cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 57 results. Next

A001504 a(n) = (3*n+1)*(3*n+2).

Original entry on oeis.org

2, 20, 56, 110, 182, 272, 380, 506, 650, 812, 992, 1190, 1406, 1640, 1892, 2162, 2450, 2756, 3080, 3422, 3782, 4160, 4556, 4970, 5402, 5852, 6320, 6806, 7310, 7832, 8372, 8930, 9506, 10100, 10712, 11342, 11990, 12656, 13340, 14042, 14762, 15500, 16256, 17030
Offset: 0

Views

Author

Keywords

Comments

The oblong numbers (A002378) not divisible by 3. - Gionata Neri, May 10 2015
The continued fraction expansion of sqrt(a(n)+1) is [3n+1; {1, 1, 2n, 1, 1,6n+2}]. For n=0, this collapses to [1; {1, 2}]. - Magus K. Chu, Nov 13 2024

Crossrefs

Subsequence of A002378.

Programs

Formula

a(n) = A060544(n+1)*2.
Sum_{k>=0} 1/a(k) = (Pi/3)/sqrt(3) = A073010. - Benoit Cloitre, Aug 20 2002
a(n) = 18*n + a(n-1) with a(0) = 2. - Vincenzo Librandi, Nov 12 2010
Sum_{n>=0} (-1)^n/a(n) = 2*log(2)/3 (A387235). - Amiram Eldar, Jan 14 2021
G.f.: -2*(x^2+7*x+1)/(x-1)^3. - Alois P. Heinz, Feb 28 2021
From Amiram Eldar, Feb 19 2023: (Start)
a(n) = A016777(n)*A016789(n).
Product_{n>=0} (1 - 1/a(n)) = 2*cos(sqrt(5)*Pi/6)/sqrt(3).
Product_{n>=0} (1 + 1/a(n)) = 2*cosh(sqrt(3)*Pi/6)/sqrt(3). (End)
E.g.f.: exp(x)*(2 + 18*x + 9*x^2). - Stefano Spezia, Aug 23 2025

A190152 Triangle of binomial coefficients binomial(3*n-k,3*n-3*k).

Original entry on oeis.org

1, 1, 1, 1, 10, 1, 1, 28, 35, 1, 1, 55, 210, 84, 1, 1, 91, 715, 924, 165, 1, 1, 136, 1820, 5005, 3003, 286, 1, 1, 190, 3876, 18564, 24310, 8008, 455, 1, 1, 253, 7315, 54264, 125970, 92378, 18564, 680, 1, 1, 325, 12650, 134596, 490314, 646646, 293930, 38760, 969, 1
Offset: 0

Views

Author

Emanuele Munarini, May 05 2011

Keywords

Comments

From R. J. Mathar, Mar 15 2013: (Start)
The matrix inverse starts
1;
-1,1;
9,-10,1;
-288,322,-35,1;
22356,-25003,2730,-84,1;
-3428973,3835026,-418825,12936,-165,1;
914976405,-1023326973,111759115,-3452449,44187,-286,1;
... (End)

Examples

			Triangle begins:
  1
  1, 1
  1, 10, 1
  1, 28, 35, 1
  1, 55, 210, 84, 1
  1, 91, 715, 924, 165, 1
  1, 136, 1820, 5005, 3003, 286, 1
  1, 190, 3876, 18564, 24310, 8008, 455, 1
  1, 253, 7315, 54264, 125970, 92378, 18564, 680, 1
  ...
		

Crossrefs

Cf. A000447 (first subdiagonal), A053135 (second subdiagonal), A060544 (second column), A190088, A190153 (row sums), A190154 (diagonal sums).

Programs

  • Mathematica
    Flatten[Table[Binomial[3n - k, 3n - 3k], {n, 0, 9}, {k, 0, n}]]
  • Maxima
    create_list(binomial(3*n-k,3*n-3*k),n,0,9,k,0,n);
    
  • PARI
    for(n=0,10, for(k=0,n, print1(binomial(3*n-k, 3*(n-k)), ", "))) \\ G. C. Greubel, Dec 29 2017

A048909 9-gonal (or nonagonal) triangular numbers.

Original entry on oeis.org

1, 325, 82621, 20985481, 5330229625, 1353857339341, 343874433963061, 87342752369278225, 22184715227362706161, 5634830324997758086741, 1431224717834203191326125, 363525443499562612838749081, 92334031424171069457850940521, 23452480456295952079681300143325
Offset: 1

Views

Author

Keywords

Comments

We want solutions to m(7m-5)/2 = n(n+1)/2, or equivalently (14m-5)^2 = 7(2n+1)^2 + 18. This is the Pell-type equation x^2 - 7y^2 = 18.
This equation has unit solutions (x,y) = (5,1), (9, 3) and (19, 7), which lead to the family of solutions (5, 1), (9, 3), (19, 7), (61, 23), (135, 51), (299, 113), (971, 367), .... The corresponding integer solutions are (m,n) = (1,1), (10, 25), (154, 406), (2449, 6478), ... (A048907 and A048908), giving the nonagonal triangular numbers 1, 325, 82621, 20985481, ... shown here.
Also, numbers simultaneously 9-gonal and centered 9-gonal, the intersection of A001106 and A060544. - Steven Schlicker, Apr 24 2007

Crossrefs

Programs

  • Maple
    CP := n -> 1+1/2*9*(n^2-n): N:=10: u:=8: v:=1: x:=9: y:=1: k_pcp:=[1]: for i from 1 to N do tempx:=x; tempy:=y; x:=tempx*u+63*tempy*v: y:=tempx*v+tempy*u: s:=(y+1)/2: k_pcp:=[op(k_pcp),CP(s)]: end do: k_pcp; # Steven Schlicker, Apr 24 2007
  • Mathematica
    LinearRecurrence[{255, -255, 1}, {1, 325, 82621}, 12]; (* Ant King, Nov 03 2011 *)
  • PARI
    Vec(-x*(x^2+70*x+1)/((x-1)*(x^2-254*x+1)) + O(x^20)) \\ Colin Barker, Jun 22 2015

Formula

Define x(n) + y(n)*sqrt(63) = (9+sqrt(63))*(8+sqrt(63))^n, s(n) = (y(n)+1)/2; then a(n) = (2+9*(s(n)^2-s(n)))/2. - Steven Schlicker, Apr 24 2007
a(n+1) = 254*a(n+1)-a(n)+72. - Richard Choulet, Sep 22 2007
a(n+1) = 127*a(n+1)+36+6*(448*a(n)^2+256*a(n)+25)^0.5. - Richard Choulet, Sep 22 2007
G.f.: z*(1+70*z+z^2)/((1-z)*(1-254*z+z^2)). - Richard Choulet, Sep 22 2007
From Ant King, Nov 03 2011: (Start)
a(n) = 255*a(n-1) - 255*a(n-2) + a(n-3).
a(n) = 1/112*(9*(8 + 3*sqrt(7))^(2n-1) + 9*(8-3* sqrt(7))^(2n-1) - 32).
a(n) = floor(9/112*(8 + 3*sqrt(7))^(2n-1)).
Limit_{n -> oo} a(n)/a(n-1) = (8 + 3*sqrt(7))^2. (End)

Extensions

Edited by N. J. A. Sloane at the suggestion of Richard Choulet, Sep 22 2007

A081272 Downward vertical of triangular spiral in A051682.

Original entry on oeis.org

1, 25, 85, 181, 313, 481, 685, 925, 1201, 1513, 1861, 2245, 2665, 3121, 3613, 4141, 4705, 5305, 5941, 6613, 7321, 8065, 8845, 9661, 10513, 11401, 12325, 13285, 14281, 15313, 16381, 17485, 18625, 19801, 21013, 22261, 23545, 24865, 26221, 27613, 29041, 30505
Offset: 0

Views

Author

Paul Barry, Mar 15 2003

Keywords

Comments

Reflection of A081271 in the horizontal A051682.
Binomial transform of (1, 24, 36, 0, 0, 0, .....).
One of the six verticals of a triangular spiral which starts with 1 (see the link). Other verticals are A060544, A081589, A080855, A157889, A038764. - Yuriy Sibirmovsky, Sep 18 2016.

Crossrefs

Programs

  • Mathematica
    Table[n^2 + (n + 1)^2, {n, 0, 300, 3}] (* or *) LinearRecurrence[{3, -3, 1}, {1, 25, 85}, 80] (* Vladimir Joseph Stephan Orlovsky, Feb 17 2012 *)
    Table[n^2 + (n + 1)^2, {n, 0, 150, 3}] (* Vincenzo Librandi, Aug 07 2013 *)
  • PARI
    x='x+O('x^99); Vec((1+22*x+13*x^2)/(1-x)^3) \\ Altug Alkan, Sep 18 2016

Formula

a(n) = C(n, 0) + 24*C(n, 1) + 36*C(n, 2).
a(n) = 18*n^2 + 6*n + 1.
G.f.: (1 + 22*x + 13*x^2)/(1 - x)^3.
E.g.f.: exp(x)*(1 + 24*x + 18*x^2). - Stefano Spezia, Mar 07 2023

A082286 a(n) = 18*n + 10.

Original entry on oeis.org

10, 28, 46, 64, 82, 100, 118, 136, 154, 172, 190, 208, 226, 244, 262, 280, 298, 316, 334, 352, 370, 388, 406, 424, 442, 460, 478, 496, 514, 532, 550, 568, 586, 604, 622, 640, 658, 676, 694, 712, 730, 748, 766, 784, 802, 820, 838, 856, 874, 892, 910, 928, 946
Offset: 0

Views

Author

Cino Hilliard, May 10 2003

Keywords

Comments

Solutions to (11^x + 13^x) mod 19 = 17.

Crossrefs

Programs

Formula

a(n) = A006370(A016945(n)). - Reinhard Zumkeller, Apr 17 2008
a(n) = 2*A017221(n). - Michel Marcus, Feb 15 2014
a(n) = A060544(n+2) - 9*A000217(n-1). - Leo Tavares, Oct 15 2022
From Elmo R. Oliveira, Apr 08 2024: (Start)
G.f.: 2*(5+4*x)/(1-x)^2.
E.g.f.: 2*exp(x)*(5 + 9*x).
a(n) = 2*a(n-1) - a(n-2) for n >= 2.
a(n) = 2*(A022267(n+1) - A022267(n)). (End)

Extensions

More terms from Reinhard Zumkeller, Apr 17 2008

A158623 Denominator of the reduced fraction A158620(n)/A158621(n).

Original entry on oeis.org

9, 18, 10, 45, 63, 28, 108, 135, 55, 198, 234, 91, 315, 360, 136, 459, 513, 190, 630, 693, 253, 828, 900, 325, 1053, 1134, 406, 1305, 1395, 496, 1584, 1683, 595, 1890, 1998, 703, 2223, 2340, 820, 2583, 2709, 946, 2970, 3105, 1081, 3384, 3528, 1225, 3825
Offset: 2

Views

Author

Jonathan Vos Post, Mar 23 2009

Keywords

Comments

A158620(n) = Product_{k=2..n} (k^3-1). A158621(n) = Product_{k=2..n} (k^3+1). A158622(n) is the numerator of the reduced fraction A158620(n)/A158621(n). A158623(n) is the denominator of the reduced fraction A158620(n)/A158621(n). The reduced fractions are 7/9, 13/18, 7/10, 31/45, 43/63, 19/28, 73/108, 91/135, 37/55, 133/198, ...

Examples

			a(2) = 9 = denominator of (2^3-1)/2^3+1 = 7/9. a(3) = 18 = denominator of ((2^3-1)*(3^3-1))/((2^3+1)*(3^3+1)) = (7 * 26)/ (9 * 28) = 182/252 = 13/18. a(4) = 10 = denominator of ((2^3-1)*(3^3-1)*(4^3-1))/((2^3+1)*(3^3+1)*(4^3+1)) = (7 * 26 * 63)/(9 * 28 * 65) = 11466/16380 = 7/10. a(5) = 45 = denominator of ((2^3-1)(3^3-1)(4^3-1)(5^3-1))/((2^3+1)(3^3+1)(4^3+1)(5^3+1)) = 1421784/2063880 = 31/45.
		

Crossrefs

Programs

Formula

Denominator of (Product_{k=2..n} (k^3-1)) / Product_{k=2..n} (k^3+1) = denominator of Product_{k=2..n} A068601(k)/A001093(k).
A158620(n)/A158621(n) = 2(n^2+n+1)/(3n(n+1)). Conjecture: a(n) = 3a(n-3) - 3a(n-6) + a(n-9), so trisections are A152996, A060544 and 3*A081266. - R. J. Mathar, Mar 27 2009
Empirical g.f.: -x^2*(x^8 - 2*x^5 + 9*x^4 + 18*x^3 + 10*x^2 + 18*x + 9) / ((x-1)^3*(x^2 + x + 1)^3). - Colin Barker, May 09 2013

Extensions

More terms from R. J. Mathar, Mar 27 2009

A194767 Denominator of the fourth increasing diagonal of the autosequence of second kind from (-1)^n / (n+1).

Original entry on oeis.org

2, 2, 12, 20, 10, 42, 56, 24, 90, 110, 44, 156, 182, 70, 240, 272, 102, 342, 380, 140, 462, 506, 184, 600, 650, 234, 756, 812, 290, 930, 992, 352, 1122, 1190, 420, 1332, 1406, 494, 1560, 1640, 574, 1806, 1892, 660, 2070, 2162, 752, 2352, 2450, 850, 2652, 2756, 954, 2970, 3080, 1064, 3306, 3422, 1180, 3660
Offset: 0

Views

Author

Paul Curtz, Sep 02 2011

Keywords

Comments

The autosequence of first kind from (-1)^n/(n+1) is A189733.
For the second kind (the second increasing diagonal is (-1)^n/(n+1), half of the main one):
2, 1, 0, -1/2, -1/3, 1/6, 1/2, 5/12,
-1, -1, -1/2, 1/6, 1/2, 1/3, -1/12, -7/20,
0, 1/2, 2/3, 1/3, -1/6, -5/12, -4/15, 1/12,
1/2, 1/6, -1/3, -1/2, -1/4, 3/20, 7/20, 13/60,
-1/3, -1/2, -1/6, 1/4, 2/5, 1/5, -2/15, -3/10,
-1/6, 1/3, 5/12, 3/20, -1/5, -1/3, -1/6, 5/42,
1/2, 1/12, -4/15, -7/20, -2/15, 1/6, 2/7, 1/7,
-5/12, -7/20, -1/12, 13/60, 3/10, 5/42, -1/7, -1/4.
Main diagonal: (period 2:repeat 2, -1)/A026741(n+1).
Second (increasing) diagonal: (-1)^n / (n+1).
Third (increasing) diagonal: (-1)^(n+1)*A026741(n) / A045896(n).
Fourth (increasing) diagonal: (-1)^(n+1)*A146535(n)/ a(n).

Crossrefs

Programs

  • Mathematica
    c = Table[1/9 (7 n + 7 n^2 + 2 n Cos[2 n *Pi/3] + 2 n^2 Cos[2 n *Pi/3] + 2 Sqrt[3] n Sin[2 n *Pi/3] + 2 Sqrt[3] n^2 Sin[2 n *Pi/3]), {n, 1, 50}] (* Roger Bagula, Mar 25 2012 *)
    a[n_] := (n+1) * Numerator[(n+2)/3]; Array[a, 60, 0] (* Amiram Eldar, Sep 17 2023 *)
    LinearRecurrence[{0,0,3,0,0,-3,0,0,1},{2,2,12,20,10,42,56,24,90},60] (* Harvey P. Dale, May 15 2025 *)

Formula

a(3*n) = (3*n+1)*(3*n+2), a(3*n+1) = (n+1)*(3*n+2), a(3*n+2) = 3*(n+1)*(3*n+4).
G.f.: 2*(1+x+6*x^2+7*x^3+2*x^4+3*x^5+x^6)/(1-x^3)^3. - Jean-François Alcover, Nov 11 2016
a(n+2) = 2 * A306368(n) for n >= 0. - Joerg Arndt, Aug 25 2023
a(n) = (n+1) * A051176(n+2) for n >= 0. - Paul Curtz, Sep 13 2023
Sum_{n>=0} 1/a(n) = 1 + log(3) - Pi/(3*sqrt(3)). - Amiram Eldar, Sep 17 2023

A285812 Primes equal to a centered 9-gonal number plus 1.

Original entry on oeis.org

2, 11, 29, 137, 191, 821, 947, 2081, 2927, 3917, 5051, 6329, 11027, 13367, 14879, 15401, 17021, 17579, 21737, 22367, 24977, 36857, 39341, 43661, 47279, 50087, 58997, 62129, 66431, 70877, 95267, 96581, 106031, 113051, 117371, 129287, 130817, 135461, 156521
Offset: 1

Views

Author

Colin Barker, Apr 27 2017

Keywords

Crossrefs

Programs

  • PARI
    cpg(m, n) = m*n*(n-1)/2+1 \\ n-th centered m-gonal number
    maxk=600; L=List(); for(k=1, maxk, if(isprime(p=cpg(9, k) + 1), listput(L, p))); Vec(L)

A306368 a(n) = numerator of (n + 3)*(n + 4)/((n + 1)*(n + 2)).

Original entry on oeis.org

6, 10, 5, 21, 28, 12, 45, 55, 22, 78, 91, 35, 120, 136, 51, 171, 190, 70, 231, 253, 92, 300, 325, 117, 378, 406, 145, 465, 496, 176, 561, 595, 210, 666, 703, 247, 780, 820, 287, 903, 946, 330, 1035, 1081, 376, 1176, 1225, 425, 1326, 1378, 477, 1485, 1540, 532, 1653, 1711, 590
Offset: 0

Views

Author

Peter Bala, Feb 14 2019

Keywords

Comments

If P(x) and Q(x) are coprime integral polynomials such that Q(n) > 0 for n >= 0 then the sequence of numerators of the rational numbers P(n)/Q(n) for n >= 0 and the sequence of denominators of P(n)/Q(n) for n >= 0 are both quasi-polynomial in n. In fact, there exists a purely periodic sequence b(n) such that numerator(P(n)/Q(n)) = P(n)/b(n) and denominator(P(n)/Q(n)) = Q(n)/b(n). Here we take P(n) = (n + 3)*(n + 4) and Q(n) = (n + 1)*(n + 2).

Crossrefs

Programs

  • GAP
    List([0..100],n->NumeratorRat((n+3)*(n+4)/((n+1)*(n+2)))); # Muniru A Asiru, Feb 25 2019
    
  • Maple
    seq((n + 3)*(n + 4)/gcd((n + 3)*(n + 4), (n + 1)*(n + 2)), n = 0..100);
  • Mathematica
    Table[((n+3)(n+4))/((n+1)(n+2)),{n,0,60}]//Numerator (* or *) LinearRecurrence[{0,0,3,0,0,-3,0,0,1},{6,10,5,21,28,12,45,55,22},60] (* Harvey P. Dale, Mar 28 2020 *)
  • PARI
    a(n) = numerator((n + 3)*(n + 4)/((n + 1)*(n + 2))); \\ Michel Marcus, Feb 26 2019

Formula

O.g.f.: (x^8 + x^7 - 3*x^5 - 2*x^4 + 3*x^3 + 5*x^2 + 10*x + 6)/((1 - x)^3*(x^2 + x + 1)^3).
a(n) = 3*a(n-3) - 3*a(n-6) + a(n-9) for n >= 9.
a(n) = (n + 3)*(n + 4)/b(n), where (b(n))n>=0 is the purely periodic sequence [2, 2, 6, 2, 2, 6, ...] with period 3.
a(n) = (n + 3)*(n + 4)/gcd((n + 3)*(n + 4), (n + 1)*(n + 2)).
a(3*n) = (3*n + 3)*(3*n + 4)/2 = A081266(n+1).
a(3*n+1) = (3*n + 4)*(3*n + 5)/2 = A060544(n+2).
a(3*n+2) = (n + 2)*(3*n + 5)/2 = A000326(n+2).
Sum_{n>=0} 1/a(n) = 2*log(3) - 2*Pi/(3*sqrt(3)). - Amiram Eldar, Aug 11 2022

A027626 Denominator of n*(n+5)/((n+2)*(n+3)).

Original entry on oeis.org

1, 2, 10, 5, 7, 28, 12, 15, 55, 22, 26, 91, 35, 40, 136, 51, 57, 190, 70, 77, 253, 92, 100, 325, 117, 126, 406, 145, 155, 496, 176, 187, 595, 210, 222, 703, 247, 260, 820, 287, 301, 946, 330, 345, 1081, 376, 392, 1225, 425, 442, 1378, 477, 495, 1540, 532, 551
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    [Denominator(n*(n+5)/((n+2)*(n+3))): n in [0..60]]; // Vincenzo Librandi, Mar 04 2014
    
  • Mathematica
    CoefficientList[Series[(1+2*x+10*x^2+2*x^3+x^4-2*x^5+x^8)/(1-x^3)^3, {x,0,50}], x] (* Vincenzo Librandi, Mar 04 2014 *)
  • PARI
    a(n) = numerator((n+2)*(n+3)/6); \\ Altug Alkan, Apr 18 2018
    
  • SageMath
    [numerator(binomial(n+3,2)/3) for n in (0..60)] # G. C. Greubel, Aug 04 2022

Formula

a(n) = GCD of n-th and (n+1)st tetrahedral numbers (A000292). - Ross La Haye, Sep 13 2003
G.f.: (1 +2*x +10*x^2 +2*x^3 +x^4 -2*x^5 +x^8)/(1-x^3)^3.
a(n) = A234041(n+1) = A107711(n+4,3) = C(n+3,2)*gcd(n+4,3)/3 for n >= 0. See the o.g.f. of A234041. - Wolfdieter Lang, Feb 26 2014
a(n) = numerator of (n+2)*(n+3)/6. - Altug Alkan, Apr 18 2018
Sum_{n>=0} 1/a(n) = 5 - 4*Pi/(3*sqrt(3)). - Amiram Eldar, Aug 11 2022
a(n) = (n + 2)*(n + 3)*(5 - 2*A061347(n+1))/18. - Stefano Spezia, Oct 16 2023
a(n) is quasi-polynomial in n: a(3*n) = (n+1)*(3*n+2)/2 = A000326(n+1); a(3*n+1) = (n+1)*(3*n+4)/2 = A005449(n+1); a(3*n+2) = (3*n+4)*(3*n+5)/2 = A060544(n+2). - Peter Bala, Nov 20 2024

Extensions

More terms from Vincenzo Librandi, Mar 04 2014
Previous Showing 31-40 of 57 results. Next