cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 41 results. Next

A086729 Decimal expansion of Pi^2/72.

Original entry on oeis.org

1, 3, 7, 0, 7, 7, 8, 3, 8, 9, 0, 4, 0, 1, 8, 8, 6, 9, 7, 0, 6, 0, 3, 4, 5, 9, 7, 2, 2, 0, 5, 0, 2, 0, 9, 9, 1, 0, 1, 5, 7, 9, 1, 5, 8, 4, 3, 3, 8, 9, 9, 8, 6, 9, 8, 1, 1, 2, 9, 6, 5, 1, 9, 1, 1, 4, 1, 6, 7, 2, 8, 9, 2, 0, 0, 2, 6, 6, 7, 3, 9, 4, 8, 6, 1, 3, 5, 7, 4, 1, 7, 1, 8, 3, 1, 3, 2, 2, 5
Offset: 0

Views

Author

N. J. A. Sloane, Jul 31 2003

Keywords

Comments

The original name was: Decimal expansion of Sum_{m=0..infinity} 1/(6*m+3)^2.

Examples

			0.1370778389040188697...
		

References

  • L. Fejes Toth, Lagerungen in der Ebene, auf der Kugel und im Raum, 2nd. ed., Springer-Verlag, Berlin, Heidelberg 1972; see p. 213.

Crossrefs

Programs

Formula

Equals A111003/9. - R. J. Mathar, Dec 18 2010
From Amiram Eldar, Jul 19 2020: (Start)
Sum_{k>=0} (1/(12*k+3)^2 + 1/(12*k+9)^2).
Equals Integral_{x=1..oo} log(1 + 1/x^6)/x dx. (End)
Equals A353908/2. - Omar E. Pol, May 12 2022

Extensions

New name after R. J. Mathar's Maple program. - Omar E. Pol, May 12 2022

A168277 a(n) = 2*n - (-1)^n - 2.

Original entry on oeis.org

1, 1, 5, 5, 9, 9, 13, 13, 17, 17, 21, 21, 25, 25, 29, 29, 33, 33, 37, 37, 41, 41, 45, 45, 49, 49, 53, 53, 57, 57, 61, 61, 65, 65, 69, 69, 73, 73, 77, 77, 81, 81, 85, 85, 89, 89, 93, 93, 97, 97, 101, 101, 105, 105, 109, 109, 113, 113, 117, 117, 121, 121, 125, 125, 129, 129
Offset: 1

Views

Author

Vincenzo Librandi, Nov 22 2009

Keywords

Crossrefs

Cf. A006752, A111003 (Pi^2/8).

Programs

Formula

a(n) = 4*n - a(n-1) - 6, with n>1, a(1)=1.
a(n) = A163980(n-1), n>1. - R. J. Mathar, Nov 25 2009
G.f.: x*(1 + 3*x^2)/( (1+x)*(x-1)^2 ). - R. J. Mathar, Jul 15 2013
a(n) = A168276(n) - 1. - Vincenzo Librandi, Sep 17 2013
a(n) = a(n-1) +a(n-2) -a(n-3). - Vincenzo Librandi, Sep 17 2013
E.g.f.: (-1 + 3*exp(x) + 2*(x - 1)*exp(2*x))*exp(-x). - G. C. Greubel, Jul 16 2016
Sum_{n>=1} 1/a(n)^2 = Pi^2/8 + G, where G is Catalan's constant (A006752). - Amiram Eldar, Aug 21 2022

Extensions

New definition from Bruno Berselli, Sep 17 2013

A275647 Decimal expansion of Pi^2/6 - Sum_{k>=1} 1/prime(k)^2.

Original entry on oeis.org

1, 1, 9, 2, 6, 8, 6, 6, 4, 6, 8, 0, 7, 1, 6, 0, 9, 3, 7, 9, 6, 5, 8, 7, 1, 8, 0, 1, 8, 1, 3, 7, 7, 7, 2, 5, 5, 0, 4, 5, 7, 1, 8, 5, 5, 7, 9, 6, 6, 9, 0, 6, 0, 1, 5, 9, 9, 9, 1, 3, 9, 2, 9, 9, 0, 1, 8, 8, 4, 2, 4, 4, 3, 0, 3, 9, 2, 8, 9, 9, 9, 9, 3, 8, 4, 6, 7, 1, 3, 5, 6, 2, 6, 4, 8, 5, 1, 8, 4, 7, 0, 8, 1, 1, 9, 8, 0, 9, 1, 2, 9, 5, 4, 1, 6, 5, 5, 9, 6, 6
Offset: 1

Views

Author

Ilya Gutkovskiy, Aug 04 2016

Keywords

Comments

Decimal expansion of sum of squares of reciprocals of nonprime numbers.
Decimal expansion of the nonprime zeta function at 2.
Continued fraction [1; 5, 5, 3, 1, 2, 2, 6, 2, 2, 4, 1, 1, 93, 2, 1, 1, 5, 3, 5, 3, 2, 1, 2, 6, 1, 4, 5, 1, 34, 1, ...]
More generally, the nonprime zeta function at s equals Sum_{k>=1} (1/k^s - 1/prime(k)^s) = Product_{k>=1} 1/(1 - prime(k)^(-s)) - Sum_{k>=1} 1/prime(k)^s.
Floor(1/(zeta(s)-prime zeta(s)-1)) gives second term in continued fraction for nonprime zeta(s): 5, 36, 187, 852, 3663, 15280, 62692, 254760, 1029279, 4143617, ...
Dirichlet g.f. of A005171: nonprime zeta(s).

Examples

			1/1^2 + 1/4^2 + 1/6^2 + 1/8^2 + 1/9^2 + 1/10^2 + ... = 1.192686646807160937965871801813777255045718557966906015999...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[Pi^2/6 - PrimeZetaP[2], 10, 120][[1]]
    RealDigits[Zeta[2] - PrimeZetaP[2], 10, 120][[1]]
  • PARI
    eps()=2.>>bitprecision(1.)
    primezeta(s)=my(lm=s*log(2)); lm=lambertw(lm/eps())\lm; sum(k=1,lm, moebius(k)*log(abs(zeta(k*s)))/k)
    zeta(2) - primezeta(2) \\ Charles R Greathouse IV, Aug 05 2016
    
  • PARI
    Pi^2/6 - sumeulerrat(1/p, 2) \\ Amiram Eldar, Mar 19 2021

Formula

Equals zeta(2) - prime zeta(2) = A013661 - A085548.
Equals Sum_{k>=1} (1 - k*mu(k)*log(zeta(2*k)))/k^2, where mu(k) is the Moebius function (A008683).
Equals Sum_{k>=1} 1/A062312(k).
Equals Sum_{k>=1} 1/A018252(k)^2.
Equals 1 + Sum_{k>=1} 1/A002808(k)^2.
Equals A222171 + A111003 - A085548.

A309891 a(n) is the total number of trailing zeros in the representations of n over all bases b >= 2.

Original entry on oeis.org

0, 1, 1, 3, 1, 3, 1, 5, 3, 3, 1, 6, 1, 3, 3, 8, 1, 6, 1, 6, 3, 3, 1, 9, 3, 3, 5, 6, 1, 7, 1, 10, 3, 3, 3, 11, 1, 3, 3, 9, 1, 7, 1, 6, 6, 3, 1, 13, 3, 6, 3, 6, 1, 9, 3, 9, 3, 3, 1, 12, 1, 3, 6, 14, 3, 7, 1, 6, 3, 7, 1, 15, 1, 3, 6, 6, 3, 7, 1, 13, 8, 3, 1, 12
Offset: 1

Views

Author

Rémy Sigrist, Aug 21 2019

Keywords

Comments

a(n) depends only on the prime signature of n.
a(n) is the sum of the k-adic valuations of n for k >= 2. - Friedjof Tellkamp, Jan 25 2025

Examples

			For n = 12: 12 has 2 trailing zeros in base 2 (1100), 1 trailing zero in bases 3, 4, 6 and 12 (110, 30, 20, 10) and no trailing zero in other bases, hence a(12) = 1*2 + 4*1 = 6.
		

Crossrefs

Programs

  • Mathematica
    Table[DivisorSum[n, IntegerExponent[n, #] &, # > 1 &], {n, 84}] (* Jon Maiga, Aug 25 2019 *)
  • PARI
    a(n) = sumdiv(n, d, if (d>1, valuation(n,d), 0))
    
  • PARI
    a(n) = {if(n == 1, return(0)); my(f = factor(n)[, 2], res = 0, t = 2, of = f, nf = f >> 1, nd(v) = prod(i = 1, #v, v[i] + 1)); while(Set(of) != [0], res += (nd(of) - nd(nf)) * (t-1); of = nf; t++; nf = f \ t); res} \\ David A. Corneth, Aug 22 2019

Formula

a(n) = Sum_{d|n, d>1} A286561(n,d), where A286561 gives the d-valuation of n.
a(p) = 1 for any prime number p.
a(p^k) = A006218(k) for any k >= 0 and any prime number p.
a(n) = 2^A001221(n) - 1 for any squarefree number n.
a(n) = 3 for any semiprime number n.
a(m*n) >= a(m) + a(n).
a(n) >= A007814(n) + A007949(n) + A235127(n) + A112765(n) + A122841(n) + A214411(n) + A244413(n).
a(n) = A056239(A293514(n)). - Antti Karttunen, Aug 22 2019
a(n) <= A033093(n). - Michel Marcus, Aug 22 2019
a(n) = A169594(n) - 1. - Jon Maiga, Aug 25 2019
From Friedjof Tellkamp, Feb 27 2024: (Start)
G.f.: Sum_{k>=2, j>=1} x^(k^j)/(1-x^(k^j)).
Dirichlet g.f.: zeta(s) * Sum_{k>=1} (zeta(k*s) - 1).
Sum_{n>=1} a(n)/n^2 = Pi^2/8 (A111003). (End)

A123092 Decimal expansion of Sum_{k>=1} 1/((2k-1)^2(2k+1)^2) = (Pi^2-8)/16.

Original entry on oeis.org

1, 1, 6, 8, 5, 0, 2, 7, 5, 0, 6, 8, 0, 8, 4, 9, 1, 3, 6, 7, 7, 1, 5, 5, 6, 8, 7, 4, 9, 2, 2, 5, 9, 4, 4, 5, 9, 5, 7, 1, 0, 6, 2, 1, 2, 9, 5, 2, 5, 4, 9, 4, 1, 4, 1, 5, 0, 8, 3, 4, 3, 3, 6, 0, 1, 3, 7, 5, 2, 8, 0, 1, 4, 0, 1, 2, 0, 0, 3, 2, 7, 6, 8, 7, 6, 1, 0, 8, 3, 7, 7, 3, 2, 4, 0, 9, 5, 1, 4, 4, 8, 9, 0, 0, 1
Offset: 0

Views

Author

Robert G. Wilson v, Sep 27 2006

Keywords

Examples

			0.116850275068084913677155687492259445957106212952549414150834336...
		

References

  • Erwin Kreyszig, Advanced Engineering Mathematics, 9th Edition, John Wiley and Sons, Inc., NJ, 2006, page 506.

Crossrefs

Programs

  • Mathematica
    RealDigits[Sum[1/((2k - 1)^2(2k + 1)^2), {k, Infinity}], 10, 111][[1]]
  • PARI
    (Pi^2-8)/16 \\ Charles R Greathouse IV, Sep 30 2022

Formula

Equals (A111003-1)/2. - Hugo Pfoertner, Aug 20 2024
Equals Sum_{k>=1} 1/(4*k^2-1)^2. - Sean A. Irvine, Mar 29 2025

A215947 Difference between the sum of the even divisors and the sum of the odd divisors of 2n.

Original entry on oeis.org

1, 5, 4, 13, 6, 20, 8, 29, 13, 30, 12, 52, 14, 40, 24, 61, 18, 65, 20, 78, 32, 60, 24, 116, 31, 70, 40, 104, 30, 120, 32, 125, 48, 90, 48, 169, 38, 100, 56, 174, 42, 160, 44, 156, 78, 120, 48, 244, 57, 155, 72, 182, 54, 200, 72, 232, 80, 150, 60, 312, 62, 160
Offset: 1

Views

Author

Michel Lagneau, Aug 28 2012

Keywords

Comments

Multiplicative because a(n) = -A002129(2*n), A002129 is multiplicative and a(1) = -A002129(2) = 1. - Andrew Howroyd, Jul 31 2018

Examples

			a(6) = 20 because the divisors of 2*6 = 12 are {1, 2, 3, 4, 6, 12} and (12 + 6 + 4 +2) - (3 + 1) = 20.
		

Crossrefs

Cf. A000593, A002129, A022998 (Moebius transform), A074400, A195382, A195690.

Programs

  • Maple
    with(numtheory):for n from 1 to 100 do:x:=divisors(2*n):n1:=nops(x):s0:=0:s1:=0:for m from 1 to n1 do: if irem(x[m],2)=0 then s0:=s0+x[m]:else s1:=s1+x[m]:fi:od:if s0>s1  then printf(`%d, `,s0-s1):else fi:od:
  • Mathematica
    a[n_] := DivisorSum[2n, (1 - 2 Mod[#, 2]) #&];
    Array[a, 62] (* Jean-François Alcover, Sep 13 2018 *)
    edod[n_]:=Module[{d=Divisors[2n]},Total[Select[d,EvenQ]]-Total[ Select[ d,OddQ]]]; Array[edod,70] (* Harvey P. Dale, Jul 30 2021 *)
  • PARI
    a(n) = 4*sigma(n) - sigma(2*n); \\ Andrew Howroyd, Jul 28 2018

Formula

From Andrew Howroyd, Jul 28 2018: (Start)
a(n) = 4*sigma(n) - sigma(2*n).
a(n) = -A002129(2*n). (End)
G.f.: Sum_{k>=1} x^k*(1 + 4*x^k + x^(2*k))/(1 - x^(2*k))^2. - Ilya Gutkovskiy, Sep 14 2019
a(p) = p + 1 for p prime >= 3. - Bernard Schott, Sep 14 2019
a(n) = A239050(n) - A062731(n) - Omar E. Pol, Mar 06 2021 (after Andrew Howroyd)
From Amiram Eldar, Nov 18 2022: (Start)
Multiplicative with a(2^e) = 2^(e+2) - 3, and a(p^e) = sigma(p^e) = (p^(e+1) - 1)/(p-1) for p > 2.
Sum_{k=1..n} a(k) ~ c * n^2, where c = Pi^2/8 = 1.2337005... (A111003). (End)
Dirichlet g.f.: zeta(s)*zeta(s-1)*(1+2^(1-s)). - Amiram Eldar, Jan 05 2023
From Peter Bala, Sep 25 2023: (Start)
a(2*n) = sigma(2*n) + 2*sigma(n); a(2*n+1) = sigma(2*n+1) = A008438(n)
G.f.: A(q) = Sum_{n >= 1} n*q^n*(1 + 3*q^n)/(1 - q^(2*n)).
Logarithmic g.f.: Sum_{n >= 1} a(n)*q^n/n = Sum_{n >= 1} log(1/(1 - q^n)) + Sum_{n >= 1} log(1/(1 - q^(2*n))) = log (G(q)), where G(q) is the g.f. of A002513. (End)

A222183 Decimal expansion of Sum_{k >= 0} 1/(4*k+1)^2.

Original entry on oeis.org

1, 0, 7, 4, 8, 3, 3, 0, 7, 2, 1, 5, 6, 6, 9, 4, 4, 2, 1, 2, 0, 4, 4, 5, 7, 4, 4, 4, 9, 5, 8, 4, 5, 1, 5, 0, 1, 3, 4, 4, 1, 8, 0, 9, 0, 0, 0, 9, 3, 3, 8, 5, 4, 8, 1, 2, 8, 4, 0, 8, 3, 3, 9, 5, 8, 2, 4, 6, 3, 4, 3, 1, 1, 2, 8, 9, 3, 2, 7, 7, 1, 2, 4, 2, 7, 2, 8
Offset: 1

Views

Author

Bruno Berselli, Feb 11 2013

Keywords

Examples

			1.074833072156694421204457444958451501344... = 1 + 1/25 + 1/81 + 1/169 + 1/289 + ...
		

References

  • Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, Section 1.7.2, p. 55.

Crossrefs

Programs

  • Magma
    SetDefaultRealField(RealField(100)); R:= RealField(); (8*Catalan(R) + Pi(R)^2)/16; // G. C. Greubel, Aug 23 2018
  • Mathematica
    RealDigits[Catalan/2 + Pi^2/16, 10, 90][[1]] (* or *) RealDigits[PolyGamma[1, 1/4]/16, 10, 90]
  • PARI
    (8*Catalan + Pi^2)/16 \\ G. C. Greubel, Aug 23 2018
    

Formula

Equals A006752/2 + A222068.
Equals -Integral_{x=0..1} log(x)/(1 - x^4) dx. - Amiram Eldar, Jul 17 2020
Equals 3F2(1/4,1/4,1;5/4,5/4;1). [Krupnikov] - R. J. Mathar, Jun 12 2024
Equals psi'(1/4)/16 (see Shamos). - Stefano Spezia, Nov 12 2024

A073579 Signed primes: if prime(n) even, a(n) = 0; if prime(n) == 1 (mod 4), a(n) = prime(n); if prime(n) == -1 (mod 4), a(n) = -prime(n).

Original entry on oeis.org

0, -3, 5, -7, -11, 13, 17, -19, -23, 29, -31, 37, 41, -43, -47, 53, -59, 61, -67, -71, 73, -79, -83, 89, 97, 101, -103, -107, 109, 113, -127, -131, 137, -139, 149, -151, 157, -163, -167, 173, -179, 181, -191, 193, 197, -199, -211, -223, -227, 229, 233, -239
Offset: 1

Views

Author

Miklos Kristof, Aug 28 2002

Keywords

Comments

Product_{i>1} (1/(1 - 1/a(i))) = 1 - 1/3 + 1/5 - 1/7 - 1/9 + 1/11 ...
= (Pi/4)*Product_{i>1} (1/(1 + 1/a(i)))
= (Pi/2)*Product_{i>1} (1/(1 - 1/a(i)))*Product_{i>1} (1/(1 + 1/a(i)))
= Product_{i>1} (1/(1 - 1/prime(i)^2))
= 1 + 1/3^2 + 1/5^2 + 1/7^2 + 1/9^2 + ...
= Pi^2/8.
Also prime(n)*(2 - prime(n) mod 4) = A000040(n)*A070750(n). - Reinhard Zumkeller, Oct 21 2002
This is a signed version of A160656. - T. D. Noe, Feb 28 2012

Examples

			a(1) = 0 because prime(1)=2 is neither 4k+1 nor 4k-1.
a(6) = 13 = prime(6) because 13 = 4*3 + 1.
a(8) = -19 = -prime(8) because 19 = 4*5 - 1.
		

Crossrefs

Cf. A000040, A160656, A111003 (Pi^2/8).

Programs

  • Haskell
    a073579 n = p * (2 - p `mod` 4) where p = a000040 n
    -- Reinhard Zumkeller, Feb 28 2012
    
  • Magma
    C := ComplexField(); [0] cat [Round(i^(NthPrime(n)-1)*NthPrime(n)): n in [2..100]]; // G. C. Greubel, Dec 31 2019
    
  • Maple
    0, seq(I^(ithprime(n)-1)*ithprime(n), n = 2..100); # G. C. Greubel, Dec 31 2019
  • Mathematica
    Join[{0},If[Mod[#,4]==1,#,-#]&/@Prime[Range[2,60]]] (* Harvey P. Dale, Feb 27 2012 *)
    Join[{0}, Table[p = Prime[n]; If[Mod[p, 4] == 1, p, -p], {n, 2, 100}]] (* T. D. Noe, Feb 28 2012 *)
  • PARI
    forprime(p=2,239,print1(p*(2-p%4),", ")) \\ Hugo Pfoertner, Dec 17 2019
    
  • Sage
    [0]+[I^(nth_prime(n)-1)*nth_prime(n) for n in (2..100)] # G. C. Greubel, Dec 31 2019

Formula

a(1)=0 and for i>1: a(i) = (-1)^((prime(i)-1)/2)*prime(i).

Extensions

Corrected (sign changed on 179) by Harvey P. Dale, Feb 27 2012

A152584 Decimal expansion of (Pi^3)/24.

Original entry on oeis.org

1, 2, 9, 1, 9, 2, 8, 1, 9, 5, 0, 1, 2, 4, 9, 2, 5, 0, 7, 3, 1, 1, 5, 1, 3, 1, 2, 7, 7, 9, 5, 8, 9, 1, 4, 6, 6, 7, 5, 9, 3, 8, 7, 0, 2, 3, 5, 7, 8, 5, 4, 6, 1, 5, 3, 9, 2, 2, 6, 8, 9, 0, 8, 7, 6, 5, 8, 5, 9, 9, 7, 8, 8, 2, 2, 7, 7, 3, 7, 7, 5, 1, 5, 6, 5, 2, 7, 9, 2, 0, 9, 6, 9, 1, 7, 8, 6, 9, 2, 4, 7, 0, 9, 5, 8
Offset: 1

Author

Eric Desbiaux, Dec 08 2008

Keywords

Comments

Consider infinite sum made of areas of circles Pi*radius^2 with diameter 1/n.
The volume is (Pi/4)*(1 + 1/4 + 1/9 + 1/16 + 1/25 + ... + 1/n^2)
= (1 - 1/3 + 1/5 - 1/7 + 1/9 - 1/11 + ...)*(1 + 1/4 + 1/9 + 1/16 + 1/25 + ...)
= (Pi/4) * (Pi^2/6) = Pi^3/24.
Equals volume of a cone of height Pi^2/8 and radius 1.
Equals volume of a sphere (4*Pi*Pi^2/32)/3 with radius^3 = (Pi^2/32).

Examples

			1.291928195012492507311513127795891466759387023578...
		

Crossrefs

Programs

Formula

Equals Integral_{x=0..oo} arctan(x)^2/(x^2 + 1) dx. - Amiram Eldar, Aug 06 2020

A173624 Decimal expansion of Pi^2*log(2)/8 - 7*zeta(3)/16, where zeta is the Riemann zeta function.

Original entry on oeis.org

3, 2, 9, 2, 3, 6, 1, 6, 2, 8, 4, 9, 8, 1, 7, 0, 6, 8, 2, 4, 3, 5, 4, 9, 4, 4, 8, 5, 8, 3, 0, 0, 2, 6, 3, 7, 9, 5, 2, 7, 9, 0, 8, 7, 8, 1, 2, 4, 5, 2, 0, 9, 2, 8, 6, 3, 1, 3, 9, 7, 6, 7, 5, 6, 0, 2, 5, 8, 5, 4, 3, 9, 8, 3, 3, 8, 3, 4, 1, 1, 3, 8, 8, 1, 6, 6, 9, 3, 1, 8, 5, 3, 1, 5, 6, 4, 9, 9, 7, 2, 7, 8, 2, 2, 0
Offset: 0

Author

R. J. Mathar, Nov 08 2010

Keywords

Examples

			0.3292361628498170682435494485830026...
		

Crossrefs

Programs

  • Maple
    -7*Zeta(3)/16+Pi^2*log(2)/8 ; evalf(%) ;
  • Mathematica
    N[(1/8) (Pi^2 Log[2] - 7 Zeta[3]/2), 100] (* John Molokach, Aug 02 2013 *)

Formula

The absolute value of the Integral_{x=0..Pi/2} x*log(sin(x)) dx.
Equals A111003 * A002162 - 7*A002117/16. [typo corrected by R. J. Mathar, Nov 15 2010]
Equals Sum_{n>=1} (phi(-1,1,2n)/(2n-1)^2), where phi is the Lerch transcendent. - John Molokach, Jul 22 2013
Equals Sum_{n>=1} 4^n / (8*n^3*binomial(2*n,n)). - John Molokach, Aug 01 2013
Equals Integral_{y=0..1} Integral_{x=0..1} log(x*y+1)/(1-(x*y)^2) dx dy. - Amiram Eldar, Apr 17 2022
Previous Showing 11-20 of 41 results. Next