cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 41 results. Next

A105763 Prime Lucas 4-step numbers, A073817.

Original entry on oeis.org

3, 7, 191, 367, 36319, 260111, 6921503, 49570747, 12893894812259, 24019714105325502367, 172025522413867986317, 17007925267174811186047, 3132517481738616046273627839643
Offset: 1

Views

Author

T. D. Noe, Apr 22 2005

Keywords

Crossrefs

Cf. A104577 (indices of prime Lucas 4-step numbers).

Programs

  • Mathematica
    a={-1, -1, -1, 4}; lst={}; Do[s=Plus@@a; a=RotateLeft[a]; a[[ -1]]=s; If[PrimeQ[s], AppendTo[lst, s]], {n, 1000}]; lst

A000078 Tetranacci numbers: a(n) = a(n-1) + a(n-2) + a(n-3) + a(n-4) for n >= 4 with a(0) = a(1) = a(2) = 0 and a(3) = 1.

Original entry on oeis.org

0, 0, 0, 1, 1, 2, 4, 8, 15, 29, 56, 108, 208, 401, 773, 1490, 2872, 5536, 10671, 20569, 39648, 76424, 147312, 283953, 547337, 1055026, 2033628, 3919944, 7555935, 14564533, 28074040, 54114452, 104308960, 201061985, 387559437, 747044834, 1439975216, 2775641472
Offset: 0

Views

Author

Keywords

Comments

a(n) is the number of compositions of n-3 with no part greater than 4. Example: a(7) = 8 because we have 1+1+1+1 = 2+1+1 = 1+2+1 = 3+1 = 1+1+2 = 2+2 = 1+3 = 4. - Emeric Deutsch, Mar 10 2004
In other words, a(n) is the number of ways of putting stamps in one row on an envelope using stamps of denominations 1, 2, 3 and 4 cents so as to total n-3 cents [Pólya-Szegő]. - N. J. A. Sloane, Jul 28 2012
a(n+4) is the number of 0-1 sequences of length n that avoid 1111. - David Callan, Jul 19 2004
a(n) is the number of matchings in the graph obtained by a zig-zag triangulation of a convex (n-3)-gon. Example: a(8) = 15 because in the triangulation of the convex pentagon ABCDEA with diagonals AD and AC we have 15 matchings: the empty set, seven singletons and {AB,CD}, {AB,DE}, {BC,AD}, {BC,DE}, {BC,EA}, {CD,EA} and {DE,AC}. - Emeric Deutsch, Dec 25 2004
Number of permutations satisfying -k <= p(i)-i <= r, i=1..n-3, with k = 1, r = 3. - Vladimir Baltic, Jan 17 2005
For n >= 0, a(n+4) is the number of palindromic compositions of 2*n+1 into an odd number of parts that are not multiples of 4. In addition, a(n+4) is also the number of Sommerville symmetric cyclic compositions (= bilaterally symmetric cyclic compositions) of 2*n+1 into an odd number of parts that are not multiples of 4. - Petros Hadjicostas, Mar 10 2018
a(n) is the number of ways to tile a hexagonal double-strip (two rows of adjacent hexagons) containing (n-4) cells with hexagons and double-hexagons (two adjacent hexagons). - Ziqian Jin, Jul 28 2019
The term "tetranacci number" was coined by Mark Feinberg (1963; see A000073). - Amiram Eldar, Apr 16 2021
a(n) is the number of ways to tile a skew double-strip of n-3 cells using squares and all possible "dominos", as seen in Ziqian Jin's article, below. Here is the skew double-strip corresponding to n=15, with 12 cells:
_ ___ _ ___ _ ___
| | | | | | |
|__|___|_|___| |___|
| | | | | | |
|_|___|_|___|_|___|,
and here are the three possible "domino" tiles:
_ _
| | | |
| | | | | |
|_|, |_|, |_____|.
As an example, here is one of the a(15) = 1490 ways to tile the skew double-strip of 12 cells:
_ ___ _____ _______
| | | | | | |
|__|_ |_|_ | _| _|
| | | | | |
|_____|___|_|___|_|. - Greg Dresden, Jun 05 2024

Examples

			From _Petros Hadjicostas_, Mar 10 2018: (Start)
For n = 3, we get a(3+4) = a(7) = 8 palindromic compositions of 2*n+1 = 7 into an odd number of parts that are not a multiple of 4. They are the following: 7 = 1+5+1 = 3+1+3 = 2+3+2 = 1+2+1+2+1 = 2+1+1+1+2 = 1+1+3+1+1 = 1+1+1+1+1+1+1. If we put these compositions on a circle, they become bilaterally symmetric cyclic compositions of 2*n+1 = 7.
For n = 4, we get a(4+4) = a(8) = 15 palindromic compositions of 2*n + 1 = 9 into an odd number of parts that are not a multiple of 4. They are the following: 9 = 3+3+3 = 2+5+2 = 1+7+1 = 1+1+5+1+1 = 2+1+3+1+2 = 1+2+3+2+1 = 1+3+1+3+1 = 3+1+1+1+3 = 2+2+1+2+2 = 2+1+1+1+1+1+2 = 1+2+1+1+1+2+1 = 1+1+2+1+2+1+1 = 1+1+1+3+1+1+1 = 1+1+1+1+1+1+1+1+1.
As _David Callan_ points out in the comments above, for n >= 1, a(n+4) is also the number of 0-1 sequences of length n that avoid 1111. For example, for n = 5, a(5+4) = a(9) = 29 is the number of binary strings of length n that avoid 1111. Out of the 2^5 = 32 binary strings of length n = 5, the following do not avoid 1111: 11111, 01111, and 11110. (End)
		

References

  • Silvia Heubach and Toufik Mansour, Combinatorics of Compositions and Words, CRC Press, 2010.
  • G. Pólya and G. Szegő, Problems and Theorems in Analysis, Springer-Verlag, NY, 2 vols., 1972, Vol. 1, p. 1, Problems 3 and 4.
  • J. Riordan, An Introduction to Combinatorial Analysis, Princeton University Press, Princeton, NJ, 1978.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Row 4 of arrays A048887 and A092921 (k-generalized Fibonacci numbers).
First differences are in A001631.
Cf. A008287 (quadrinomial coefficients) and A073817 (tetranacci with different initial conditions).

Programs

  • GAP
    a:=[0,0,0,1];; for n in [5..40] do a[n]:=a[n-1]+a[n-2]+a[n-3]+a[n-4]; od; a; # Muniru A Asiru, Mar 11 2018
  • Haskell
    import Data.List (tails, transpose)
    a000078 n = a000078_list !! n
    a000078_list = 0 : 0 : 0 : f [0,0,0,1] where
       f xs = y : f (y:xs) where
         y = sum $ head $ transpose $ take 4 $ tails xs
    -- Reinhard Zumkeller, Jul 06 2014, Apr 28 2011
    
  • Magma
    [n le 4 select Floor(n/4) else Self(n-1)+Self(n-2)+Self(n-3)+Self(n-4): n in [1..50]]; // Vincenzo Librandi, Jan 29 2016
    
  • Maple
    a:= n-> (<<1|1|0|0>, <1|0|1|0>, <1|0|0|1>, <1|0|0|0>>^n)[1, 4]: seq(a(n), n=0..50); # Alois P. Heinz, Jun 12 2008
  • Mathematica
    CoefficientList[Series[x^3/(1-x-x^2-x^3-x^4), {x, 0, 50}], x]
    LinearRecurrence[{1,1,1,1}, {0,0,0,1}, 50]  (* Vladimir Joseph Stephan Orlovsky, May 25 2011 *)
    (* From Eric W. Weisstein, Nov 09 2017 *)
    Table[RootSum[-1 -# -#^2 -#^3 +#^4 &, 10#^n +157#^(n+1) -103 #^(n+2) +16#^(n+3) &]/563, {n, 0, 40}]
    Table[RootSum[#^4 -#^3 -#^2 -# -1 &, #^(n-2)/(-#^3 +6# -1) &], {n, 0, 40}] (* End *)
  • Maxima
    a(n):=sum(sum(if mod(5*k-i,4)>0 then 0 else binomial(k,(5*k-i)/4)*(-1)^((i-k)/4)*binomial(n-i+k-1,k-1),i,k,n),k,1,n); /* Vladimir Kruchinin, Aug 18 2010 */
    
  • PARI
    {a(n) = if( n<0, 0, polcoeff( x^3 / (1 - x - x^2 - x^3 - x^4) + x * O(x^n), n))}
    
  • Python
    A000078 = [0,0,0,1]
    for n in range(4, 100):
        A000078.append(A000078[n-1]+A000078[n-2]+A000078[n-3]+A000078[n-4])
    # Chai Wah Wu, Aug 20 2014
    

Formula

a(n) = A001630(n) - a(n-1). - Henry Bottomley
G.f.: x^3/(1 - x - x^2 - x^3 - x^4). - Simon Plouffe in his 1992 dissertation
G.f.: x^3 / (1 - x / (1 - x / (1 + x^3 / (1 + x / (1 - x / (1 + x)))))). - Michael Somos, May 12 2012
G.f.: Sum_{n >= 0} x^(n+3) * (Product_{k = 1..n} (k + k*x + k*x^2 + x^3)/(1 + k*x + k*x^2 + k*x^3)). - Peter Bala, Jan 04 2015
a(n) = term (1,4) in the 4 X 4 matrix [1,1,0,0; 1,0,1,0; 1,0,0,1; 1,0,0,0]^n. - Alois P. Heinz, Jun 12 2008
Another form of the g.f.: f(z) = (z^3 - z^4)/(1 - 2*z + z^5), then a(n) = Sum_{i=0..floor((n-3)/5)} (-1)^i*binomial(n-3-4*i, i)*2^(n - 3 - 5*i) - Sum_{i=0..floor((n-4)/5)} (-1)^i*binomial(n-4-4*i, i)*2^(n - 4 - 5*i) with natural convention Sum_{i=m..n} alpha(i) = 0 for m > n. - Richard Choulet, Feb 22 2010
a(n+3) = Sum_{k=1..n} Sum_{i=k..n} [(5*k-i mod 4) = 0] * binomial(k, (5*k-i)/4) *(-1)^((i-k)/4) * binomial(n-i+k-1,k-1), n > 0. - Vladimir Kruchinin, Aug 18 2010 [Edited by Petros Hadjicostas, Jul 26 2020, so that the formula agrees with the offset of the sequence]
Sum_{k=0..3*n} a(k+b) * A008287(n,k) = a(4*n+b), b >= 0 ("quadrinomial transform"). - N. J. A. Sloane, Nov 10 2010
G.f.: x^3*(1 + x*(G(0)-1)/(x+1)) where G(k) = 1 + (1+x+x^2+x^3)/(1-x/(x+1/G(k+1) )); (recursively defined continued fraction). - Sergei N. Gladkovskii, Jan 26 2013
Starting (1, 2, 4, 8, ...) = the INVERT transform of (1, 1, 1, 1, 0, 0, 0, ...). - Gary W. Adamson, May 13 2013
a(n) ~ c*r^n, where c = 0.079077767399388561146007... and r = 1.92756197548292530426195... = A086088 (One of the roots of the g.f. denominator polynomial is 1/r.). - Fung Lam, Apr 29 2014
a(n) = 2*a(n-1) - a(n-5), n >= 5. - Bob Selcoe, Jul 06 2014
From Ziqian Jin, Jul 28 2019: (Start)
a(2*n+5) = a(n+4)^2 + a(n+3)^2 + a(n+2)^2 + 2*a(n+3)*(a(n+2) + a(n+1)).
a(n) - 1 = a(n-2) + 2*a(n-3) + 3*(a(n-4) + a(n-5) + ... + a(2) + a(1)), n >= 4. (End)
a(n) = (Sum_{i=0..n-1} a(i)*A073817(n-i))/(n-3) for n > 3. - Greg Dresden and Advika Srivastava, Sep 28 2019
a(n) = Sum_{r root of x^4-x^3-x^2-x-1} r^n/(4*r^3-3*r^2-2*r-1). - Fabian Pereyra, Dec 06 2024

Extensions

Definition augmented (with 4 initial terms) by Daniel Forgues, Dec 02 2009
Deleted certain dangerous or potentially dangerous links. - N. J. A. Sloane, Jan 30 2021

A074048 Pentanacci numbers with initial conditions a(0)=5, a(1)=1, a(2)=3, a(3)=7, a(4)=15.

Original entry on oeis.org

5, 1, 3, 7, 15, 31, 57, 113, 223, 439, 863, 1695, 3333, 6553, 12883, 25327, 49791, 97887, 192441, 378329, 743775, 1462223, 2874655, 5651423, 11110405, 21842481, 42941187, 84420151, 165965647, 326279871, 641449337, 1261056193, 2479171199, 4873922247
Offset: 0

Views

Author

Mario Catalani (mario.catalani(AT)unito.it), Aug 14 2002

Keywords

Comments

These pentanacci numbers follow the same pattern as Lucas, generalized tribonacci(A001644) and generalized tetranacci (A073817) numbers: Binet's formula is a(n)=r1^n+r^2^n+r3^n+r4^n+r5^n, with r1, r2, r3, r4, r5 roots of the characteristic polynomial. a(n) is also the trace of A^n, where A is the pentamatrix ((1,1,0,0,0),(1,0,1,0,0),(1,0,0,1,0),(1,0,0,0,1),(1,0,0,0,0)).
For n >= 5, a(n) is the number of cyclic sequences consisting of n zeros and ones that do not contain five consecutive ones provided the positions of the zeros and ones are fixed on a circle. This is proved in Charalambides (1991) and Zhang and Hadjicostas (2015). (For n=1,2,3,4 the statement is still true provided we allow the sequence to wrap around itself on a circle). - Petros Hadjicostas, Dec 18 2016
a(3407) has 1001 decimal digits. - Michael De Vlieger, Dec 28 2016

Crossrefs

Cf. A000078, A001630, A001644, A000032, A073817, A106297 (Pisano Periods).
Essentially the same as A023424.
Cf. A106273.

Programs

  • Mathematica
    CoefficientList[Series[(5-4*x-3*x^2-2*x^3-x^4)/(1-x-x^2-x^3-x^4-x^5), {x, 0, 30}], x]
    LinearRecurrence[{1, 1, 1, 1, 1}, {5, 1, 3, 7, 15}, 60] (* Vladimir Joseph Stephan Orlovsky, Feb 08 2012 *)
  • PARI
    polsym(polrecip(1-x-x^2-x^3-x^4-x^5),33) \\ Joerg Arndt, Jan 28 2019

Formula

a(n) = a(n-1) +a(n-2) +a(n-3) +a(n-4) +a(n-5).
G.f.: (5-4*x-3*x^2-2*x^3-x^4) / (1-x-x^2-x^3-x^4-x^5).
a(n) = 2*a(n-1) -a(n-6), n>5. [Vincenzo Librandi, Dec 20 2010]
For k>0 and n>=0, a(n+5*k) = a(k)*a(n+4*k) - A123127(k-1)*a(n+3*k) + A123126(k-1)*a(n+2*k) - A074062(k)*a(n+k) + a(n). For example, if k=4, n=3, we have a(n+5*k) = a(23) = 5651423, a(4)*a(19) - A123127(3)*a(15) + A123126(3)*a(1695) - A074062(4)*a(7) + a(3) = (15)*(378329) - (1)*(25327) + (1)*(1695) - (-1)*(113) + (7) = 5651423. - Kai Wang, Sep 13 2020
From Kai Wang, Dec 16 2020: (Start)
For k >= 0,
| a(k+4) a(k+5) a(k+6) a(k+7) a(k+8) |
| a(k+3) a(k+4) a(k+5) a(k+6) a(k+7) |
det | a(k+2) a(k+3) a(k+4) a(k+5) a(k+6) | = 9584 = A106273(5).
| a(k+1) a(k+2) a(k+3) a(k+4) a(k+5) |
| a(k) a(k+1) a(k+2) a(k+3) a(k+4) |
(End)

A074584 Esanacci (hexanacci or "6-anacci") numbers.

Original entry on oeis.org

6, 1, 3, 7, 15, 31, 63, 120, 239, 475, 943, 1871, 3711, 7359, 14598, 28957, 57439, 113935, 225999, 448287, 889215, 1763832, 3498707, 6939975, 13766015, 27306031, 54163775, 107438335, 213112838, 422726969, 838513963, 1663261911, 3299217791, 6544271807
Offset: 0

Views

Author

Mario Catalani (mario.catalani(AT)unito.it), Aug 26 2002

Keywords

Comments

These esanacci numbers follow the same pattern as Lucas, generalized tribonacci (A001644), generalized tetranacci (A073817), and generalized pentanacci (A074048) numbers.
The closed form is a(n) = r1^n + r^2^n + r3^n + r4^n + r5^n + r6^n, with r1, r2, r3, r4, r5, r6 roots of the characteristic polynomial.
a(n) is also the trace of A^n, where A is the matrix ((1, 1, 0, 0, 0, 0), (1, 0, 1, 0, 0, 0), (1, 0, 0, 1, 0, 0), (1, 0, 0, 0, 1, 0), (1, 0, 0, 0, 0, 1), (1, 0, 0, 0, 0, 0)).

Crossrefs

Programs

  • Magma
    R:=PowerSeriesRing(Integers(), 40); Coefficients(R!( (6-5*x-4*x^2-3*x^3-2*x^4-x^5)/(1-x-x^2-x^3-x^4-x^5-x^6) )); // G. C. Greubel, Apr 22 2019
    
  • Mathematica
    CoefficientList[Series[(6-5*x-4*x^2-3*x^3-2*x^4-x^5)/(1-x-x^2-x^3-x^4-x^5-x^6), {x, 0, 40}], x]
    LinearRecurrence[{1,1,1,1,1,1},{6,1,3,7,15,31},40] (* Harvey P. Dale, Nov 08 2011 *)
  • PARI
    polsym(polrecip(1-x-x^2-x^3-x^4-x^5-x^6), 40) \\ G. C. Greubel, Apr 22 2019
    
  • Python
    def aupton(nn):
      alst = [6, 1, 3, 7, 15, 31]
      for n in range(6, nn+1): alst.append(sum(alst[n-6:n]))
      return alst[:nn+1]
    print(aupton(33)) # Michael S. Branicky, Jun 01 2021
  • Sage
    ((6-5*x-4*x^2-3*x^3-2*x^4-x^5)/(1-x-x^2-x^3-x^4-x^5-x^6)).series(x, 40).coefficients(x, sparse=False) # G. C. Greubel, Apr 22 2019
    

Formula

a(n) = a(n-1) + a(n-2) + a(n-3) + a(n-4) + a(n-5) + a(n-6), a(0)=6, a(1)=1, a(2)=3, a(3)=7, a(4)=15, a(5)=31.
G.f.: (6-5*x-4*x^2-3*x^3-2*x^4-x^5)/(1-x-x^2-x^3-x^4-x^5-x^6).
a(n) = 2*a(n-1) - a(n-7) for n >= 7. - Vincenzo Librandi, Dec 20 2010

A104621 Heptanacci-Lucas numbers.

Original entry on oeis.org

7, 1, 3, 7, 15, 31, 63, 127, 247, 493, 983, 1959, 3903, 7775, 15487, 30847, 61447, 122401, 243819, 485679, 967455, 1927135, 3838783, 7646719, 15231991, 30341581, 60439343, 120393007, 239818559, 477709983, 951581183, 1895515647, 3775799303, 7521257025
Offset: 0

Views

Author

Jonathan Vos Post, Mar 17 2005

Keywords

Comments

This 7th-order linear recurrence is a generalization of the Lucas sequence A000032. Mario Catalani would refer to this is a generalized heptanacci sequence, had he not stopped his series of sequences after A001644 "generalized tribonacci", A073817 "generalized tetranacci", A074048 "generalized pentanacci", A074584 "generalized hexanacci." T. D. Noe and I have noted that each of these has many more primes than the corresponding tribonacci A000073 (see A104576), tetranacci A000288 (see A104577), pentanacci, hexanacci and heptanacci (see A104414). For primes in Heptanacci-Lucas numbers, see A104622. For semiprimes in Heptanacci-Lucas numbers, see A104623.

Crossrefs

Programs

  • Magma
    R:=PowerSeriesRing(Integers(), 40); Coefficients(R!( (-7+6*x+ 5*x^2+4*x^3+3*x^4+2*x^5+x^6)/(-1+x +x^2+x^3+x^4+x^5+x^6+x^7) )); // G. C. Greubel, Apr 22 2019
    
  • Maple
    A104621 := proc(n)
        option remember;
        if n <=6 then
            op(n+1,[7, 1, 3, 7, 15, 31, 63])
        else
            add(procname(n-i),i=1..7) ;
        end if;
    end proc: # R. J. Mathar, Mar 26 2015
  • Mathematica
    a[0]=7; a[1]=1; a[2]=3; a[3]=7; a[4]=15; a[5]=31; a[6]=63; a[n_]:= a[n]= a[n-1]+a[n-2]+a[n-3]+a[n-4]+a[n-5]+a[n-6]+a[n-7]; Table[a[n], {n,0,40}] (* Robert G. Wilson v, Mar 17 2005 *)
    LinearRecurrence[{1, 1, 1, 1, 1, 1, 1}, {7, 1, 3, 7, 15, 31, 63}, 40] (* Vladimir Joseph Stephan Orlovsky, Feb 08 2012 *)
  • PARI
    my(x='x+O('x^40)); Vec((-7+6*x+5*x^2+4*x^3+3*x^4+2*x^5+x^6)/(-1+x +x^2+x^3+x^4+x^5+x^6+x^7)) \\ G. C. Greubel, Dec 18 2017
    
  • PARI
    polsym(polrecip(1-x-x^2-x^3-x^4-x^5-x^6-x^7), 40) \\ G. C. Greubel, Apr 22 2019
    
  • Sage
    ((-7+6*x+5*x^2+4*x^3+3*x^4+2*x^5+x^6)/(-1+x +x^2+x^3+x^4+x^5+x^6 +x^7)).series(x, 41).coefficients(x, sparse=False) # G. C. Greubel, Apr 22 2019

Formula

a(n) = a(n-1) + a(n-2) + a(n-3) + a(n-4) + a(n-5) + a(n-6) + a(n-7); a(0) = 7, a(1) = 1, a(2) = 3, a(3) = 7, a(4) = 15, a(5) = 31, a(6) = 63.
From R. J. Mathar, Nov 16 2007: (Start)
G.f.: (7 - 6*x - 5*x^2 - 4*x^3 - 3*x^4 - 2*x^5 - x^6)/(1 - x - x^2 - x^3 - x^4 - x^5 - x^6 - x^7).
a(n) = 7*A066178(n) - 6*A066178(n-1) - 5*A066178(n-2) - ... - 2*A066178(n-5) - A066178(n-6) if n >= 6. (End)

A105754 Lucas 8-step numbers.

Original entry on oeis.org

1, 3, 7, 15, 31, 63, 127, 255, 502, 1003, 2003, 3999, 7983, 15935, 31807, 63487, 126719, 252936, 504869, 1007735, 2011471, 4014959, 8013983, 15996159, 31928831, 63730943, 127208950, 253913031, 506818327, 1011625183, 2019235407
Offset: 1

Views

Author

T. D. Noe, Apr 22 2005

Keywords

Crossrefs

Cf. A000032, A001644, A073817, A074048, A074584, A104621, A105755 (Lucas n-step numbers).

Programs

  • Mathematica
    a={-1, -1, -1, -1, -1, -1, -1, 8}; Table[s=Plus@@a; a=RotateLeft[a]; a[[ -1]]=s, {n, 50}]
    CoefficientList[Series[-x*(1 + 2*x + 3*x^2 + 4*x^3 + 5*x^4 + 6*x^5 + 7*x^6 + 8*x^7 + 9*x^8)/(-1 + x + x^2 + x^3 + x^4 + x^5 + x^6 + x^7 + x^8 + x^9), {x, 0, 50}], x] (* G. C. Greubel, Dec 18 2017 *)
  • PARI
    a(n)=([0,1,0,0,0,0,0,0; 0,0,1,0,0,0,0,0; 0,0,0,1,0,0,0,0; 0,0,0,0,1,0,0,0; 0,0,0,0,0,1,0,0; 0,0,0,0,0,0,1,0; 0,0,0,0,0,0,0,1; 1,1,1,1,1,1,1,1]^(n-1)*[1;3;7;15;31;63;127;255])[1,1] \\ Charles R Greathouse IV, Jun 14 2015
    
  • PARI
    x='x+O('x^30); Vec(-x*(1 + 2*x + 3*x^2 + 4*x^3 + 5*x^4 + 6*x^5 + 7*x^6 + 8*x^7 + 9*x^8)/(-1 + x + x^2 + x^3 + x^4 + x^5 + x^6 + x^7 + x^8 + x^9)) \\ G. C. Greubel, Dec 18 2017

Formula

a(n) = Sum_{k=1..8} a(n-k) for n > 0, a(0)=8, a(n)=-1 for n=-7..-1.
G.f.: -x*(1 + 2*x + 3*x^2 + 4*x^3 + 5*x^4 + 6*x^5 + 7*x^6 + 8*x^7)/( -1 + x + x^2 + x^3 + x^4 + x^5 + x^6 + x^7 + x^8 ). - R. J. Mathar, Jun 20 2011

A105755 Lucas 9-step numbers.

Original entry on oeis.org

1, 3, 7, 15, 31, 63, 127, 255, 511, 1013, 2025, 4047, 8087, 16159, 32287, 64511, 128895, 257535, 514559, 1028105, 2054185, 4104323, 8200559, 16384959, 32737631, 65410751, 130692607, 261127679, 521740799, 1042453493, 2082852801
Offset: 1

Views

Author

T. D. Noe, Apr 22 2005

Keywords

Crossrefs

Cf. A000032, A001644, A073817, A074048, A074584, A104621, A105754 (Lucas n-step numbers).

Programs

  • Mathematica
    a={-1, -1, -1, -1, -1, -1, -1, -1, 9}; Table[s=Plus@@a; a=RotateLeft[a]; a[[ -1]]=s, {n, 50}]
  • Maxima
    a(n):=n*sum(sum((-1)^i*binomial(k,k-i)*binomial(n-9*i-1,k-1),i,0,(n-k)/9)/k,k,1,n);
    makelist(a(n),n,1,17); /* Vladimir Kruchinin, Aug 10 2011 */
    
  • PARI
    a(n)=([0,1,0,0,0,0,0,0,0; 0,0,1,0,0,0,0,0,0; 0,0,0,1,0,0,0,0,0; 0,0,0,0,1,0,0,0,0; 0,0,0,0,0,1,0,0,0; 0,0,0,0,0,0,1,0,0; 0,0,0,0,0,0,0,1,0; 0,0,0,0,0,0,0,0,1; 1,1,1,1,1,1,1,1,1]^(n-1)*[1;3;7;15;31;63;127;255;511])[1,1] \\ Charles R Greathouse IV, Jun 15 2015

Formula

a(n) = Sum_{k=1..9} a(n-k) for n > 0, a(0)=9, a(n)=-1 for n=-8..-1
G.f.: -x*(1 + 2*x + 3*x^2 + 4*x^3 + 5*x^4 + 6*x^5 + 7*x^6 + 8*x^7 + 9*x^8) / ( -1 + x + x^2 + x^3 + x^4 + x^5 + x^6 + x^7 + x^8 + x^9 ). - R. J. Mathar, Jun 20 2011
a(n) = n*Sum_{k=1..n} (Sum_{i=0..floor((n-k)/9)} (-1)^i*binomial(k, k-i)*binomial(n-9*i-1, k-1))/k. - Vladimir Kruchinin, Aug 10 2011

A106273 Discriminant of the polynomial x^n - x^(n-1) - ... - x - 1.

Original entry on oeis.org

1, 5, -44, -563, 9584, 205937, -5390272, -167398247, 6042477824, 249317139869, -11597205023744, -601139006326619, 34383289858207744, 2151954708695291177, -146323302326154543104, -10742330662077208945103, 846940331265064719417344, 71373256668946058057974997
Offset: 1

Views

Author

T. D. Noe, May 02 2005

Keywords

Comments

This polynomial is the characteristic polynomial of the Fibonacci and Lucas n-step sequences. These discriminants are prime for n=2, 4, 6, 26, 158 (A106274). It appears that the term a(2n+1) always has a factor of 2^(2n). With that factor removed, the discriminants are prime for odd n=3, 5, 7, 21, 99, 405. See A106275 for the combined list.
a(n) is the determinant of an r X r Hankel matrix whose entries are w(i+j) where w(n) = x1^n + x2^n + ... + xr^n where x1,x2,...xr are the roots of the titular characteristic polynomial. E.g., A000032 for n=2, A001644 for n=3, A073817 for n=4, A074048 for n=5, A074584 for n=6, A104621 for n=7, ... - Kai Wang, Jan 17 2021
Luca proves that a(n) is a term of the corresponding k-nacci sequence only for n=2 and 3. - Michel Marcus, Apr 12 2025

Crossrefs

Cf. A086797 (discriminant of the polynomial x^n-x-1), A000045, A000073, A000078, A001591, A001592 (Fibonacci n-step sequences), A000032, A001644, A073817, A074048, A074584, A104621, A105754, A105755 (Lucas n-step sequences), A086937, A106276, A106277, A106278 (number of distinct zeros of these polynomials for n=2, 3, 4, 5).

Programs

  • Mathematica
    Discriminant[p_?PolynomialQ, x_] := With[{n=Exponent[p, x]}, Cancel[((-1)^(n(n-1)/2) Resultant[p, D[p, x], x])/Coefficient[p, x, n]^(2n-1)]]; Table[Discriminant[x^n-Sum[x^i, {i, 0, n-1}], x], {n, 20}]
  • PARI
    {a(n)=(-1)^(n*(n+1)/2)*((n+1)^(n+1)-2*(2*n)^n)/(n-1)^2}  \\ Max Alekseyev, May 05 2005
    
  • PARI
    a(n)=poldisc('x^n-sum(k=0,n-1,'x^k)); \\ Joerg Arndt, May 04 2013

Formula

a(n) = (-1)^(n*(n+1)/2) * ((n+1)^(n+1)-2*(2*n)^n)/(n-1)^2. - Max Alekseyev, May 05 2005

A125127 Array L(k,n) read by antidiagonals: k-step Lucas numbers.

Original entry on oeis.org

1, 1, 1, 1, 3, 1, 1, 3, 4, 1, 1, 3, 7, 7, 1, 1, 3, 7, 11, 11, 1, 1, 3, 7, 15, 21, 18, 1, 1, 3, 7, 15, 26, 39, 29, 1, 1, 3, 7, 15, 31, 51, 71, 47, 1, 1, 3, 7, 15, 31, 57, 99, 131, 76, 1, 1, 3, 7, 15, 31, 63, 113, 191, 241, 123, 1
Offset: 1

Views

Author

Jonathan Vos Post, Nov 21 2006

Keywords

Examples

			Table begins:
1 | 1  1  1   1   1   1    1    1    1    1
2 | 1  3  4   7  11  18   29   47   76  123
3 | 1  3  7  11  21  39   71  131  241  443
4 | 1  3  7  15  26  51   99  191  367  708
5 | 1  3  7  15  31  57  113  223  439  863
6 | 1  3  7  15  31  63  120  239  475  943
7 | 1  3  7  15  31  63  127  247  493  983
8 | 1  3  7  15  31  63  127  255  502 1003
9 | 1  3  7  15  31  63  127  255  511 1013
		

Crossrefs

n-step Lucas number analog of A092921 Array F(k, n) read by antidiagonals: k-generalized Fibonacci numbers (and see related A048887, A048888). L(1, n) = "1-step Lucas numbers" = A000012. L(2, n) = 2-step Lucas numbers = A000204. L(3, n) = 3-step Lucas numbers = A001644. L(4, n) = 4-step Lucas numbers = A001648 Tetranacci numbers A073817 without the leading term 4. L(5, n) = 5-step Lucas numbers = A074048 Pentanacci numbers with initial conditions a(0)=5, a(1)=1, a(2)=3, a(3)=7, a(4)=15. L(6, n) = 6-step Lucas numbers = A074584 Esanacci ("6-anacci") numbers. L(7, n) = 7-step Lucas numbers = A104621 Heptanacci-Lucas numbers. L(8, n) = 8-step Lucas numbers = A105754. L(9, n) = 9-step Lucas numbers = A105755. See A000295, A125129 for comments on partial sums of diagonals.

Programs

  • Sage
    def L(k, n):
        if n < 0:
            return -1
        a = [-1]*(k-1) + [k] # [-1, -1, ..., -1, k]
        for i in range(1, n+1):
            a[:] = a[1:] + [sum(a)]
        return a[-1]
    [L(k, n) for d in (1..12) for k, n in zip((d..1, step=-1), (1..d))] # Freddy Barrera, Jan 10 2019

Formula

L(k,n) = L(k,n-1) + L(k,n-2) + ... + L(k,n-k); L(k,n) = -1 for n < 0, and L(k,0) = k.
G.f. for row k: x*(dB(k,x)/dx)/(1-B(k,x)), where B(k,x) = x + x^2 + ... + x^k. - Petros Hadjicostas, Jan 24 2019

Extensions

Corrected by Freddy Barrera, Jan 10 2019

A280218 Number of binary necklaces of length n with no subsequence 0000.

Original entry on oeis.org

1, 2, 3, 5, 6, 11, 15, 27, 43, 75, 125, 228, 391, 707, 1262, 2285, 4119, 7525, 13691, 25111, 46033, 84740, 156123, 288529, 533670, 989305, 1835983, 3412885, 6351031, 11834623, 22074821, 41222028, 77048131, 144148859, 269913278, 505826391, 948652695, 1780473001, 3343960175, 6284560319, 11818395345
Offset: 1

Views

Author

Petros Hadjicostas, Dec 29 2016

Keywords

Comments

a(n) is the number of cyclic sequences of length n consisting of zeros and ones that do not contain four consecutive zeros provided we consider as equivalent those sequences that are cyclic shifts of each other.

Examples

			a(5)=6 because we have six binary cyclic sequences of length 5 that avoid four consecutive zeros: 00011, 00101, 00111, 01101, 01111, 11111.
		

Crossrefs

Programs

  • Mathematica
    Table[(1/n) Sum[EulerPhi[n/d] SeriesCoefficient[(4 - 3 x - 2 x^2 - x^3)/(1 - x - x^2 - x^3 - x^4), {x, 0, d}], {d, Divisors@ n}], {n, 41}] (* Michael De Vlieger, Dec 30 2016 *)
  • PARI
    N=44; x='x+O('x^N);
    B(x)=x*(1+x+x^2+x^3);
    Vec(sum(k=1, N, eulerphi(k)/k * log(1/(1-B(x^k))))) \\ Joerg Arndt, Dec 29 2016

Formula

a(n) = (1/n) * Sum_{d divides n} totient(n/d) * A073817(d).
G.f.: Sum_{k>=1} (phi(k)/k) * log(1/(1-B(x^k))) where B(x) = x*(1+x+x^2+x^3).
Previous Showing 11-20 of 41 results. Next