(n-1), 'x, 49) / 48}; /* Michael Somos, Sep 05 2006 */
    
  • PARI
    Vec(x*(x+1)/(x^2-98*x+1) + O(x^30)) \\ Colin Barker, Jun 23 2015

Formula

a(n) = 98*a(n-1) - a(n-2); g.f.: (1+x)/(1-98*x+x^2). - Warut Roonguthai, Jan 05 2001
a(1-n) = -a(n) for all n in Z. - Michael Somos, Sep 05 2006
Define f(x,s) = s*x + sqrt((s^2-1)*x^2+1); f(0,s)=0. a(n) = f(f(a(n-1),5),5). - Marcos Carreira, Dec 27 2006
a(n) = ((12+5*sqrt(6))/24)*(5+2*sqrt(6))^(2*n)+((12-5*sqrt(6))/24)*(5-2*sqrt(6))^(2*n) for n>=0. - Richard Choulet, Apr 29 2009
a(n+1) = 49*a(n) + 10*sqrt(24*a(n)^2+1) for n > =0 with a(0)=1. - Richard Choulet, Apr 29 2009
a(n) = b such that (-1)^n*Integral_{x=-Pi/2..Pi/2} (cos(2*n-1)*x)/(5-sin(x)) dx = c + b*(log(2)-log(3)). - Francesco Daddi, Aug 01 2011
a(n) = floor((1/24) * sqrt(6) * (sqrt(2) + sqrt(3))^(4n-2)). - Ant King, Nov 07 2011
a(n) = A138288(n)*A054320(n). - Gerry Martens, May 13 2024
Previous Showing 11-20 of 32 results. Next