cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 36 results. Next

A098648 Expansion of (1-3*x)/(1 - 6*x + 4*x^2).

Original entry on oeis.org

1, 3, 14, 72, 376, 1968, 10304, 53952, 282496, 1479168, 7745024, 40553472, 212340736, 1111830528, 5821620224, 30482399232, 159607914496, 835717890048, 4375875682304, 22912382533632, 119970792472576, 628175224700928, 3289168178315264, 17222308171087872
Offset: 0

Views

Author

Paul Barry, Sep 18 2004

Keywords

Comments

Binomial transform of A001077. Second binomial transform of A084057. Third binomial transform of 1/(1-5*x^2). Let A=[1,1,1,1;3,1,-1,-3;3,-1,-1,3;1,-1,1,-1], the 4 X 4 Krawtchouk matrix. Then a(n)=trace((16(A*A`)^(-1))^n)/4.

Crossrefs

Cf. A098647.

Programs

  • Mathematica
    a[n_]:=(MatrixPower[{{5,1},{1,1}},n].{{2},{1}})[[2,1]]; Table[a[n],{n,0,40}] (* Vladimir Joseph Stephan Orlovsky, Feb 20 2010 *)
    CoefficientList[Series[(1-3x)/(1-6x+4x^2),{x,0,30}],x] (* or *) LinearRecurrence[{6,-4},{1,3},31] (* Harvey P. Dale, Jun 06 2011 *)
    Table[2^(n - 1) LucasL[2 n], {n, 0, 20}] (* Eric W. Weisstein, Mar 31 2017 *)
  • PARI
    Vec((1-3*x)/(1 - 6*x + 4*x^2) + O(x^25)) \\ Jinyuan Wang, Jul 24 2021

Formula

E.g.f.: exp(3*x)*cosh(sqrt(5)*x).
a(n) = ((3-sqrt(5))^n + (3+sqrt(5))^n)/2.
a(n) = 2*(3*a(n-1) - 2*a(n-2)). - Lekraj Beedassy, Oct 22 2004
a(n) = A084326(n+1) - 3*A084326(n). - R. J. Mathar, Nov 10 2013
a(n) = 2^(n-1)*Lucas(2*n) = 2^(n-1)*A005248(n), n>0. - Eric W. Weisstein, Mar 31 2017

A124182 A skewed version of triangular array A081277.

Original entry on oeis.org

1, 0, 1, 0, 1, 2, 0, 0, 3, 4, 0, 0, 1, 8, 8, 0, 0, 0, 5, 20, 16, 0, 0, 0, 1, 18, 48, 32, 0, 0, 0, 0, 7, 56, 112, 64, 0, 0, 0, 0, 1, 32, 160, 256, 128, 0, 0, 0, 0, 0, 9, 120, 432, 576, 256, 0, 0, 0, 0, 0, 1, 50, 400, 1120, 1280, 512
Offset: 0

Views

Author

Philippe Deléham, Dec 05 2006

Keywords

Comments

Triangle T(n,k), 0 <= k <= n, read by rows given by [0, 1, -1, 0, 0, 0, 0, 0, 0, ...] DELTA [1, 1, 0, 0, 0, 0, 0, 0, 0,...] where DELTA is the operator defined in A084938. Falling diagonal sums in A052980.

Examples

			Triangle begins:
  1;
  0, 1;
  0, 1, 2;
  0, 0, 3, 4;
  0, 0, 1, 8,  8;
  0, 0, 0, 5, 20, 16;
  0, 0, 0, 1, 18, 48,  32;
  0, 0, 0, 0,  7, 56, 112,  64;
  0, 0, 0, 0,  1, 32, 160, 256,  128;
  0, 0, 0, 0,  0,  9, 120, 432,  576,  256;
  0, 0, 0, 0,  0,  1,  50, 400, 1120, 1280, 512;
		

Crossrefs

Cf. A025192 (column sums). Diagonals include A011782, A001792, A001793, A001794, A006974, A006975, A006976.

Formula

T(0,0)=T(1,1)=1, T(n,k)=0 if n < k or if k < 0, T(n,k) = T(n-2,k-1) + 2*T(n-1,k-1).
Sum_{k=0..n} x^k*T(n,k) = (-1)^n*A090965(n), (-1)^n*A084120(n), (-1)^n*A006012(n), A033999(n), A000007(n), A001333(n), A084059(n) for x = -4, -3, -2, -1, 0, 1, 2 respectively.
Sum_{k=0..floor(n/2)} T(n-k,k) = Fibonacci(n-1) = A000045(n-1).
Sum_{k=0..n} T(n,k)*x^(n-k) = A000012(n), A011782(n), A001333(n), A026150(n), A046717(n), A084057(n), A002533(n), A083098(n), A084058(n), A003665(n), A002535(n), A133294(n), A090042(n), A125816(n), A133343(n), A133345(n), A120612(n), A133356(n), A125818(n) for x = -1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17 respectively. - Philippe Deléham, Dec 26 2007
Sum_{k=0..n} T(n,k)*(-x)^(n-k) = A011782(n), A000012(n), A146559(n), A087455(n), A138230(n), A006495(n), A138229(n) for x= 0,1,2,3,4,5,6 respectively. - Philippe Deléham, Nov 14 2008
G.f.: (1-y*x)/(1-2y*x-y*x^2). - Philippe Deléham, Dec 04 2011
Sum_{k=0..n} T(n,k)^2 = A002002(n) for n > 0. - Philippe Deléham, Dec 04 2011

A108306 Expansion of (3*x+1)/(1-3*x-3*x^2).

Original entry on oeis.org

1, 6, 21, 81, 306, 1161, 4401, 16686, 63261, 239841, 909306, 3447441, 13070241, 49553046, 187869861, 712268721, 2700415746, 10238053401, 38815407441, 147160382526, 557927369901, 2115263257281, 8019571881546, 30404505416481, 115272231894081
Offset: 0

Views

Author

Creighton Dement, Jul 24 2005

Keywords

Comments

Binomial transform is A055271. May be seen as a ibasefor-transform of the zero-sequence A000004 with respect to the floretion given in the program code.
The sequence is the INVERT transform of (1, 5, 10, 20, 40, 80, 160, ...) and can be obtained by extracting the upper left terms of matrix powers of [(1,5); (1,2)]. These results are a case (a=5, b=2) of the conjecture: The INVERT transform of a sequence starting (1, a, a*b, a*b^2, a*b^3, ...) is equivalent to extracting the upper left terms of powers of the 2x2 matrix [(1,a); (1,b)]. - Gary W. Adamson, Jul 31 2016
From Klaus Purath, Mar 09 2023: (Start)
For any terms (a(n), a(n+1)) = (x, y), -3*x^2 - 3*x*y + y^2 = 15*(-3)^n = A082111(2)*(-3)^n. This is valid in general for all recursive sequences (t) with constant coefficients (3,3) and t(0) = 1: -3*x^2 - 3*x*y + y^2 = A082111(t(1)-4)*(-3)^n.
By analogy to this, for three consecutive terms (x, y, z) of any sequence (t) of the form (3,3) with t(0) = 1: y^2 - x*z = A082111(t(1)-4)*(-3)^n. (End)

Crossrefs

Cf. A055271.
Cf. A084057.

Programs

  • Magma
    I:=[1,6]; [n le 2 select I[n] else 3*Self(n-1)+3*Self(n-2): n in [1..30]]; // Vincenzo Librandi, Aug 01 2016
  • Maple
    seriestolist(series((3*x+1)/(1-3*x-3*x^2), x=0,25));
  • Mathematica
    CoefficientList[Series[(3 x + 1) / (1 - 3 x - 3 x^2), {x, 0, 40}], x] (* Vincenzo Librandi, Aug 01 2016 *)

Formula

Recurrence: a(0)=1; a(1)=6; a(n) = 3a(n-1) + 3a(n-2) - N-E. Fahssi, Apr 20 2008

A164549 a(n) = 4*a(n-1) + 2*a(n-2) for n > 1; a(0) = 1, a(1) = 6.

Original entry on oeis.org

1, 6, 26, 116, 516, 2296, 10216, 45456, 202256, 899936, 4004256, 17816896, 79276096, 352738176, 1569504896, 6983495936, 31072993536, 138258966016, 615181851136, 2737245336576, 12179345048576, 54191870867456
Offset: 0

Views

Author

Klaus Brockhaus, Aug 15 2009

Keywords

Comments

Binomial transform of A123011. Inverse binomial transform of A164550.
INVERT transform of the sequence (1, 5, 5*3, 5*3^2, 5*3^3, 5*3^4, ...); i.e., of (1, 5, 15, 45, 135, 405, ...). The sequence can also be obtained by extracting the upper left terms in matrix powers of [(1,5); (1,3)]. - Gary W. Adamson, Jul 31 2016
The sequence is A090017 (1, 4, 18, 80, 356, ...) convolved with (1, 2, 0, 0, 0, ...). Also, the upper left terms extracted from matrix powers of [(1,5); (1,3)]. - Gary W. Adamson, Aug 20 2016

Crossrefs

Programs

  • Magma
    [ n le 2 select 5*n-4 else 4*Self(n-1)+2*Self(n-2): n in [1..22] ];
    
  • Mathematica
    LinearRecurrence[{4,2},{1,6},30] (* Harvey P. Dale, Mar 16 2013 *)
    CoefficientList[Series[(1 +2x)/(1 -4x -2x^2), {x, 0, 24}], x] (* Michael De Vlieger, Aug 02 2016 *)
  • PARI
    Vec((1+2*x)/(1-4*x-2*x^2) + O(x^30)) \\ Michel Marcus, Feb 04 2016
    
  • Sage
    [(i*sqrt(2))^n*(chebyshev_U(n, -i*sqrt(2)) - sqrt(2)*i*chebyshev_U(n-1, -i*sqrt(2))) for n in (0..30)] # G. C. Greubel, Jul 16 2021

Formula

a(n) = ((3+2*sqrt(6))*(2+sqrt(6))^n + (3-2*sqrt(6))*(2-sqrt(6))^n)/6.
G.f.: (1+2*x)/(1-4*x-2*x^2).
a(n) = (i*sqrt(2))^n*(ChebyshevU(n, -i*sqrt(2)) - sqrt(2)*i*ChebyshevU(n-1, -i*sqrt(2))). - G. C. Greubel, Jul 16 2021

A201701 Riordan triangle ((1-x)/(1-2*x), x^2/(1-2*x)).

Original entry on oeis.org

1, 1, 0, 2, 1, 0, 4, 3, 0, 0, 8, 8, 1, 0, 0, 16, 20, 5, 0, 0, 0, 32, 48, 18, 1, 0, 0, 0, 64, 112, 56, 7, 0, 0, 0, 0, 128, 256, 160, 32, 1, 0, 0, 0, 0, 256, 576, 432, 120, 9, 0, 0, 0, 0, 0, 512, 1280, 1120, 400, 50, 1, 0, 0, 0, 0, 0
Offset: 0

Views

Author

Philippe Deléham, Dec 03 2011

Keywords

Comments

Triangle T(n,k), read by rows, given by (1,1,0,0,0,0,0,0,0,...) DELTA (0,1,-1,0,0,0,0,0,0,0,...) where DELTA is the operator defined in A084938.
Skewed version of triangle in A200139.
Triangle without zeros: A207537.
For the version with negative odd numbered columns, which is Riordan ((1-x)/(1-2*x), -x^2/(1-2*x)) see comments on A028297 and A039991. - Wolfdieter Lang, Aug 06 2014
This is an example of a stretched Riordan array in the terminology of Section 2 of Corsani et al. - Peter Bala, Jul 14 2015

Examples

			The triangle T(n,k) begins:
  n\k      0     1     2     3     4    5   6  7 8 9 10 11 ...
  0:       1
  1:       1     0
  2:       2     1     0
  3:       4     3     0     0
  4:       8     8     1     0     0
  5:      16    20     5     0     0    0
  6:      32    48    18     1     0    0   0
  7:      64   112    56     7     0    0   0  0
  8:     128   256   160    32     1    0   0  0 0
  9:     256   576   432   120     9    0   0  0 0 0
  10:    512  1280  1120   400    50    1   0  0 0 0  0
  11:   1024  2816  2816  1232   220   11   0  0 0 0  0  0
  ...  reformatted and extended. - _Wolfdieter Lang_, Aug 06 2014
		

Crossrefs

Diagonals sums are in A052980.
Cf. A028297, A081265, A124182, A131577, A039991 (zero-columns deleted, unsigned and zeros appended).
Cf. A028297 (signed version, zeros deleted). Cf. A034839.

Programs

  • Mathematica
    (* The function RiordanArray is defined in A256893. *)
    RiordanArray[(1 - #)/(1 - 2 #)&, #^2/(1 - 2 #)&, 11] // Flatten (* Jean-François Alcover, Jul 16 2019 *)

Formula

T(n,k) = 2*T(n-1,k) + T(n-2,k-1) with T(0,0) = T(1,0) = 1, T(1,1) = 0 and T(n,k) = 0 for k<0 or for n
Sum_{k=0..n} T(n,k)^2 = A002002(n) for n>0.
Sum_{k=0..n} T(n,k)*x^k = A138229(n), A006495(n), A138230(n), A087455(n), A146559(n), A000012(n), A011782(n), A001333(n), A026150(n), A046717(n), A084057(n), A002533(n), A083098(n), A084058(n), A003665(n), A002535(n), A133294(n), A090042(n), A125816(n), A133343(n), A133345(n), A120612(n), A133356(n), A125818(n) for x = -6,-5,-4,-3,-2,-1,0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17 respectively.
G.f.: (1-x)/(1-2*x-y*x^2). - Philippe Deléham, Mar 03 2012
From Peter Bala, Jul 14 2015: (Start)
Factorizes as A034839 * A007318 = (1/(1 - x), x^2/(1 - x)^2) * (1/(1 - x), x/(1 - x)) as a product of Riordan arrays.
T(n,k) = Sum_{i = k..floor(n/2)} binomial(n,2*i) *binomial(i,k). (End)

Extensions

Name changed, keyword:easy added, crossrefs A028297 and A039991 added, and g.f. corrected by Wolfdieter Lang, Aug 06 2014

A108404 Expansion of (1-4x)/(1-8x+11x^2).

Original entry on oeis.org

1, 4, 21, 124, 761, 4724, 29421, 183404, 1143601, 7131364, 44471301, 277325404, 1729418921, 10784771924, 67254567261, 419404046924, 2615432135521, 16310012568004, 101710347053301, 634272638178364, 3955367287840601
Offset: 0

Author

Philippe Deléham, Jul 04 2005

Keywords

Comments

Binomial transform of A098648. Second binomial transform of A001077. Third binomial transform of A084057. 4th binomial transform of (1, 0, 5, 0, 25, 0, 125, 0, 625, 0, 3125, ...).

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[(1-4x)/(1-8x+11x^2),{x,0,30}],x] (* or *) LinearRecurrence[{8,-11},{1,4},30] (* Harvey P. Dale, Jan 03 2012 *)

Formula

E.g.f.: exp(4x)cosh(sqrt(5)x).
a(n) = 8a(n-1) - 11a(n-2), a(0) = 1, a(1) = 4.
a(n) = ((4+sqrt(5))^n + (4-sqrt(5))^n)/2.
a(n+1)/a(n) converges to 4 + sqrt(5) = 6.2360679774997896964... = 4+A002163.
a(n) = A091870(n+1)-4*A091870(n). - R. J. Mathar, Nov 10 2013

A162516 Triangle of coefficients of polynomials defined by Binet form: P(n,x) = ((x+d)^n + (x-d)^n)/2, where d=sqrt(x+4).

Original entry on oeis.org

1, 1, 0, 1, 1, 4, 1, 3, 12, 0, 1, 6, 25, 8, 16, 1, 10, 45, 40, 80, 0, 1, 15, 75, 121, 252, 48, 64, 1, 21, 119, 287, 644, 336, 448, 0, 1, 28, 182, 588, 1457, 1360, 1888, 256, 256, 1, 36, 270, 1092, 3033, 4176, 6240, 2304, 2304, 0, 1, 45, 390, 1890, 5925, 10801, 17780, 11680, 12160, 1280, 1024
Offset: 0

Author

Clark Kimberling, Jul 05 2009

Keywords

Examples

			First six rows:
  1;
  1,  0;
  1,  1,  4;
  1,  3, 12,  0;
  1,  6, 25,  8, 16;
  1, 10, 48, 40, 80, 0;
		

Crossrefs

For fixed k, the sequences P(n,k), for n=1,2,3,4,5, are A084057, A084059, A146963, A081342, A081343, respectively.

Programs

  • Magma
    m:=12;
    p:= func< n,x | ((x+Sqrt(x+4))^n + (x-Sqrt(x+4))^n)/2 >;
    R:=PowerSeriesRing(Rationals(), m+1);
    T:= func< n,k | Coefficient(R!( p(n,x) ), n-k) >;
    [T(n,k): k in [0..n], n in [0..m]]; // G. C. Greubel, Jul 09 2023
    
  • Mathematica
    P[n_, x_]:= P[n, x]= ((x+Sqrt[x+4])^n + (x-Sqrt[x+4])^n)/2;
    T[n_, k_]:= Coefficient[Series[P[n, x], {x,0,n-k+1}], x, n-k];
    Table[T[n, k], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Jan 08 2020; Jul 09 2023 *)
  • SageMath
    def p(n,x): return ((x+sqrt(x+4))^n + (x-sqrt(x+4))^n)/2
    def T(n,k):
        P. = PowerSeriesRing(QQ)
        return P( p(n,x) ).list()[n-k]
    flatten([[T(n,k) for k in range(n+1)] for n in range(13)]) # G. C. Greubel, Jul 09 2023

Formula

P(n,x) = 2*x*P(n-1,x) - (x^2 -x -4)*P(n-2,x).
From G. C. Greubel, Jul 09 2023: (Start)
T(n, k) = [x^(n-k)] ( ((x+sqrt(x+4))^n + (x-sqrt(x+4))^n)/2 ).
T(n, 1) = A000217(n-1), n >= 1.
T(n, n) = A199572(n).
Sum_{k=0..n} T(n, k) = A084057(n).
Sum_{k=0..n} 2^k*T(n, k) = A125818(n).
Sum_{k=0..n} (-1)^k*T(n, k) = A026150(n).
Sum_{k=0..n} (-2)^k*T(n, k) = A133343(n). (End)

A052899 Expansion of g.f.: (1-2*x) / ((x-1)*(4*x^2+2*x-1)).

Original entry on oeis.org

1, 1, 5, 13, 45, 141, 461, 1485, 4813, 15565, 50381, 163021, 527565, 1707213, 5524685, 17878221, 57855181, 187223245, 605867213, 1960627405, 6344723661, 20531956941, 66442808525, 215013444813, 695798123725, 2251650026701, 7286492548301, 23579585203405, 76305140600013
Offset: 0

Author

encyclopedia(AT)pommard.inria.fr, Jan 25 2000

Keywords

Comments

From L. Edson Jeffery, Apr 19 2011: (Start)
Let A be the unit-primitive matrix (see [Jeffery])
A = A_(10,4) =
(0 0 0 0 1)
(0 0 0 2 0)
(0 0 2 0 1)
(0 2 0 2 0)
(2 0 2 0 1).
Then a(n) = (1/5)*trace(A^n). (End)
a(n-1)+1 is the number of paths to reach a position outside a 4 X 4 chessboard after n steps, starting in one of the corners, when performing a walk with unit steps on the square lattice. - Ruediger Jehn, Oct 10 2024

Crossrefs

Cf. A084057.

Programs

  • Magma
    [(1/5)*(2^(n+1)*Lucas(n)+1): n in [0..50]]; // Vincenzo Librandi, Apr 20 2011
    
  • Maple
    spec := [S,{S=Sequence(Prod(Union(Sequence(Union(Z,Z)),Z,Z),Z))},unlabeled]: seq(combstruct[count](spec,size=n), n=0..20);
  • Mathematica
    CoefficientList[Series[(1-2x)/((x-1)(4x^2+2x-1)),{x,0,40}],x] (* or *) LinearRecurrence[{3,2,-4},{1,1,5},40] (* Harvey P. Dale, Jul 10 2017 *)
  • Maxima
    makelist(coeff(taylor((1-2*x)/(1-3*x-2*x^2+4*x^3),x,0,n),x,n),n,0,25); /* Bruno Berselli, May 30 2011 */
  • Sage
    from sage.combinat.sloane_functions import recur_gen2b
    it = recur_gen2b(1,1,2,4, lambda n:-1)
    [next(it) for i in range(1,28)] # Zerinvary Lajos, Jul 09 2008
    

Formula

Recurrence: {a(1)=1, a(0)=1, -4*a(n) - 2*a(n+1) + a(n+2) + 1 = 0}.
a(n) = Sum((-1/25)*(-1-8*_alpha+4*_alpha^2)*_alpha^(-1-n), _alpha=RootOf(1-3*_Z-2*_Z^2+4*_Z^3)).
a(n)/a(n-1) tends to (1 + sqrt(5)) = 3.236067... - Gary W. Adamson, Mar 01 2008
a(n) = (1/5) * Sum_{k=1..5} ((x_k)^4-3*(x_k)^2+1), x_k=2*cos((2*k-1)*Pi/10). Also, a(n)/a(n-1) -> spectral radius of matrix A_(10,4) above. - L. Edson Jeffery, Apr 19 2011
a(n) = (2*A087131(n)+1)/5. - Bruno Berselli, Apr 20 2011
a(n) = (2/5)*((1+sqrt(5))^n + (1-sqrt(5))^n + 1/2). - Ruediger Jehn, Sep 29 2024
E.g.f.: exp(x)*(1 + 4*cosh(sqrt(5)*x))/5. - Stefano Spezia, Oct 02 2024

Extensions

More terms from James Sellers, Jun 08 2000

A202023 Triangle T(n,k), read by rows, given by (1, 0, 1, 0, 0, 0, 0, 0, 0, 0, ...) DELTA (0, 1, -1, 0, 0, 0, 0, 0, 0, 0, ...) where DELTA is the operator defined in A084938.

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 1, 3, 0, 0, 1, 6, 1, 0, 0, 1, 10, 5, 0, 0, 0, 1, 15, 15, 1, 0, 0, 0, 1, 21, 35, 7, 0, 0, 0, 0, 1, 28, 70, 28, 1, 0, 0, 0, 0, 1, 36, 126, 84, 9, 0, 0, 0, 0, 0, 1, 45, 210, 210, 45, 1, 0, 0, 0, 0, 0
Offset: 0

Author

Philippe Deléham, Dec 10 2011

Keywords

Comments

Riordan array (1/(1-x), x^2/(1-x)^2).
A skewed version of triangular array A085478.
Mirror image of triangle in A098158.
Sum_{k, 0<=k<=n} T(n,k)*x^k = A138229(n), A006495(n), A138230(n),A087455(n), A146559(n), A000012(n), A011782(n), A001333(n),A026150(n), A046717(n), A084057(n), A002533(n), A083098(n),A084058(n), A003665(n), A002535(n), A133294(n), A090042(n),A125816(n), A133343(n), A133345(n), A120612(n), A133356(n), A125818(n) for x = -5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18 respectively.
Sum_{k, 0<=k<=n} T(n,k)*x^(n-k) = A009116(n), A000007(n), A011782(n), A006012(n), A083881(n), A081335(n), A090139(n), A145301(n), A145302(n), A145303(n), A143079(n) for x = -1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 respectively.
From Gus Wiseman, Jul 08 2025: (Start)
After the first row this is also the number of subsets of {1..n-1} with k maximal runs (sequences of consecutive elements increasing by 1) for k = 0..n. For example, row n = 5 counts the following subsets:
{} {1} {1,3} . . .
{2} {1,4}
{3} {2,4}
{4} {1,2,4}
{1,2} {1,3,4}
{2,3}
{3,4}
{1,2,3}
{2,3,4}
{1,2,3,4}
Requiring n-1 gives A202064.
For anti-runs instead of runs we have A384893.
(End)

Examples

			Triangle begins :
1
1, 0
1, 1, 0
1, 3, 0, 0
1, 6, 1, 0, 0
1, 10, 5, 0, 0, 0
1, 15, 15, 1, 0, 0, 0
1, 21, 35, 7, 0, 0, 0, 0
1, 28, 70, 28, 1, 0, 0, 0, 0
		

Crossrefs

Column k = 1 is A000217.
Column k = 2 is A000332.
Row sums are A011782 (or A000079 shifted right).
Removing all zeros gives A034839 (requiring n-1 A034867).
Last nonzero term in each row appears to be A093178, requiring n-1 A124625.
Reversing rows gives A098158, without zeros A109446.
Without the k = 0 column we get A210039.
Row maxima appear to be A214282.
A116674 counts strict partitions by number of maximal runs, for anti-runs A384905.
A268193 counts integer partitions by number of maximal runs, for anti-runs A384881.

Programs

  • Mathematica
    Table[Length[Select[Subsets[Range[n-1]],Length[Split[#,#2==#1+1&]]==k&]],{n,0,10},{k,0,n}] (* Gus Wiseman, Jul 08 2025 *)

Formula

T(n,k) = binomial(n,2k).
G.f.: (1-x)/((1-x)^2-y*x^2).
T(n,k)= Sum_{j, j>=0} T(n-1-j,k-1)*j with T(n,0)=1 and T(n,k)= 0 if k<0 or if n
T(n,k) = 2*T(n-1,k) + T(n-2,k-1) - T(n-2,k) for n>1, T(0,0) = T(1,0) = 1, T(1,1) = 0, T(n,k) = 0 if k>n or if k<0. - Philippe Deléham, Nov 10 2013

A084097 Square array whose rows have e.g.f. exp(x)*cosh(sqrt(k)*x), k>=0, read by ascending antidiagonals.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 3, 4, 1, 1, 1, 4, 7, 8, 1, 1, 1, 5, 10, 17, 16, 1, 1, 1, 6, 13, 28, 41, 32, 1, 1, 1, 7, 16, 41, 76, 99, 64, 1, 1, 1, 8, 19, 56, 121, 208, 239, 128, 1, 1, 1, 9, 22, 73, 176, 365, 568, 577, 256, 1, 1, 1, 10, 25, 92, 241, 576, 1093, 1552, 1393, 512, 1
Offset: 0

Author

Paul Barry, May 11 2003

Keywords

Comments

Rows are the binomial transforms of expansions of cosh(sqrt(k)*x), k >= 0.

Examples

			Array, A(n,k), begins:
.n\k.........0..1...2...3....4.....5......6......7.......8........9.......10
.0: A000012..1..1...1...1....1.....1......1......1.......1........1........1
.1: A000079..1..1...2...4....8....16.....32.....64.....128......256......512
.2: A001333..1..1...3...7...17....41.....99....239.....577.....1393.....3363
.3: A026150..1..1...4..10...28....76....208....568....1552.....4240....11584
.4: A046717..1..1...5..13...41...121....365...1093....3281.....9841....29525
.5: A084057..1..1...6..16...56...176....576...1856....6016....19456....62976
.6: A002533..1..1...7..19...73...241....847...2899...10033....34561...119287
.7: A083098..1..1...8..22...92...316...1184...4264...15632....56848...207488
.8: A084058..1..1...9..25..113...401...1593...5993...23137....88225...338409
.9: A003665..1..1..10..28..136...496...2080...8128...32896...130816...524800
10: A002535..1..1..11..31..161...601...2651..10711...45281...186961...781451
11: A133294..1..1..12..34..188...716...3312..13784...60688...259216..1125312
12: A090042..1..1..13..37..217...841...4069..17389...79537...350353..1575613
13: A125816..1..1..14..40..248...976...4928..21568..102272...463360..2153984
14: A133343..1..1..15..43..281..1121...5895..26363..129361...601441..2884575
15: A133345..1..1..16..46..316..1276...6976..31816..161296...768016..3794176
16: A120612..1..1..17..49..353..1441...8177..37969..198593...966721..4912337
17: A133356..1..1..18..52..392..1616...9504..44864..241792..1201408..6271488
18: A125818..1..1..19..55..433..1801..10963..52543..291457..1476145..7907059
25: A083578
- _Robert G. Wilson v_, Jan 02 2013
Antidiagonal triangle, T(n,k), begins:
  1;
  1,  1;
  1,  1,  1;
  1,  1,  2,  1;
  1,  1,  3,  4,  1;
  1,  1,  4,  7,  8,   1;
  1,  1,  5, 10, 17,  16,   1;
  1,  1,  6, 13, 28,  41,  32,    1;
  1,  1,  7, 16, 41,  76,  99,   64,    1;
  1,  1,  8, 19, 56, 121, 208,  239,  128,    1;
  1,  1,  9, 22, 73, 176, 365,  568,  577,  256,   1;
  1,  1, 10, 25, 92, 241, 576, 1093, 1552, 1393, 512,  1;
		

Programs

  • Magma
    function A084097(n,k)
      if k eq 0 then return 1;
      else return k*2^(k-1)*(&+[ Binomial(k-j,j)*((n-k-1)/4)^j/(k-j): j in [0..Floor(k/2)]]);
      end if; return A084097; end function;
    [A084097(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Oct 15 2022
    
  • Mathematica
    T[j_, k_] := Expand[((1 + Sqrt[j])^k + (1 - Sqrt[j])^k)/2]; T[1, 0] = 1; Table[ T[j - k, k], {j, 0, 11}, {k, 0, j}] // Flatten (* Robert G. Wilson v, Jan 02 2013 *)
  • SageMath
    def A084097(n,k):
        if (k==0): return 1
        else: return k*2^(k-1)*sum( binomial(k-j,j)*((n-k-1)/4)^j/(k-j) for j in range( (k+2)//2 ) )
    flatten([[A084097(n,k) for k in range(n+1)] for n in range(15)]) # G. C. Greubel, Oct 15 2022

Formula

From Robert G. Wilson v, Jan 02 2013: (Start)
A(n, k) = (1/2)*( (1 + sqrt(n))^k + (1 - sqrt(n))^k ) (array).
T(n, k) = A(n-k, k). (End)
T(n, k) = Sum_{j=0..floor(k/2)} binomial(k-j, j)*((n-k-1)/4)^j/(k-j), with T(n, 0) = 1 (antidiagonal triangle T(n,k)). - G. C. Greubel, Oct 15 2022

Extensions

Edited by N. J. A. Sloane, Jul 14 2010
Previous Showing 21-30 of 36 results. Next