cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 64 results. Next

A085104 Primes of the form 1 + n + n^2 + n^3 + ... + n^k, n > 1, k > 1.

Original entry on oeis.org

7, 13, 31, 43, 73, 127, 157, 211, 241, 307, 421, 463, 601, 757, 1093, 1123, 1483, 1723, 2551, 2801, 2971, 3307, 3541, 3907, 4423, 4831, 5113, 5701, 6007, 6163, 6481, 8011, 8191, 9901, 10303, 11131, 12211, 12433, 13807, 14281, 17293, 19183, 19531, 20023
Offset: 1

Views

Author

Amarnath Murthy and Meenakshi Srikanth (menakan_s(AT)yahoo.com), Jul 03 2003

Keywords

Comments

Primes that are base-b repunits with three or more digits for at least one b >= 2: Primes in A053696. Subsequence of A000668 U A076481 U A086122 U A165210 U A102170 U A004022 U ... (for each possible b). - Rick L. Shepherd, Sep 07 2009
From Bernard Schott, Dec 18 2012: (Start)
Also known as Brazilian primes. The primes that are not Brazilian primes are in A220627.
The number of terms k+1 is always an odd prime, but this is not enough to guarantee a prime, for example 111 = 1 + 10 + 100 = 3*37.
The inverses of the Brazilian primes form a convergent series; the sum is slightly larger than 0.33 (see Theorem 4 of Quadrature article in the Links). (End)
It is not known whether there are infinitely many Brazilian primes. See A002383. - Bernard Schott, Jan 11 2013
Primes of the form (n^p - 1)/(n - 1), where p is odd prime and n > 1. - Thomas Ordowski, Apr 25 2013
Number of terms less than 10^n: 1, 5, 14, 34, 83, 205, 542, 1445, 3880, 10831, 30699, 88285, ..., . - Robert G. Wilson v, Mar 31 2014
From Bernard Schott, Apr 08 2017: (Start)
Brazilian primes fall into two classes:
1) when n is prime, we get sequence A023195 except 3 which is not Brazilian,
2) when n is composite, we get sequence A285017. (End)
The conjecture proposed in Quadrature "No Sophie Germain prime is Brazilian (prime)" (see link Bernard Schott, Quadrature, Conjecture 1, page 36) is false. Thanks to Giovanni Resta, who found that a(856) = 28792661 = 1 + 73 + 73^2 + 73^3 + 73^4 = (11111)73 is the 141385th Sophie Germain prime. - _Bernard Schott, Mar 08 2019

Examples

			13 is a term since it is prime and 13 = 1 + 3 + 3^2 = 111_3.
31 is a term since it is prime and 31 = 1 + 2 + 2^2 + 2^3 + 2^4 = 11111_2.
From _Hartmut F. W. Hoft_, May 08 2017: (Start)
The sequence represented as a sparse matrix with the k-th column indexed by A006093(k+1), primes minus 1, and row n by A000027(n+1). Traversing the matrix by counterdiagonals produces a non-monotone ordering.
    2    4      6        10             12          16
2  7    31     127      -              8191        131071
3  13   -      1093     -              797161      -
4  -    -      -        -              -           -
5  31   -      19531    12207031       305175781   -
6  43   -      55987    -              -           -
7  -    2801   -        -              16148168401 -
8  73   -      -        -              -           -
9  -    -      -        -              -           -
10  -    -      -        -              -           -
11  -    -      -        -              -           50544702849929377
12  157  22621  -        -              -           -
13  -    30941  5229043  -              -           -
14  211  -      8108731  -              -           -
15  241  -      -        -              -           -
16 -    -      -        -              -           -
17  307  88741  25646167 2141993519227  -           -
18  -    -      -        -              -           -
19  -    -      -        -              -           -
20  421  -      -        10778947368421 -           689852631578947368421
21  463  -      -        17513875027111 -           1502097124754084594737
22  -    245411 -        -              -           -
23  -    292561 -        -              -           -
24  601  346201 -        -              -           -
Except for the initial values in the respective sequences the rows and columns as labeled in the matrix are:
column  2:  A002383            row 2:  A000668
column  4:  A088548            row 3:  A076481
column  6:  A088550            row 4:  -
column 10:  A162861            row 5:  A086122.
(End)
		

References

  • Daniel Lignon, Dictionnaire de (presque) tous les nombres entiers, Ellipses, Paris, 2012, page 174.

Crossrefs

Cf. A189891 (complement), A125134 (Brazilian numbers), A220627 (Primes that are non-Brazilian).
Cf. A003424 (n restricted to prime powers).
Equals A023195 \3 Union A285017 with empty intersection.
Primes of the form (b^k-1)/(b-1) for b=2: A000668, b=3: A076481, b=5: A086122, b=6: A165210, b=7: A102170, b=10: A004022.
Primes of the form (b^k-1)/(b-1) for k=3: A002383, k=5: A088548, k=7: A088550, k=11: A162861.

Programs

  • Haskell
    a085104 n = a085104_list !! (n-1)
    a085104_list = filter ((> 1) . a088323) a000040_list
    -- Reinhard Zumkeller, Jan 22 2014
  • Mathematica
    max = 140; maxdata = (1 - max^3)/(1 - max); a = {}; Do[i = 1; While[i = i + 2; cc = (1 - m^i)/(1 - m); cc <= maxdata, If[PrimeQ[cc], a = Append[a, cc]]], {m, 2, max}]; Union[a] (* Lei Zhou, Feb 08 2012 *)
    f[n_] := Block[{i = 1, d, p = Prime@ n}, d = Rest@ Divisors[p - 1]; While[ id = IntegerDigits[p, d[[i]]]; id != Reverse@ id || Union@ id != {1}, i++]; d[[i]]]; Select[ Range[2, 60], 1 + f@# != Prime@# &] (* Robert G. Wilson v, Mar 31 2014 *)
  • PARI
    list(lim)=my(v=List(),t,k);for(n=2,sqrt(lim), t=1+n;k=1; while((t+=n^k++)<=lim,if(isprime(t), listput(v,t))));vecsort(Vec(v),,8) \\ Charles R Greathouse IV, Jan 08 2013
    
  • PARI
    A085104_vec(N,L=List())=forprime(K=3,logint(N+1,2),for(n=2,sqrtnint(N-1,K-1),isprime((n^K-1)\(n-1))&&listput(L,(n^K-1)\(n-1))));Set(L) \\ M. F. Hasler, Jun 26 2018
    

Formula

A010051(a(n)) * A088323(a(n)) > 1. - Reinhard Zumkeller, Jan 22 2014

Extensions

More terms from David Wasserman, Jan 26 2005

A002383 Primes of form k^2 + k + 1.

Original entry on oeis.org

3, 7, 13, 31, 43, 73, 157, 211, 241, 307, 421, 463, 601, 757, 1123, 1483, 1723, 2551, 2971, 3307, 3541, 3907, 4423, 4831, 5113, 5701, 6007, 6163, 6481, 8011, 8191, 9901, 10303, 11131, 12211, 12433, 13807, 14281, 17293, 19183, 20023, 20593, 21757, 22651, 23563
Offset: 1

Views

Author

Keywords

Comments

Also primes p such that 4p-3 is square. - Giovanni Teofilatto, Sep 07 2005
Also these primes are sums of 1 and some consecutive even numbers starting at 2; e.g., 31 = 1+2+4+6+8+10. - Labos Elemer, Apr 15 2003
Also primes of form n^2 - n + 1 (Prime central polygonal numbers, A002061). - Zak Seidov, Jan 26 2006
Also primes which are of the form TriangularNumber(n) + TriangularNumber(n+2): 7 = 1+6, 13 = 3+10, 31 = 10+21, 43 = 15+28, 73 = 28+45, ... - Vladimir Joseph Stephan Orlovsky, Apr 03 2009
It is not known whether there are infinitely many primes of the form n^2+n+1. See Rose reference. - Daniel Tisdale, Jun 27 2009
These numbers when >= 7 are prime repunits 111_n in a base n >= 2, so except for 3, they are all Brazilian primes belonging to A085104. (See Links "Les nombres brésiliens", Sections V.4 - V.5.) A002383 is generated by A002384 which lists the bases n of 111_n. A002383 = A053183 Union A185632. - Bernard Schott, Dec 22 2012
Conjecture: the set of these numbers, except 3, is the intersection of sets A085104 and A059055. See A225148. - Thomas Ordowski, May 02 2013
For a(n)>13, the fractional part of square root of a(n) starts with digit 5 (see A034101). - Charles Kusniec, Sep 06 2022

References

  • D. H. Lehmer, Guide to Tables in the Theory of Numbers. Bulletin No. 105, National Research Council, Washington, DC, 1941, p. 46.
  • L. Poletti, Le serie dei numeri primi appartenente alle due forme quadratiche (A) n^2+n+1 e (B) n^2+n-1 per l'intervallo compreso entro 121 milioni, e cioè per tutti i valori di n fino a 11000, Atti della Reale Accademia Nazionale dei Lincei, Memorie della Classe di Scienze Fisiche, Matematiche e Naturali, s. 6, v. 3 (1929), pages 193-218.
  • H. E. Rose, A Course in Number Theory, Clarendon Press, 1988, p. 217.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A002384 (corresponding k-values), A088503 ((n^2+3)/4 is prime), A110284 (4p-3 is prime), A085104 (primes (n^k-1)/(n-1)).
Cf. A237037, A237038, A237039, A237040 (from semiprimes of form n^3 + 1).
See also A034101 (frac(sqrt(n)) starts with digit 5).

Programs

  • Magma
    [ a: n in [1..100] | IsPrime(a) where a is n^2+n+1 ]; // Wesley Ivan Hurt, Jun 16 2014
    
  • Maple
    select(isprime, [j^2+j+1$j=1..200])[];  # Alois P. Heinz, Apr 20 2022
  • Mathematica
    Select[Table[n^2+n+1, {n,250}], PrimeQ] (* Harvey P. Dale, Mar 23 2012 *)
  • PARI
    list(lim)=select(n->isprime(n),vector((sqrt(4*lim-3)-1)\2,k,k^2+k+1)) \\ Charles R Greathouse IV, Jul 25 2011
    
  • Python
    from sympy import isprime
    print(list(filter(isprime, (n**2 + n + 1 for n in range(150))))) # Michael S. Branicky, Apr 20 2022

Formula

a(n) = A002384(n)^2 + A002384(n) + 1 = (A088503(n-1)^2 + 3)/4 = (A110284(n) + 3)/4. - Ray Chandler, Sep 07 2005

Extensions

Extended by Ray Chandler, Sep 07 2005

A131865 Partial sums of powers of 16.

Original entry on oeis.org

1, 17, 273, 4369, 69905, 1118481, 17895697, 286331153, 4581298449, 73300775185, 1172812402961, 18764998447377, 300239975158033, 4803839602528529, 76861433640456465, 1229782938247303441, 19676527011956855057, 314824432191309680913, 5037190915060954894609
Offset: 0

Views

Author

Reinhard Zumkeller, Jul 22 2007

Keywords

Comments

16 = 2^4 is the growth measure for the Jacobsthal spiral (compare with phi^4 for the Fibonacci spiral). - Paul Barry, Mar 07 2008
Second quadrisection of A115451. - Paul Curtz, May 21 2008
Let A be the Hessenberg matrix of order n, defined by: A[1,j]=1, A[i,i]:=16, (i>1), A[i,i-1]=-1, and A[i,j]=0 otherwise. Then, for n >= 1, a(n-1) = det(A). - Milan Janjic, Feb 21 2010
Partial sums are in A014899. Also, the sequence is related to A014931 by A014931(n+1) = (n+1)*a(n) - Sum_{i=0..n-1} a(i) for n>0. - Bruno Berselli, Nov 07 2012
a(n) is the total number of holes in a certain box fractal (start with 16 boxes, 1 hole) after n iterations. See illustration in links. - Kival Ngaokrajang, Jan 28 2015
Except for 1 and 17, all terms are Brazilian repunits numbers in base 16, and so belong to A125134. All terms >= 273 are composite because a(n) = ((4^(n+1) + 1) * (4^(n+1) - 1))/15. - Bernard Schott, Jun 06 2017
The sequence in binary is 1, 10001, 100010001, 1000100010001, 10001000100010001, ... cf. Plouffe link, A330135. - Frank Ellermann, Mar 05 2020

Examples

			a(3) = 1 + 16 + 256 + 4096 = 4369 = in binary: 1000100010001.
a(4) = (16^5 - 1)/15 = (4^5 + 1) * (4^5 - 1)/15 = 1025 * 1023/15 = 205 * 341 = 69905 = 11111_16. - _Bernard Schott_, Jun 06 2017
		

Crossrefs

Programs

Formula

a(n) = if n=0 then 1 else a(n-1) + A001025(n).
for n > 0: A131851(a(n)) = n and abs(A131851(m)) < n for m < a(n).
a(n) = A098704(n+2)/2.
a(n) = (16^(n+1) - 1)/15. - Bernard Schott, Jun 06 2017
a(n) = (A001025(n+1) - 1)/15.
a(n) = 16*a(n-1) + 1. - Paul Curtz, May 20 2008
G.f.: 1 / ( (16*x-1)*(x-1) ). - R. J. Mathar, Feb 06 2011
E.g.f.: exp(x)*(16*exp(15*x) - 1)/15. - Stefano Spezia, Mar 06 2020

A218721 a(n) = (18^n-1)/17.

Original entry on oeis.org

0, 1, 19, 343, 6175, 111151, 2000719, 36012943, 648232975, 11668193551, 210027483919, 3780494710543, 68048904789775, 1224880286215951, 22047845151887119, 396861212733968143, 7143501829211426575, 128583032925805678351
Offset: 0

Views

Author

M. F. Hasler, Nov 04 2012

Keywords

Comments

Partial sums of powers of 18 (A001027), q-integers for q=18: diagonal k=1 in triangle A022182.
Partial sums are in A014901. Also, the sequence is related to A014935 by A014935(n) = n*a(n) - Sum_{i=0..n-1} a(i), for n>0. - Bruno Berselli, Nov 06 2012
From Bernard Schott, May 06 2017: (Start)
Except for 0, 1 and 19, all terms are Brazilian repunits numbers in base 18, and so belong to A125134. From n = 3 to n = 8286, all terms are composite. See link "Generalized repunit primes".
As explained in the extensions of A128164, a(25667) = (18^25667 - 1)/17 would be (is) the smallest prime in base 18. (End)

Examples

			a(3) = (18^3 - 1)/17 = 343 = 7 * 49; a(6) = (18^6 - 1)/17 = 2000719 = 931 * 2149. - _Bernard Schott_, May 01 2017
		

Crossrefs

Programs

Formula

a(n) = floor(18^n/17).
G.f.: x/((1-x)*(1-18*x)). - Bruno Berselli, Nov 06 2012
a(n) = 19*a(n-1) - 18*a(n-2). - Vincenzo Librandi, Nov 07 2012
E.g.f.: exp(x)*(exp(17*x) - 1)/17. - Stefano Spezia, Mar 11 2023

A023195 Prime numbers that are the sum of the divisors of some n.

Original entry on oeis.org

3, 7, 13, 31, 127, 307, 1093, 1723, 2801, 3541, 5113, 8011, 8191, 10303, 17293, 19531, 28057, 30103, 30941, 86143, 88741, 131071, 147073, 292561, 459007, 492103, 524287, 552793, 579883, 598303, 684757, 704761, 732541, 735307, 797161, 830833, 1191373
Offset: 1

Views

Author

Keywords

Comments

If n > 2 and sigma(n) is prime, then n must be an even power of a prime number. For example, 1093 = sigma(3^6). - T. D. Noe, Jan 20 2004
All primes of the form 2^n-1 (Mersenne primes) are in the sequence because if n is a natural number then sigma(2^(n-1)) = 2^n-1. So A000668 is a subsequence of this sequence. If sigma(n) is prime then n is of the form p^(q-1) where both p & q are prime (the proof is easy). - Farideh Firoozbakht, May 28 2005
Primes of the form 1 + p + p^2 + ... + p^k where p is prime.
If n = sigma(p^k) is in the sequence, then k+1 is prime. - Franklin T. Adams-Watters, Dec 19 2011
Primes that are a repunit in a prime base. - Franklin T. Adams-Watters, Dec 19 2011.
Except for 3, these primes are particular Brazilian primes belonging to A085104. These prime numbers are also Brazilian primes of the form (p^x - 1)/(p^y - 1), p prime, belonging to A003424, with here x is prime, and y = 1. [See section V.4 of Quadrature article in Links.] - Bernard Schott, Dec 25 2012
From Bernard Schott, Dec 25 2012: (Start)
Others subsequences of this sequence:
A053183 for 111_p = p^2 + p + 1 when p is prime.
A190527 for 11111_p = p^4 + p^3 + p^2 + p + 1 when p is prime.
A194257 for 1111111_p = p^6 + p^5 + p^4 + p^3 + p^2 + p + 1 when p is prime. (End)
Subsequence of primes from A002191. - Michel Marcus, Jun 10 2014

Examples

			307 = 1 + 17 + 17^2; 307 and 17 are primes.
		

Crossrefs

Intersection of A002191 and A000040.
Cf. A000203, A000668, A023194 (the n that produce these primes), A053696, A085104, A003424, A053183, A190527, A194257.

Programs

  • Mathematica
    t={3}; lim=10^9; n=1; While[p=Prime[n]; k=2; s=1+p+p^2; sHarvey P. Dale, Jun 18 2022 *)
  • PARI
    upto(lim)=my(v=List([3]),t); forprime(p=2,solve(x=1,lim^(1/4), x^4+x^3+x^2+x+1-lim), forprime(e=5,1+log(lim)\log(p), if(isprime(t=sigma(p^(e-1))) && t<=lim, listput(v,t)))); forprime(p=2, solve(x=1,lim^(1/2),x^2+x+1-lim), if(isprime(t=p^2+p+1), listput(v,t))); vecsort(Vec(v),,8) \\ Charles R Greathouse IV, Dec 20 2011
    
  • Python
    from sympy import isprime, divisor_sigma
    A023195_list = sorted(set([3]+[n for n in (divisor_sigma(d**2) for d in range(1,10**4)) if isprime(n)])) # Chai Wah Wu, Jul 23 2016

A053696 Numbers that can be represented as a string of three or more 1's in a base >= 2.

Original entry on oeis.org

7, 13, 15, 21, 31, 40, 43, 57, 63, 73, 85, 91, 111, 121, 127, 133, 156, 157, 183, 211, 241, 255, 259, 273, 307, 341, 343, 364, 381, 400, 421, 463, 507, 511, 553, 585, 601, 651, 703, 757, 781, 813, 820, 871, 931, 993, 1023, 1057, 1093, 1111, 1123, 1191
Offset: 1

Views

Author

Henry Bottomley, Mar 23 2000

Keywords

Comments

Numbers of the form (b^n-1)/(b-1) for n > 2 and b > 1. - T. D. Noe, Jun 07 2006
Numbers m that are nontrivial repunits for any base b >= 2. For k = 2 (I use k for the exponent since n is used as the index in a(n)) we get (b^k-1)/(b-1) = (b^2-1)/(b-1) = b+1, so every integer m >= 3 is a 2-digit repunit in base b = m-1. And for n = 1 (the 1-digit degenerate repunit) we get (b-1)/(b-1) = 1 for any base b >= 2. If we considered all k >= 1 we would get the sequence of all positive integers except 2 since it is the smallest uniform base used in positional representation (2 might be seen as the "repunit" in a nonpositional base representation such as the Roman numerals where 2 is expressed as II). - Daniel Forgues, Mar 01 2009
These repunits numbers belong to Brazilian numbers (A125134) (see Links: "Les nombres brésiliens" - section IV, p. 32). - Bernard Schott, Dec 18 2012
The Brazilian primes (A085104) belong to this sequence. - Bernard Schott, Dec 18 2012

Examples

			a(5) = 31 because 31 can be written as 111 base 5 (or indeed 11111 base 2).
		

Crossrefs

Cf. A090503 (a subsequence), A119598 (numbers that are repunits in four or more bases), A125134, A085104.
Cf. A108348.

Programs

  • Haskell
    a053696 n = a053696_list !! (n-1)
    a053696_list = filter ((> 1) . a088323) [2..]
    -- Reinhard Zumkeller, Jan 22 2014, Nov 26 2013
  • Maple
    N:= 10^4: # to get all terms <= N
    V:= Vector(N):
    for b from 2 while (b^3-1)/(b-1) <= N do
      inds:= [seq((b^k-1)/(b-1), k=3..ilog[b](N*(b-1)+1))];
      V[inds]:= 1;
    od:
    select(t -> V[t] = 1, [$1..N]); # Robert Israel, Dec 10 2015
  • Mathematica
    fQ[n_] := Block[{d = Rest@ Divisors[n - 1]}, Length@ d > 2 && Length@ Select[ IntegerDigits[n, d], Union@# == {1} &] > 1]; Select[ Range@ 1200, fQ]
    lim=1000; Union[Reap[Do[n=3; While[a=(b^n-1)/(b-1); a<=lim, Sow[a]; n++], {b, 2, Floor[Sqrt[lim]]}]][[2, 1]]]
    Take[Union[Flatten[With[{l=Table[PadLeft[{},n,1],{n,3,100}]}, Table[ FromDigits[#,n]&/@l,{n,2,100}]]]],80] (* Harvey P. Dale, Oct 06 2011 *)
  • PARI
    list(lim)=my(v=List(),e,t);for(b=2,sqrt(lim),e=3;while((t=(b^e-1)/(b-1))<=lim,listput(v,t);e++));vecsort(Vec(v),,8) \\ Charles R Greathouse IV, Oct 06 2011
    
  • PARI
    list(lim)=my(v=List(),e,t);for(b=2,lim^(1/3),e=4;while((t=(b^e-1)/(b-1))<=lim,listput(v,t);e++));vecsort(concat(Vec(v), vector((sqrtint (lim\1*4-3)-3)\2,i,i^2+3*i+3)),,8) \\ Charles R Greathouse IV, May 30 2013
    

Formula

a(n) ~ n^2 since as n grows the density of repunits of degree 2 among all the repunits tends to 1. - Daniel Forgues, Dec 09 2008
A088323(a(n)) > 1. - Reinhard Zumkeller, Jan 22 2014

A220570 Numbers that are not Brazilian numbers.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 9, 11, 17, 19, 23, 25, 29, 37, 41, 47, 49, 53, 59, 61, 67, 71, 79, 83, 89, 97, 101, 103, 107, 109, 113, 131, 137, 139, 149, 151, 163, 167, 169, 173, 179, 181, 191, 193, 197, 199, 223, 227, 229, 233, 239, 251, 257, 263, 269, 271, 277, 281
Offset: 1

Views

Author

Bernard Schott, Dec 16 2012

Keywords

Comments

From Bernard Schott, Apr 23 2019: (Start)
The terms of this sequence are:
- integer 1
- oblong semiprime 6,
- primes that are not Brazilian, they are in A220627, and,
- squares of all the primes, except 121 = (11111)_3.
So there is an infinity of integers that are not Brazilian numbers. (End)
This sequence has density 0 as A125134(n) ~ n where A125134 is the complement of this sequence. - David A. Corneth, Jan 22 2021

Examples

			25 is a member because it's not possible to write 25=(mm...mm)_b where b is a natural number with 1 < b < 24 and 1 <= m < b.
		

References

  • Pierre Bornsztein, "Hypermath", Vuibert, Exercise a35, page 7.

Crossrefs

Cf. A125134 (Brazilian numbers), A190300 (composite numbers not Brazilian), A258165 (odd numbers not Brazilian), A220627 (prime numbers not Brazilian).

Programs

  • PARI
    for(n=1,300,c=0;for(b=2,n-2,d=digits(n,b);if(vecmin(d)==vecmax(d),c=n;break);c++);if(c==max(n-3,0),print1(n,", "))) \\ Derek Orr, Apr 30 2015

A220136 Number of ways that a number n can be written as ddd...d where d is a digit in base b with 1 < b < n-1.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 0, 1, 1, 1, 2, 1, 0, 2, 0, 1, 2, 1, 0, 3, 0, 2, 1, 2, 0, 2, 2, 2, 1, 1, 1, 3, 0, 1, 1, 4, 0, 3, 1, 2, 2, 1, 0, 4, 0, 2, 1, 2, 0, 3, 1, 2, 2, 1, 0, 5, 0, 2, 4, 2, 1, 3, 0, 2, 1, 3, 0, 4, 1, 1, 2, 2, 1, 3, 0, 5, 1, 1, 0, 5, 2, 2, 1
Offset: 1

Views

Author

T. D. Noe, Dec 26 2012

Keywords

Comments

When a(n) > 0, n is called Brazilian (A125134). The first number having exactly k representations is A284758(k) for k >= 0 or A066460(k+1) for k > 0. - Bernard Schott, Apr 08 2017

Crossrefs

Programs

  • Mathematica
    brazBases[n_] := Select[Range[2, n - 2], Length[Union[IntegerDigits[n, #]]] == 1 &]; Table[Length[brazBases[n]], {n, 100}]
  • PARI
    a(n) = sum(i=2, n-2, #vecsort(digits(n,i), , 8)==1) \\ David A. Corneth, Apr 08 2017

A220627 Prime numbers that are not Brazilian.

Original entry on oeis.org

2, 3, 5, 11, 17, 19, 23, 29, 37, 41, 47, 53, 59, 61, 67, 71, 79, 83, 89, 97, 101, 103, 107, 109, 113, 131, 137, 139, 149, 151, 163, 167, 173, 179, 181, 191, 193, 197, 199, 223, 227, 229, 233, 239, 251, 257, 263, 269, 271, 277, 281, 283, 293, 311, 313, 317
Offset: 1

Views

Author

Bernard Schott, Dec 17 2012

Keywords

Comments

These are primes not in A085104 (Brazilian primes).
Primes that are not repunit in any base b >= 2 with three or more digits.

Crossrefs

Cf. A085104.

Programs

  • Mathematica
    brazBases[n_] := Select[Range[2, n - 2], Length[Union[IntegerDigits[n, #]]] == 1 &]; Select[Range[2, 1000], PrimeQ[#] && brazBases[#] == {} &] (* T. D. Noe, Dec 26 2012 *)
  • PARI
    isok(p) = {if (isprime(p), for (b=2, p-1, my(d=digits(p, b), md=vecmin(d)); if ((#d > 2) && (md == 1) && (vecmax(d) == 1), return (0));); return (1););} \\ Michel Marcus, Apr 30 2021
  • Python
    from sympy.ntheory.factor_ import digits
    from sympy import isprime, primerange
    def B(n):
        l=[]
        for b in range(2, n - 1):
            d=digits(n, b)[1:]
            if max(d)==min(d): l.append(n)
        return l
    print([n for n in primerange(2, 1001) if not B(n)]) # Indranil Ghosh, Jun 22 2017
    

A088548 Primes of the form k^4 + k^3 + k^2 + k + 1.

Original entry on oeis.org

5, 31, 2801, 22621, 30941, 88741, 245411, 292561, 346201, 637421, 732541, 837931, 2625641, 3500201, 3835261, 6377551, 15018571, 16007041, 21700501, 28792661, 30397351, 35615581, 39449441, 48037081, 52822061, 78914411, 97039801, 147753211, 189004141, 195534851
Offset: 1

Views

Author

Cino Hilliard, Nov 17 2003

Keywords

Comments

These numbers when >= 31 are primes repunits 11111_n in a base n >= 2, so except 5, they are all Brazilian primes belonging to A085104. (See Links "Les nombres brésiliens", § V.4 - § V.5.) A008858 is generated by the bases n present in A049409. - Bernard Schott, Dec 19 2012

Examples

			a(2) = 31 is prime and 31 = 2^4 + 2^3 + 2^2 + 2 + 1.
		

Crossrefs

Programs

  • Magma
    [a: n in [0..200] | IsPrime(a) where a is n^4+n^3+n^2+n+1]; // Vincenzo Librandi, Jul 16 2012
    
  • Mathematica
    lst={}; Do[a=1+n+n^2+n^3+n^4; If[PrimeQ[a], AppendTo[lst,a]], {n,6!}]; lst (* Vladimir Joseph Stephan Orlovsky, Jun 02 2009 *)
    Select[Table[n^4+n^3+n^2+n+1, {n,0,2000}], PrimeQ] (* Vincenzo Librandi, Jul 16 2012 *)
  • PARI
    polypn(n,p) = { for(x=1,n, if(p%2,y=2,y=1); for(m=1,p, y=y+x^m; ); if(isprime(y),print1(y",")); ) }
    
  • Python
    from sympy import isprime
    print(list(filter(isprime, (k**4+k**3+k**2+k+1 for k in range(120))))) # Michael S. Branicky, May 31 2021

Formula

A000040 intersect A053699. - R. J. Mathar, Feb 07 2014
Previous Showing 11-20 of 64 results. Next