A144756
Partial products of successive terms of A017101; a(0)=1 .
Original entry on oeis.org
1, 3, 33, 627, 16929, 592515, 25478145, 1299385395, 76663738305, 5136470466435, 385235284982625, 31974528653557875, 2909682107473766625, 288058528639902895875, 30822262564469609858625, 3544560194914005133741875, 435980903974422631450250625, 57113498420649364719982831875
Offset: 0
a(0)=1, a(1)=3, a(2)=3*11=33, a(3)=3*11*19=627, a(4)=3*11*19*27=16929, ...
-
Join[{1},FoldList[Times,8Range[0,20]+3]] (* Harvey P. Dale, Aug 11 2019 *)
A348845
Part two of the trisection of A017101: a(n) = 11 + 24*n.
Original entry on oeis.org
11, 35, 59, 83, 107, 131, 155, 179, 203, 227, 251, 275, 299, 323, 347, 371, 395, 419, 443, 467, 491, 515, 539, 563, 587, 611, 635, 659, 683, 707, 731, 755, 779, 803, 827, 851, 875, 899, 923, 947, 971, 995, 1019, 1043, 1067
Offset: 0
A350051
Part three of the trisection of A017101: a(n) = 19 + 24*n.
Original entry on oeis.org
19, 43, 67, 91, 115, 139, 163, 187, 211, 235, 259, 283, 307, 331, 355, 379, 403, 427, 451, 475, 499, 523, 547, 571, 595, 619, 643, 667, 691, 715, 739, 763, 787, 811, 835, 859, 883, 907, 931, 955, 979, 1003, 1027, 1051, 1075
Offset: 0
A000069
Odious numbers: numbers with an odd number of 1's in their binary expansion.
Original entry on oeis.org
1, 2, 4, 7, 8, 11, 13, 14, 16, 19, 21, 22, 25, 26, 28, 31, 32, 35, 37, 38, 41, 42, 44, 47, 49, 50, 52, 55, 56, 59, 61, 62, 64, 67, 69, 70, 73, 74, 76, 79, 81, 82, 84, 87, 88, 91, 93, 94, 97, 98, 100, 103, 104, 107, 109, 110, 112, 115, 117, 118, 121, 122, 124, 127, 128
Offset: 1
For k=2, x=0 and x=0.2 we respectively have 1^2 + 2^2 + 4^2 + 7^2 = 0^2 + 3^2 + 5^2 + 6^2 = 70;
(1.2)^2 + (2.2)^2 + (4.2)^2 + (7.2)^2 = (0.2)^2 + (3.2)^2 + (5.2)^2 + (6.2)^2 = 75.76;
for k=3, x=1.8, we have (2.8)^3 + (3.8)^3 + (5.8)^3 + (8.8)^3 + (9.8)^3 + (12.8)^3 + (14.8)^3 + (15.8)^3 = (1.8)^3 + (4.8)^3 + (6.8)^3 + (7.8)^3 + (10.8)^3 + (11.8)^3 + (13.8)^3 + (16.8)^3 = 11177.856. - _Vladimir Shevelev_, Jan 16 2012
- E. R. Berlekamp, J. H. Conway and R. K. Guy, Winning Ways, Academic Press, NY, 2 vols., 1982, see p. 433.
- J. Roberts, Lure of the Integers, Math. Assoc. America, 1992, p. 22.
- Vladimir S. Shevelev, On some identities connected with the partition of the positive integers with respect to the Morse sequence, Izv. Vuzov of the North-Caucasus region, Nature sciences 4 (1997), 21-23 (in Russian).
- N. J. A. Sloane, A handbook of Integer Sequences, Academic Press, 1973 (including this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- N. J. A. Sloane, Table of n, a(n) for n = 1..10001
- Jean-Paul Allouche, The zeta-regularized product of odious numbers, arXiv:1906.10532 [math.NT], 2019.
- Jean-Paul Allouche and Jeffrey Shallit, The ring of k-regular sequences, II, Theoret. Computer Sci., 307 (2003), 3-29.
- Jean-Paul Allouche, Jeffrey Shallit and G. Skordev, Self-generating sets, integers with missing blocks and substitutions, Discrete Math. 292 (2005) 1-15.
- Jean-Paul Allouche, Benoit Cloitre, and Vladimir Shevelev, Beyond odious and evil, arXiv preprint arXiv:1405.6214 [math.NT], 2014.
- Jean-Paul Allouche, Benoit Cloitre, and Vladimir Shevelev, Beyond odious and evil, Aequationes mathematicae, March 2015, pp 1-13.
- Jean-Paul Allouche, Jeffrey Shallit, and Manon Stipulanti, Combinatorics on words and generating Dirichlet series of automatic sequences, arXiv:2401.13524 [math.CO], 2025. See p. 19.
- E. Fouvry and C. Mauduit, Sommes des chiffres et nombres presque premiers, (French) [Sums of digits and almost primes] Math. Ann. Vol. 305, No. 1 (1996), 571-599, DOI:10.1007/BF01444238, MR1397437 (97k:11029).
- Aviezri S. Fraenkel, The vile, dopey, evil and odious game players, Discrete Mathematics, Volume 312, Issue 1, 6 January 2012, Pages 42-46.
- Maciej Gawron, and Maciej Ulas, On formal inverse of the Prouhet-Thue-Morse sequence, Discrete Mathematics 339.5 (2016): 1459-1470. Also arXiv preprint, arXiv:1601.04840 [math.CO], 2016.
- R. K. Guy, The unity of combinatorics, Proc. 25th Iranian Math. Conf, Tehran, (1994), Math. Appl 329 129-159, Kluwer Dordrecht 1995, Math. Rev. 96k:05001.
- R. K. Guy, Impartial games, pp. 35-55 of Combinatorial Games, ed. R. K. Guy, Proc. Sympos. Appl. Math., 43, Amer. Math. Soc., 1991.
- Sajed Haque, Chapter 3.2 of Discriminators of Integer Sequences, Thesis, 2017.
- Sajed Haque and Jeffrey Shallit, Discriminators and k-Regular Sequences, arXiv:1605.00092 [cs.DM], 2016.
- K. Jensen, Aesthetics and quality of numbers using the primety measure, Int. J. Arts and Technology, Vol. 7, Nos. 2/3, 2014.
- Clark Kimberling, Affinely recursive sets and orderings of languages, Discrete Math., 274 (2004), 147-160. [From _N. J. A. Sloane_, Jan 31 2012]
- Tanya Khovanova, There are no coincidences, arXiv:1410.2193 [math.CO], 2014.
- J. Lambek and L. Moser, On some two way classifications of integers, Canad. Math. Bull. 2 (1959), 85-89.
- M. D. McIlroy, The number of 1's in binary integers: bounds and extremal properties, SIAM J. Comput., 3 (1974), 255-261.
- H. L. Montgomery, Ten Lectures on the Interface Between Analytic Number Theory and Harmonic Analysis, Amer. Math. Soc., 1996, p. 208.
- D. J. Newman, A Problem Seminar, Problem 15 pp. 5; 15 Springer-Verlag NY 1982.
- Aayush Rajasekaran, Jeffrey Shallit and Tim Smith, Additive Number Theory via Automata Theory, Theory of Computing Systems (2019) 1-26.
- Jeffrey Shallit, Additive Number Theory via Automata and Logic, arXiv:2112.13627 [math.NT], 2021.
- Vladimir Shevelev and Peter J. C. Moses, Tangent power sums and their applications, arXiv:1207.0404 [math.NT], 2012-2014. - From _N. J. A. Sloane_, Dec 17 2012
- Vladimir Shevelev and Peter J. C. Moses, Tangent power sums and their applications, INTEGERS, 14(2014) #64.
- Vladimir Shevelev and Peter J. C. Moses, A family of digit functions with large periods, arXiv:1209.5705 [math.NT], 2012.
- Andrzej Tomski and Maciej Zakarczemny, A note on Browkin's and Cao's cancellation algorithm, Technical Transections 7/2018.
- Eric Weisstein's World of Mathematics, Odious Number
- Index entries for sequences related to binary expansion of n
- Index entries for "core" sequences
-
a000069 n = a000069_list !! (n-1)
a000069_list = [x | x <- [0..], odd $ a000120 x]
-- Reinhard Zumkeller, Feb 01 2012
-
[ n: n in [1..130] | IsOdd(&+Intseq(n, 2)) ]; // Klaus Brockhaus, Oct 07 2010
-
s := proc(n) local i,j,k,b,sum,ans; ans := [ ]; j := 0; for i while jA000069 := n->t1[n]; # s(k) gives first k terms.
is_A000069 := n -> type(add(i,i=convert(n,base,2)),odd):
seq(`if`(is_A000069(i),i,NULL),i=0..40); # Peter Luschny, Feb 03 2011
-
Select[Range[300], OddQ[DigitCount[ #, 2][[1]]] &] (* Stefan Steinerberger, Mar 31 2006 *)
a[ n_] := If[ n < 1, 0, 2 n - 1 - Mod[ Total @ IntegerDigits[ n - 1, 2], 2]]; (* Michael Somos, Jun 01 2013 *)
-
{a(n) = if( n<1, 0, 2*n - 1 - subst( Pol(binary( n-1)), x, 1) % 2)}; /* Michael Somos, Jun 01 2013 */
-
{a(n) = if( n<2, n==1, if( n%2, a((n+1)/2) + n-1, -a(n/2) + 3*(n-1)))}; /* Michael Somos, Jun 01 2013 */
-
a(n)=2*n-1-hammingweight(n-1)%2 \\ Charles R Greathouse IV, Mar 22 2013
-
[n for n in range(1, 201) if bin(n)[2:].count("1") % 2] # Indranil Ghosh, May 03 2017
-
def A000069(n): return ((m:=n-1)<<1)+(m.bit_count()&1^1) # Chai Wah Wu, Mar 03 2023
A001969
Evil numbers: nonnegative integers with an even number of 1's in their binary expansion.
Original entry on oeis.org
0, 3, 5, 6, 9, 10, 12, 15, 17, 18, 20, 23, 24, 27, 29, 30, 33, 34, 36, 39, 40, 43, 45, 46, 48, 51, 53, 54, 57, 58, 60, 63, 65, 66, 68, 71, 72, 75, 77, 78, 80, 83, 85, 86, 89, 90, 92, 95, 96, 99, 101, 102, 105, 106, 108, 111, 113, 114, 116, 119, 120, 123, 125, 126, 129
Offset: 1
- Elwyn R. Berlekamp, John H. Conway, Richard K. Guy, Winning Ways for Your Mathematical Plays, Volume 1, 2nd ed., A K Peters, 2001, chapter 14, p. 110.
- Hugh L. Montgomery, Ten Lectures on the Interface Between Analytic Number Theory and Harmonic Analysis, Amer. Math. Soc., 1996, p. 208.
- Donald J. Newman, A Problem Seminar, Springer; see Problem #89.
- Vladimir S. Shevelev, On some identities connected with the partition of the positive integers with respect to the Morse sequence, Izv. Vuzov of the North-Caucasus region, Nature sciences 4 (1997), 21-23 (Russian).
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- N. J. A. Sloane, Table of n, a(n) for n = 1..10000
- Jean-Paul Allouche and Henri Cohen, Dirichlet series and curious infinite products, Bull. London Math. Soc., Vol. 17 (1985), pp. 531-538.
- Jean-Paul Allouche and Jeffrey Shallit, The ring of k-regular sequences, Theoretical Computer Sci., Vol. 98 (1992), pp. 163-197; DOI.
- Jean-Paul Allouche, Benoit Cloitre, and Vladimir Shevelev, Beyond odious and evil, arXiv preprint arXiv:1405.6214 [math.NT], 2014.
- Jean-Paul Allouche, Benoit Cloitre, and Vladimir Shevelev, Beyond odious and evil, Aequationes mathematicae, Vol. 90 (2016), pp. 341-353; alternative link.
- Jean-Paul Allouche, Jeffrey Shallit, and Manon Stipulanti, Combinatorics on words and generating Dirichlet series of automatic sequences, arXiv:2401.13524 [math.CO], 2025. See p. 19.
- Chris Bernhardt, Evil twins alternate with odious twins, Math. Mag., Vol. 82, No. 1 (2009), pp. 57-62; alternative link.
- Joshua N. Cooper, Dennis Eichhorn and Kevin O'Bryant, Reciprocals of binary power series, International Journal of Number Theory, Vol. 2, No. 4 (2006), pp. 499-522; arXiv preprint, arXiv:math/0506496 [math.NT], 2005.
- Aviezri S. Fraenkel, The vile, dopey, evil and odious game players, Discrete Math., Vol. 312, No. 1 (2012), pp. 42-46.
- E. Fouvry and C. Mauduit, Sommes des chiffres et nombres presque premiers, (French) [Sums of digits and almost primes] Math. Ann., Vol. 305, No. 3 (1996), pp. 571-599. MR1397437 (97k:11029)
- Sajed Haque, Chapter 3.2 of Discriminators of Integer Sequences, thesis, University of Waterloo, Ontario, Canada, 2017. See p. 38.
- Sajed Haque and Jeffrey Shallit, Discriminators and k-Regular Sequences Integers, Vol. 16 (2016), Article A76; arXiv preprint, arXiv:1605.00092 [cs.DM], 2016.
- Tanya Khovanova, There are no coincidences, arXiv preprint 1410.2193 [math.CO], 2014.
- J. Lambek and L. Moser, On some two way classifications of integers, Canad. Math. Bull., Vol. 2, No. 2 (1959), pp. 85-89.
- P. Mathonet, M. Rigo, M. Stipulanti and N. Zénaïdi, On digital sequences associated with Pascal's triangle, arXiv:2201.06636 [math.NT], 2022.
- M. D. McIlroy, The number of 1's in binary integers: bounds and extremal properties, SIAM J. Comput., Vol. 3, No. 4 (1974), pp. 255-261.
- Jeffrey O. Shallit, On infinite products associated with sums of digits, J. Number Theory, Vol. 21, No. 2 (1985), pp. 128-134.
- Jeffrey Shallit, Frobenius Numbers and Automatic Sequences, arXiv:2103.10904 [math.NT], 2021.
- Jeffrey Shallit, Additive Number Theory via Automata and Logic, arXiv:2112.13627 [math.NT], 2021.
- Vladimir Shevelev and Peter J. C. Moses, Tangent power sums and their applications, arXiv preprint arXiv:1207.0404 [math.NT], 2012. - From _N. J. A. Sloane_, Dec 17 2012
- Vladimir Shevelev and Peter J. C. Moses, A family of digit functions with large periods, arXiv preprint arXiv:1209.5705 [math.NT], 2012.
- Vladimir Shevelev and Peter J. C. Moses, Tangent power sums and their applications, INTEGERS, Vol. 14 (2014) #64.
- Eric Weisstein's World of Mathematics, Evil Number.
- Index entries for sequences related to binary expansion of n
- Index entries for "core" sequences
-
a001969 n = a001969_list !! (n-1)
a001969_list = [x | x <- [0..], even $ a000120 x]
-- Reinhard Zumkeller, Feb 01 2012
-
[ n : n in [0..129] | IsEven(&+Intseq(n,2)) ]; // Sergei Haller (sergei(AT)sergei-haller.de), Dec 21 2006
-
s := proc(n) local i,j,ans; ans := [ ]; j := 0; for i from 0 while jA001969 := n->t1[n]; # s(k) gives first k terms.
# Alternative:
seq(`if`(add(k, k=convert(n,base,2))::even, n, NULL), n=0..129); # Peter Luschny, Jan 15 2021
# alternative for use outside this sequence
isA001969 := proc(n)
add(d,d=convert(n,base,2)) ;
type(%,'even') ;
end proc:
A001969 := proc(n)
option remember ;
local a;
if n = 0 then
1;
else
for a from procname(n-1)+1 do
if isA001969(a) then
return a;
end if;
end do:
end if;
end proc:
seq(A001969(n),n=1..200) ; # R. J. Mathar, Aug 07 2022
-
Select[Range[0,300], EvenQ[DigitCount[ #, 2][[1]]] &]
a[ n_] := If[ n < 1, 0, With[{m = n - 1}, 2 m + Mod[-Total@IntegerDigits[m, 2], 2]]]; (* Michael Somos, Jun 09 2019 *)
-
a(n)=n-=1; 2*n+subst(Pol(binary(n)),x,1)%2
-
a(n)=if(n<1,0,if(n%2==0,a(n/2)+n,-a((n-1)/2)+3*n))
-
a(n)=2*(n-1)+hammingweight(n-1)%2 \\ Charles R Greathouse IV, Mar 22 2013
-
def ok(n): return bin(n)[2:].count('1') % 2 == 0
print(list(filter(ok, range(130)))) # Michael S. Branicky, Jun 02 2021
-
from itertools import chain, count, islice
def A001969_gen(): # generator of terms
return chain((0,),chain.from_iterable((sorted(n^ n<<1 for n in range(2**l,2**(l+1))) for l in count(0))))
A001969_list = list(islice(A001969_gen(),30)) # Chai Wah Wu, Jun 29 2022
-
def A001969(n): return ((m:=n-1).bit_count()&1)+(m<<1) # Chai Wah Wu, Mar 03 2023
More terms from Robin Trew (trew(AT)hcs.harvard.edu)
A004767
a(n) = 4*n + 3.
Original entry on oeis.org
3, 7, 11, 15, 19, 23, 27, 31, 35, 39, 43, 47, 51, 55, 59, 63, 67, 71, 75, 79, 83, 87, 91, 95, 99, 103, 107, 111, 115, 119, 123, 127, 131, 135, 139, 143, 147, 151, 155, 159, 163, 167, 171, 175, 179, 183, 187, 191, 195, 199, 203, 207, 211, 215, 219, 223
Offset: 0
G.f. = 3 + 7*x + 11*x^2 + 15*x^3 + 19*x^4 + 23*x^5 + 27*x^6 + 31*x^7 + ...
- Alfred S. Posamentier, Math Charmers, Tantalizing Tidbits for the Mind, Prometheus Books, NY, 2003, page 85.
- James J. Tattersall, Elementary Number Theory in Nine Chapters, Cambridge University Press, 1999. See Theorem 8.1 on page 240.
- Ivan Panchenko, Table of n, a(n) for n = 0..200
- Guo-Niu Han, Enumeration of Standard Puzzles
- Guo-Niu Han, Enumeration of Standard Puzzles [Cached copy]
- Stere Ianus, Mihai Visinescu and Gabriel-Eduard Vilcu, Hidden symmetries and Killing tensors on curved spaces, arXiv:0811.3478 [math-ph], 2008. - _Jonathan Vos Post_, Nov 24 2008
- Tanya Khovanova, Recursive Sequences
- Juan F. Pulido, José L. Ramírez, and Andrés R. Vindas-Meléndez, Generating Trees and Fibonacci Polyominoes, arXiv:2411.17812 [math.CO], 2024. See p. 8.
- William A. Stein, Dimensions of the spaces S_k(Gamma_0(N))
- William A. Stein, The modular forms database
- Index entries for linear recurrences with constant coefficients, signature (2,-1).
Cf.
A004773,
A005408,
A008545 (partial products),
A008586,
A014105,
A016813,
A016825,
A017137,
A017629,
A022544,
A084849,
A181049,
A238476,
A239126.
-
a004767 = (+ 3) . (* 4)
a004767_list = [3, 7 ..] -- Reinhard Zumkeller, Oct 03 2012
-
[4*n+3: n in [0..50]]; // Wesley Ivan Hurt, Jul 09 2014
-
seq( 3+4*n, n=0..100 );
-
4 Range[50] - 1 (* Wesley Ivan Hurt, Jul 09 2014 *)
-
a(n)=4*n+3 \\ Charles R Greathouse IV, Jul 28 2015
-
Vec((3+x)/(1-x)^2 + O(x^200)) \\ Altug Alkan, Jan 15 2016
-
for n in range(0,50): print(4*n+3, end=', ') # Stefano Spezia, Dec 12 2018
-
[4*n+3 for n in range(50)] # G. C. Greubel, Dec 09 2018
-
(0 to 59).map(4 * + 3) // _Alonso del Arte, Dec 12 2018
A004771
a(n) = 8*n + 7. Or, numbers whose binary expansion ends in 111.
Original entry on oeis.org
7, 15, 23, 31, 39, 47, 55, 63, 71, 79, 87, 95, 103, 111, 119, 127, 135, 143, 151, 159, 167, 175, 183, 191, 199, 207, 215, 223, 231, 239, 247, 255, 263, 271, 279, 287, 295, 303, 311, 319, 327, 335, 343, 351, 359, 367, 375, 383, 391, 399, 407, 415, 423, 431
Offset: 0
- James J. Tattersall, Elementary Number Theory in Nine Chapters, Cambridge University Press, 1999, page 246.
-
List([0..60],n->8*n+7); # Muniru A Asiru, Aug 28 2018
-
a004771 = (+ 7) . (* 8)
a004771_list = [7, 15 ..] -- Reinhard Zumkeller, Jan 29 2013
-
[8*n+7: n in [0..60]]; // Vincenzo Librandi, May 28 2011
-
A004771:=n->8*n+7; seq(A004771(n), n=0..100); # Wesley Ivan Hurt, Dec 22 2013
-
8 Range[0, 60] + 7 (* or *) Range[7, 500, 8] (* or *) Table[8 n + 7, {n, 0, 60}] (* Bruno Berselli, Dec 28 2016 *)
-
a(n)=8*n+7 \\ Charles R Greathouse IV, Sep 23 2012
A080851
Square array of pyramidal numbers, read by antidiagonals.
Original entry on oeis.org
1, 1, 3, 1, 4, 6, 1, 5, 10, 10, 1, 6, 14, 20, 15, 1, 7, 18, 30, 35, 21, 1, 8, 22, 40, 55, 56, 28, 1, 9, 26, 50, 75, 91, 84, 36, 1, 10, 30, 60, 95, 126, 140, 120, 45, 1, 11, 34, 70, 115, 161, 196, 204, 165, 55, 1, 12, 38, 80, 135, 196, 252, 288, 285, 220, 66, 1, 13, 42, 90, 155, 231, 308, 372, 405, 385, 286, 78
Offset: 0
Array begins (n>=0, k>=0):
1, 3, 6, 10, 15, 21, 28, 36, 45, 55, ... A000217
1, 4, 10, 20, 35, 56, 84, 120, 165, 220, ... A000292
1, 5, 14, 30, 55, 91, 140, 204, 285, 385, ... A000330
1, 6, 18, 40, 75, 126, 196, 288, 405, 550, ... A002411
1, 7, 22, 50, 95, 161, 252, 372, 525, 715, ... A002412
1, 8, 26, 60, 115, 196, 308, 456, 645, 880, ... A002413
1, 9, 30, 70, 135, 231, 364, 540, 765, 1045, ... A002414
1, 10, 34, 80, 155, 266, 420, 624, 885, 1210, ... A007584
See
A257199 for another version of this array.
-
vector(vector(poly_coeff(Taylor((1+kx)/(1-x)^4,x,11),x,n),n,0,11),k,-1,10) VECTOR(VECTOR(comb(k+2,2)+comb(k+2,3)n, k, 0, 11), n, 0, 11)
-
A080851 := proc(n,k)
binomial(k+3,3)+(n-1)*binomial(k+2,3) ;
end proc:
seq( seq(A080851(d-k,k),k=0..d),d=0..12) ; # R. J. Mathar, Oct 01 2021
-
pyramidalFigurative[ ngon_, rank_] := (3 rank^2 + rank^3 (ngon - 2) - rank (ngon - 5))/6; Table[ pyramidalFigurative[n-k-1, k], {n, 4, 15}, {k, n-3}] // Flatten (* Robert G. Wilson v, Sep 15 2015 *)
A017137
a(n) = 8*n + 6.
Original entry on oeis.org
6, 14, 22, 30, 38, 46, 54, 62, 70, 78, 86, 94, 102, 110, 118, 126, 134, 142, 150, 158, 166, 174, 182, 190, 198, 206, 214, 222, 230, 238, 246, 254, 262, 270, 278, 286, 294, 302, 310, 318, 326, 334, 342, 350, 358, 366, 374, 382, 390, 398, 406, 414, 422, 430
Offset: 0
G.f. = 6 + 14*x + 22*x^2 + 30*x^3 + 38*x^4 + 46*x^5 + 54*x^6 + 62*x^7 + ...
-
a017137 = (+ 6) . (* 8) -- Reinhard Zumkeller, Jul 05 2013
-
[8*n+6: n in [0..60]]; // Vincenzo Librandi, Jun 07 2011
-
A017137:=n->8*n+6; seq(A017137(n), n=0..50); # Wesley Ivan Hurt, May 13 2014
-
Range[6, 1000, 8] (* Vladimir Joseph Stephan Orlovsky, May 27 2011 *)
8Range[0,60]+6 (* or *) LinearRecurrence[{2,-1},{6,14},60] (* Harvey P. Dale, Nov 14 2021 *)
-
a(n) = 8*n+6; \\ Michel Marcus, Sep 17 2015
-
Vec((6+2*x)/(1-x)^2 + O(x^100)) \\ Altug Alkan, Oct 23 2015
A004770
Numbers of the form 8k+5; or, numbers whose binary expansion ends in 101.
Original entry on oeis.org
5, 13, 21, 29, 37, 45, 53, 61, 69, 77, 85, 93, 101, 109, 117, 125, 133, 141, 149, 157, 165, 173, 181, 189, 197, 205, 213, 221, 229, 237, 245, 253, 261, 269, 277, 285, 293, 301, 309, 317, 325, 333, 341, 349, 357, 365, 373, 381, 389, 397, 405, 413, 421, 429, 437, 445
Offset: 1
- James J. Tattersall, Elementary Number Theory in Nine Chapters, Cambridge University Press, 1999, page 248.
-
a004770 = (subtract 3) . (* 8)
a004770_list = [5, 13 ..] -- Reinhard Zumkeller, Aug 17 2012
-
[8*n-3: n in [1..60]]; // Vincenzo Librandi, May 28 2011
-
Range[5, 1000, 8] (* Vladimir Joseph Stephan Orlovsky, May 27 2011 *)
LinearRecurrence[{2,-1},{5,13},60] (* or *) NestList[#+8&,5,60] (* Harvey P. Dale, Jun 28 2021 *)
-
a(n)=8*n-3 \\ Charles R Greathouse IV, Sep 24 2015
-
[8*n-3 for n in range(1,57)] # Stefano Spezia, Jul 23 2025
Showing 1-10 of 37 results.
Comments