A000225 a(n) = 2^n - 1. (Sometimes called Mersenne numbers, although that name is usually reserved for A001348.)
0, 1, 3, 7, 15, 31, 63, 127, 255, 511, 1023, 2047, 4095, 8191, 16383, 32767, 65535, 131071, 262143, 524287, 1048575, 2097151, 4194303, 8388607, 16777215, 33554431, 67108863, 134217727, 268435455, 536870911, 1073741823, 2147483647, 4294967295, 8589934591
Offset: 0
Examples
For n=3, a(3)=S(4,2)=7, a Stirling number of the second kind, since there are 7 ways to partition {a,b,c,d} into 2 nonempty subsets, namely, {a}U{b,c,d}, {b}U{a,c,d}, {c}U{a,b,d}, {d}U{a,b,c}, {a,b}U{c,d}, {a,c}U{b,d}, and {a,d}U{b,c}. - _Dennis P. Walsh_, Mar 29 2011 From _Justin M. Troyka_, Aug 13 2011: (Start) Since a(3) = 7, there are 7 signed permutations of 4 that are equal to the bar of their reverse-complements and avoid {(-2,-1), (-1,+2), (+2,+1)}. These are: (+1,+2,-3,-4), (+1,+3,-2,-4), (+1,-3,+2,-4), (+2,+4,-1,-3), (+3,+4,-1,-2), (-3,+1,-4,+2), (-3,-4,+1,+2). (End) G.f. = x + 3*x^2 + 7*x^3 + 15*x^4 + 31*x^5 + 63*x^6 + 127*x^7 + ... For the Towers of Hanoi problem with 2 disks, the moves are as follows, so a(2) = 3. 12|_|_ -> 2|1|_ -> _|1|2 -> _|_|12 - _Allan Bickle_, Aug 07 2024
References
- P. Bachmann, Niedere Zahlentheorie (1902, 1910), reprinted Chelsea, NY, 1968, vol. 2, p. 75.
- Ralph P. Grimaldi, Discrete and Combinatorial Mathematics: An Applied Introduction, Fifth Edition, Addison-Wesley, 2004, p. 134.
- Jan Gullberg, Mathematics from the Birth of Numbers, W. W. Norton & Co., NY & London, 1997, §3.2 Prime Numbers, p. 79.
- Johann Peter Hebel, Gesammelte Werke in sechs Bänden, Herausgeber: Jan Knopf, Franz Littmann und Hansgeorg Schmidt-Bergmann unter Mitarbeit von Ester Stern, Wallstein Verlag, 2019. Band 3, S. 20-21, Loesung, S. 36-37. See also the link below.
- Paulo Ribenboim, The Little Book of Bigger Primes, Springer-Verlag NY 2004. See pp. 46, 60, 75-83.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- James J. Tattersall, Elementary Number Theory in Nine Chapters, Cambridge University Press, 1999, page 141.
- D. Wells, The Penguin Dictionary of Curious and Interesting Numbers, "Tower of Hanoi", Penguin Books, 1987, pp. 112-113.
Links
- Franklin T. Adams-Watters, Table of n, a(n) for n = 0..1000
- Omran Ahmadi and Robert Granger, An efficient deterministic test for Kloosterman sum zeros, Math. Comp. 83 (2014), 347-363, arXiv:1104.3882 [math.NT], 2011-2012. See 1st and 2nd column of Table 1 p. 9.
- Feryal Alayont and Evan Henning, Edge Covers of Caterpillars, Cycles with Pendants, and Spider Graphs, J. Int. Seq. (2023) Vol. 26, Art. 23.9.4.
- Anonymous, The Tower of Hanoi
- M. Baake, F. Gahler and U. Grimm, Examples of substitution systems and their factors, arXiv:1211.5466 [math.DS], 2012-2013.
- Michael Baake, Franz Gähler, and Uwe Grimm, Examples of Substitution Systems and Their Factors, Journal of Integer Sequences, Vol. 16 (2013), #13.2.14.
- J.-L. Baril, Classical sequences revisited with permutations avoiding dotted pattern, Electronic Journal of Combinatorics, 18 (2011), #P178.
- Paul Barry, A Catalan Transform and Related Transformations on Integer Sequences, Journal of Integer Sequences, Vol. 8 (2005), Article 05.4.5.
- Jonathan Beagley and Lara Pudwell, Colorful Tilings and Permutations, Journal of Integer Sequences, Vol. 24 (2021), Article 21.10.4.
- J. Bernheiden, Mersennesche Zahlen, (Text in German) [Wayback Machine cached version].
- Michael Boardman, The Egg-Drop Numbers, Mathematics Magazine, 77 (2004), 368-372.
- R. P. Brent and H. J. J. te Riele, Factorizations of a^n +- 1, 13 <= a < 100, CWI Report 9212, 1992 [Wayback Machine cached version].
- R. P. Brent, P. L. Montgomery and H. J. J. te Riele, Factorizations of a^n +- 1, 13 <= a < 100: Update 2
- R. P. Brent, P. L. Montgomery and H. J. J. te Riele, Factorizations Of Cunningham Numbers With Bases 13 To 99. Millennium Edition [BROKEN LINK]
- R. P. Brent, P. L. Montgomery and H. J. J. te Riele, Factorizations of Cunningham numbers with bases 13 to 99: Millennium edition
- R. P. Brent and H. J. J. te Riele, Factorizations of a^n +- 1, 13 <= a < 100
- John Brillhart et al., Cunningham Project [Factorizations of b^n +- 1, b = 2, 3, 5, 6, 7, 10, 11, 12 up to high powers] [Subscription required].
- Jill Britton, The Tower of Hanoi [Video file, Wayback Machine cached version].
- Jill Britton, The Frog Puzzle [Wayback Machine cached version].
- C. K. Caldwell, The Prime Glossary, Mersenne number
- Naiomi T. Cameron and Asamoah Nkwanta, On Some (Pseudo) Involutions in the Riordan Group, Journal of Integer Sequences, Vol. 8 (2005), Article 05.3.7.
- P. J. Cameron, Sequences realized by oligomorphic permutation groups, J. Integ. Seqs. Vol. 3 (2000), #00.1.5.
- P. Catarino, H. Campos, and P. Vasco, On the Mersenne sequence, Annales Mathematicae et Informaticae, 46 (2016) pp. 37-53.
- Robert George Cowell, A unifying framework for the modelling and analysis of STR DNA samples arising in forensic casework, arXiv:1802.09863 [stat.AP], 2018.
- F. Javier de Vega, An extension of Furstenberg's theorem of the infinitude of primes, arXiv:2003.13378 [math.NT], 2020.
- W. M. B. Dukes, On the number of matroids on a finite set, arXiv:math/0411557 [math.CO], 2004.
- James East, Jitender Kumar, James D. Mitchell, and Wilf A. Wilson, Maximal subsemigroups of finite transformation and partition monoids, arXiv:1706.04967 [math.GR], 2017. [_James Mitchell_ and _Wilf A. Wilson_, Jul 21 2017]
- W. Edgington, Mersenne Page [BROKEN LINK]
- David Eppstein, Making Change in 2048, arXiv:1804.07396 [cs.DM], 2018.
- T. Eveilleau, Animated solution to the Tower of Hanoi problem
- G. Everest et al., Primes generated by recurrence sequences, Amer. Math. Monthly, 114 (No. 5, 2007), 417-431.
- G. Everest, S. Stevens, D. Tamsett and T. Ward, Primitive divisors of quadratic polynomial sequences, arXiv:math/0412079 [math.NT], 2004-2006.
- G. Everest, A. J. van der Poorten, Y. Puri and T. Ward, Integer Sequences and Periodic Points, Journal of Integer Sequences, Vol. 5 (2002), Article 02.2.3.
- Bakir Farhi, Summation of Certain Infinite Lucas-Related Series, J. Int. Seq., Vol. 22 (2019), Article 19.1.6.
- Emmanuel Ferrand, Deformations of the Taylor Formula, Journal of Integer Sequences, Vol. 10 (2007), Article 07.1.7.
- Carrie E. Finch-Smith and R. Scottfield Groth, Arbitrarily Long Sequences of Sierpiński Numbers that are the Sum of a Sierpiński Number and a Mersenne Number, Journal of Integer Sequences, Vol. 28 (2025), Article 25.2.4. See p. 22.
- Robert Frontczak and Taras Goy, Mersenne-Horadam identities using generating functions, Carpathian Mathematical Publications, Vol. 12, no. 1, (2020), 34-45.
- Robert Granger, On the Enumeration of Irreducible Polynomials over GF(q) with Prescribed Coefficients, arXiv:1610.06878 [math.AG], 2016. See 1st and 2nd column of Table 1 p. 13.
- Madeleine Goertz and Aaron Williams, The Quaternary Gray Code and How It Can Be Used to Solve Ziggurat and Other Ziggu Puzzles, arXiv:2411.19291 [math.CO], 2024. See p. 17.
- Taras Goy, On new identities for Mersenne numbers, Applied Mathematics E-Notes, 18 (2018), 100-105.
- R. K. Guy, Letter to N. J. A. Sloane
- A. Hardt and J. M. Troyka, Restricted symmetric signed permutations, Pure Mathematics and Applications, Vol. 23 (No. 3, 2012), pp. 179--217.
- A. Hardt and J. M. Troyka, Slides (associated with the Hardt and Troyka reference above).
- Johann Peter Hebel, Erstes Rechnungsexempel, 1803; Solution: Auflösung des ersten Rechnungsexempels und ein zweites, 1804.
- A. M. Hinz, S. Klavžar, U. Milutinović, and C. Petr, The Tower of Hanoi - Myths and Maths, Birkhäuser 2013. See page 11. Book's website
- A. Hinz, S. Klavzar, and S. Zemljic, A survey and classification of Sierpinski-type graphs, Discrete Applied Mathematics 217 3 (2017), 565-600.
- Andreas M. Hinz and Paul K. Stockmeyer, Precious Metal Sequences and Sierpinski-Type Graphs, J. Integer Seq., Vol 25 (2022), Article 22.4.8.
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 138, 345, 371, and 880
- Jiří Klaška, Jakóbczyk's Hypothesis on Mersenne Numbers and Generalizations of Skula's Theorem, J. Int. Seq., Vol. 26 (2023), Article 23.3.8.
- Ross La Haye, Binary Relations on the Power Set of an n-Element Set, Journal of Integer Sequences, Vol. 12 (2009), Article 09.2.6.
- Wolfdieter Lang, Notes on certain inhomogeneous three term recurrences.
- J. Loy, The Tower of Hanoi
- Edouard Lucas, The Theory of Simply Periodic Numerical Functions, Fibonacci Association, 1969. English translation of article "Théorie des Fonctions Numériques Simplement Périodiques, I", Amer. J. Math., 1 (1878), 184-240.
- Mathforum, Tower of Hanoi
- Mathforum, Problem of the Week, The Tower of Hanoi Puzzle
- Donatella Merlini and Massimo Nocentini, Algebraic Generating Functions for Languages Avoiding Riordan Patterns, Journal of Integer Sequences, Vol. 21 (2018), Article 18.1.3.
- R. Mestrovic, Euclid's theorem on the infinitude of primes: a historical survey of its proofs (300 BC--2012) and another new proof, arXiv preprint arXiv:1202.3670 [math.HO], 2012. - From _N. J. A. Sloane_, Jun 13 2012
- N. Moreira and R. Reis, On the Density of Languages Representing Finite Set Partitions, Journal of Integer Sequences, Vol. 8 (2005), Article 05.2.8.
- N. Neumarker, Realizability of Integer Sequences as Differences of Fixed Point Count Sequences, JIS 12 (2009) 09.4.5, Example 11.
- NRICH 1246, Frogs
- Ahmet Öteleş, Bipartite Graphs Associated with Pell, Mersenne and Perrin Numbers, An. Şt. Univ. Ovidius Constantą, (2019) Vol. 27, Issue 2, 109-120.
- Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
- Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992
- Y. Puri and T. Ward, Arithmetic and growth of periodic orbits, J. Integer Seqs., Vol. 4 (2001), #01.2.1.
- D. C. Santos, E. A. Costa, and P. M. M. C. Catarino, On Gersenne Sequence: A Study of One Family in the Horadam-Type Sequence, Axioms 14, 203, (2025). See pp. 1, 4.
- Bernard Schott, Les nombres brésiliens, Reprinted from Quadrature, no. 76, avril-juin 2010, pages 30-38, included here with permission from the editors of Quadrature.
- R. R. Snapp, The Tower of Hanoi.
- Amelia Carolina Sparavigna, On the generalized sums of Mersenne, Fermat, Cullen and Woodall Numbers, Politecnico di Torino (Italy, 2019).
- Amelia Carolina Sparavigna, Composition Operations of Generalized Entropies Applied to the Study of Numbers, International Journal of Sciences (2019) Vol. 8, No. 4, 87-92.
- Amelia Carolina Sparavigna, The groupoids of Mersenne, Fermat, Cullen, Woodall and other Numbers and their representations by means of integer sequences, Politecnico di Torino, Italy (2019), [math.NT].
- Amelia Carolina Sparavigna, Some Groupoids and their Representations by Means of Integer Sequences, International Journal of Sciences (2019) Vol. 8, No. 10.
- Thesaurus.maths.org, Mersenne Number
- Thinks.com, Tower of Hanoi, A classic puzzle game
- A. Umar, Combinatorial Results for Semigroups of Orientation-Preserving Partial Transformations, Journal of Integer Sequences, 14 (2011), #11.7.5.
- Eric Weisstein's World of Mathematics, Coin Tossing, Digit, Repunit, Rule 222, Run, and Tower of Hanoi
- Eric Weisstein's World of Mathematics, Complete Bipartite Graph
- Eric Weisstein's World of Mathematics, Complete Graph
- Eric Weisstein's World of Mathematics, Dominating Set
- Eric Weisstein's World of Mathematics, Helm Graph
- Eric Weisstein's World of Mathematics, Independent Vertex Set
- Eric Weisstein's World of Mathematics, Mersenne Number
- Eric Weisstein's World of Mathematics, Minimum Dominating Set
- Eric Weisstein's World of Mathematics, Vertex Cover
- Wikipedia, H tree, Lucas sequence, and Tower of Hanoi
- K. K. Wong, Tower Of Hanoi:Online Game
- K. Zsigmondy, Zur Theorie der Potenzreste, Monatsh. Math., 3 (1892), 265-284.
- Index entries for "core" sequences
- Index to divisibility sequences
- Index entries for linear recurrences with constant coefficients, signature (3,-2).
Crossrefs
Cf. A000043 (Mersenne exponents).
Cf. A000668 (Mersenne primes).
Cf. A001348 (Mersenne numbers with n prime).
Subsequence of A132781.
Programs
-
Haskell
a000225 = (subtract 1) . (2 ^) a000225_list = iterate ((+ 1) . (* 2)) 0 -- Reinhard Zumkeller, Mar 20 2012
-
Maple
A000225 := n->2^n-1; [ seq(2^n-1,n=0..50) ]; A000225:=1/(2*z-1)/(z-1); # Simon Plouffe in his 1992 dissertation, sequence starting at a(1)
-
Mathematica
a[n_] := 2^n - 1; Table[a[n], {n, 0, 30}] (* Stefan Steinerberger, Mar 30 2006 *) Array[2^# - 1 &, 50, 0] (* Joseph Biberstine (jrbibers(AT)indiana.edu), Dec 26 2006 *) NestList[2 # + 1 &, 0, 32] (* Robert G. Wilson v, Feb 28 2011 *) 2^Range[0, 20] - 1 (* Eric W. Weisstein, Jul 17 2017 *) LinearRecurrence[{3, -2}, {1, 3}, 20] (* Eric W. Weisstein, Sep 21 2017 *) CoefficientList[Series[1/(1 - 3 x + 2 x^2), {x, 0, 20}], x] (* Eric W. Weisstein, Sep 21 2017 *)
-
PARI
A000225(n) = 2^n-1 \\ Michael B. Porter, Oct 27 2009
-
PARI
concat(0, Vec(x/((1-2*x)*(1-x)) + O(x^100))) \\ Altug Alkan, Oct 28 2015
-
Python
def A000225(n): return (1<
Chai Wah Wu, Jul 06 2022 -
SageMath
def isMersenne(n): return n == sum([(1 - b) << s for (s, b) in enumerate((n+1).bits())]) # Peter Luschny, Sep 01 2019
Formula
G.f.: x/((1-2*x)*(1-x)).
E.g.f.: exp(2*x) - exp(x).
E.g.f. if offset 1: ((exp(x)-1)^2)/2.
a(n) = Sum_{k=0..n-1} 2^k. - Paul Barry, May 26 2003
a(n) = a(n-1) + 2*a(n-2) + 2, a(0)=0, a(1)=1. - Paul Barry, Jun 06 2003
Let b(n) = (-1)^(n-1)*a(n). Then b(n) = Sum_{i=1..n} i!*i*Stirling2(n,i)*(-1)^(i-1). E.g.f. of b(n): (exp(x)-1)/exp(2x). - Mario Catalani (mario.catalani(AT)unito.it), Dec 19 2003
a(n+1) = 2*a(n) + 1, a(0) = 0.
a(n) = Sum_{k=1..n} binomial(n, k).
a(n) = n + Sum_{i=0..n-1} a(i); a(0) = 0. - Rick L. Shepherd, Aug 04 2004
a(n+1) = (n+1)*Sum_{k=0..n} binomial(n, k)/(k+1). - Paul Barry, Aug 06 2004
a(n+1) = Sum_{k=0..n} binomial(n+1, k+1). - Paul Barry, Aug 23 2004
Inverse binomial transform of A001047. Also U sequence of Lucas sequence L(3, 2). - Ross La Haye, Feb 07 2005
a(n) = A119258(n,n-1) for n > 0. - Reinhard Zumkeller, May 11 2006
a(n) = 3*a(n-1) - 2*a(n-2); a(0)=0, a(1)=1. - Lekraj Beedassy, Jun 07 2006
Stirling_2(n-k,2) starting from n=k+1. - Artur Jasinski, Nov 18 2006
a(n) = A125118(n,1) for n > 0. - Reinhard Zumkeller, Nov 21 2006
a(n) = StirlingS2(n+1,2). - Ross La Haye, Jan 10 2008
For n > 0: A179857(a(n)) = A024036(n) and A179857(m) < A024036(n) for m < a(n). - Reinhard Zumkeller, Jul 31 2010
From Enrique Pérez Herrero, Aug 21 2010: (Start)
a(n) = J_n(2), where J_n is the n-th Jordan Totient function: (A007434, is J_2).
a(n) = Sum_{d|2} d^n*mu(2/d). (End)
A036987(a(n)) = 1. - Reinhard Zumkeller, Mar 06 2012
a(n) = A007283(n)/3 - 1. - Martin Ettl, Nov 11 2012
a(n) = det(|s(i+2,j+1)|, 1 <= i,j <= n-1), where s(n,k) are Stirling numbers of the first kind. - Mircea Merca, Apr 06 2013
G.f.: Q(0), where Q(k) = 1 - 1/(4^k - 2*x*16^k/(2*x*4^k - 1/(1 - 1/(2*4^k - 8*x*16^k/(4*x*4^k - 1/Q(k+1)))))); (continued fraction). - Sergei N. Gladkovskii, May 22 2013
E.g.f.: Q(0), where Q(k) = 1 - 1/(2^k - 2*x*4^k/(2*x*2^k - (k+1)/Q(k+1))); (continued fraction).
G.f.: Q(0), where Q(k) = 1 - 1/(2^k - 2*x*4^k/(2*x*2^k - 1/Q(k+1))); (continued fraction). - Sergei N. Gladkovskii, May 23 2013
a(n) = A000203(2^(n-1)), n >= 1. - Ivan N. Ianakiev, Aug 17 2013
a(n) = Sum_{t_1+2*t_2+...+n*t_n=n} n*multinomial(t_1+t_2 +...+t_n,t_1,t_2,...,t_n)/(t_1+t_2 +...+t_n). - Mircea Merca, Dec 06 2013
a(0) = 0; a(n) = a(n-1) + 2^(n-1) for n >= 1. - Fred Daniel Kline, Feb 09 2014
From Ilya Gutkovskiy, Aug 07 2016: (Start)
Binomial transform of A057427.
Sum_{n>=0} a(n)/n! = A090142. (End)
a(n) = A000918(n) + 1. - Miquel Cerda, Aug 09 2016
Convolution of binomial coefficient C(n,a(k)) with itself is C(n,a(k+1)) for all k >= 3. - Anton Zakharov, Sep 05 2016
a(n) = A279396(n+2,2). - Wolfdieter Lang, Jan 10 2017
a(n) = n + Sum_{j=1..n-1} (n-j)*2^(j-1). See a Jun 14 2017 formula for A000918(n+1) with an interpretation. - Wolfdieter Lang, Jun 14 2017
a(n) = Sum_{k=0..n-1} Sum_{i=0..n-1} C(k,i). - Wesley Ivan Hurt, Sep 21 2017
a(n+m) = a(n)*a(m) + a(n) + a(m). - Yuchun Ji, Jul 27 2018
a(n+m) = a(n+1)*a(m) - 2*a(n)*a(m-1). - Taras Goy, Dec 23 2018
a(n+1) is the determinant of n X n matrix M_(i, j) = binomial(i + j - 1, j)*2 + binomial(i+j-1, i) (empirical observation). - Tony Foster III, May 11 2019
From Peter Bala, Jun 27 2025: (Start)
For n >= 1, a(3*n)/a(n) = A001576(n), a(4*n)/a(n) = A034496(n), a(5*n)/a(n) = A020514(n) a(6*n)/a(n) = A034665(n), a(7*n)/a(n) = A020516(n) and a(8*n)/a(n) = A034674(n).
exp( Sum_{n >= 1} a(2*n)/a(n)*x^n/n ) = Sum_{n >= 0} a(n+1)*x^n.
Modulo differences in offsets, exp( Sum_{n >= 1} a(k*n)/a(n)*x^n/n ) is the o.g.f. of A006095 (k = 3), A006096 (k = 4), A006097 (k = 5), A006110 (k = 6), A022189 (k = 7), A022190 (k = 8), A022191 (k = 9) and A022192 (k = 10).
The following are all examples of telescoping series:
Sum_{n >= 1} 2^n/(a(n)*a(n+1)) = 1; Sum_{n >= 1} 2^n/(a(n)*a(n+1)*a(n+2)) = 1/9.
In general, for k >= 1, Sum_{n >= 1} 2^n/(a(n)*a(n+1)*...*a(n+k)) = 1/(a(1)*a(2)*...*a(k)*a(k)).
Sum_{n >= 1} 2^n/(a(n)*a(n+2)) = 4/9, since 2^n/(a(n)*a(n+2)) = b(n) - b(n+1), where b(n) = (2/3)*(3*2^(n-1) - 1)/((2^(n+1) - 1)*(2^n - 1)).
Sum_{n >= 1} (-2)^n/(a(n)*a(n+2)) = -2/9, since (-2)^n/(a(n)*a(n+2)) = c(n) - c(n+1), where c(n) = (1/3)*(-2)^n/((2^(n+1) - 1)*(2^n - 1)).
Sum_{n >= 1} 2^n/(a(n)*a(n+4)) = 18/175, since 2^n/(a(n)*a(n+4)) = d(n) - d(n+1), where d(n) = (120*8^n - 140*4^n + 45*2^n - 4)/(15*(2^n - 1)*(2^(n+1) - 1)*(2^(n+2) - 1)*(2^(n+3) - 1)).
Sum_{n >= 1} (-2)^n/(a(n)*a(n+4)) = -26/525, since (-2)^n/(a(n)*a(n+4)) = e(n) - e(n+1), where e(n) = (-1)^n*(40*8^n - 24*4^n + 5*2^n)/(15*(2^n - 1)*(2^(n+1) - 1)*(2^(n+2) - 1)*(2^(n+3) - 1)). (End)
Extensions
Name partially edited by Eric W. Weisstein, Sep 04 2021
Comments