A094346
Another version of triangular array in A036970: triangle T(n,k), 0<=k<=n, read by rows; given by [0, 1, 2, 4, 6, 9, 12, 16, 20, 25, 30, ...] DELTA [1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, ...] where DELTA is the operator defined in A084938.
Original entry on oeis.org
1, 0, 1, 0, 1, 2, 0, 3, 8, 6, 0, 17, 54, 60, 24, 0, 155, 556, 762, 480, 120, 0, 2073, 8146, 12840, 10248, 4200, 720, 0, 38227, 161424, 282078, 263040, 139440, 40320, 5040, 0, 929569, 4163438, 7886580, 8240952, 5170800, 1965600, 423360, 40320
Offset: 0
Triangle begins:
1;
0, 1;
0, 1, 2;
0, 3, 8, 6;
0, 17, 54, 60, 24;
0, 155, 556, 762, 480, 120;
0, 2073, 8146, 12840, 10248, 4200, 720;
0, 38227, 161424, 282078, 263040, 139440, 40320, 5040;
0, 929569, 4163438, 7886580, 8240952, 5170800, 1965600, 423360, 40320; ...
- D. Dumont, Sur une conjecture de Gandhi concernant les nombres de Genocchi, Discrete Mathematics 1 (1972) 321-327.
- D. Dumont, Interprétations combinatoires des nombres de Genocchi, Duke Math. J., 41 (1974), 305-318.
- J. M. Gandhi, Research Problems: A Conjectured Representation of Genocchi Numbers, Amer. Math. Monthly 77 (1970), no. 5, 505-506. MR1535914
- Andrei K. Svinin, Tuenter polynomials and a Catalan triangle, arXiv:1603.05748 [math.CO], 2016. (Has a signed version of this triangle, see p. 1).
-
G[_, 1] = 1;
G[x_, n_] := G[x, n] = (x+1)^2 G[x+1, n-1] - x^2 G[x, n-1] // Expand;
row[0] = {1};
row[n_] := CoefficientList[x G[x, n], x];
Table[row[n], {n, 0, 8}] // Flatten (* Jean-François Alcover, Aug 17 2018 *)
-
{T(n, k) = local( A = x); if( k<0 || k>n, 0, for( j = 1, n, A = x^2 * ( subst(A, x, x+1) - A)); polcoeff( A, k+1))} /* Michael Somos, Apr 10 2011 */
A001008
a(n) = numerator of harmonic number H(n) = Sum_{i=1..n} 1/i.
Original entry on oeis.org
1, 3, 11, 25, 137, 49, 363, 761, 7129, 7381, 83711, 86021, 1145993, 1171733, 1195757, 2436559, 42142223, 14274301, 275295799, 55835135, 18858053, 19093197, 444316699, 1347822955, 34052522467, 34395742267, 312536252003, 315404588903, 9227046511387
Offset: 1
H(n) = [ 1, 3/2, 11/6, 25/12, 137/60, 49/20, 363/140, 761/280, 7129/2520, ... ].
Coincidences with A175441: the first 19 entries coincide because 20 is the first entry of A256102. Indeed, a(20)/A175441(20) = 55835135 / 11167027 = 5 = A256103(1). - _Wolfdieter Lang_, Apr 23 2015
- John H. Conway and Richard K. Guy, The Book of Numbers, New York: Springer-Verlag, 1996. See pp. 258-261.
- H. W. Gould, Combinatorial Identities, Morgantown Printing and Binding Co., 1972, # 1.45, page 6, #3.122, page 36.
- R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics. Addison-Wesley, Reading, MA, 1990, p. 259.
- G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers. 3rd ed., Oxford Univ. Press, 1954, page 347.
- D. E. Knuth, The Art of Computer Programming. Addison-Wesley, Reading, MA, Vol. 1, p. 615.
- G. Pólya and G. Szegő, Problems and Theorems in Analysis, volume II, Springer, reprint of the 1976 edition, 1998, problem 251, p. 154.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Kenny Lau, Table of n, a(n) for n = 1..2295 (first 200 terms provided by T. D. Noe)
- David H. Bailey, Jonathan M. Borwein, and Roland Girgensohn, Experimental evaluation of Euler sums, Exper. Math. 3(1) (1994), 17-30; they evaluate the constants Sum_{k>=1} H_k^m/(k+1)^n.
- Hongwei Chen, Evaluations of Some Variant Euler Sums, Journal of Integer Sequences, Vol. 9 (2006), Article 06.2.3.
- Hongwei Chen, Interesting Series Associated with Central Binomial Coefficients, Catalan Numbers and Harmonic Numbers, J. Int. Seq. 19 (2016), #16.1.5.
- R. M. Dickau, Harmonic numbers and the book-stacking problem.
- Leo Goldmakher, A short(er) proof of the divergence of the harmonic series.
- Antal Iványi, Leader election in synchronous networks, Acta Univ. Sapientiae, Mathematica, 5, 2 (2013), 54-82.
- Fredrik Johansson, How (not) to compute harmonic numbers. Feb 21 2009.
- Masanobu Kaneko, The Akiyama-Tanigawa algorithm for Bernoulli numbers, J. Integer Sequences, 3 (2000), #00.2.9.
- Romeo Mestrovic, Wolstenholme's theorem: Its Generalizations and Extensions in the last hundred and fifty years (1862-2011), arXiv preprint arXiv:1111.3057 [math.NT], 2011.
- Jerry Metzger and Thomas Richards, A Prisoner Problem Variation, Journal of Integer Sequences, Vol. 18 (2015), Article 15.2.7.
- Hisanori Mishima, Factorizations of Wolstenholme numbers, n=1..100, n=101..200, n=201..300.
- Mike Paterson et al., Maximum Overhang.
- Maxie D. Schmidt, Generalized j-Factorial Functions, Polynomials, and Applications, J. Int. Seq. 13 (2010), 10.6.7, Section 4.3.
- Peter Shiu, The denominators of harmonic numbers, arXiv:1607.02863 [math.NT], 2016.
- N. J. A. Sloane, Illustration of initial terms.
- Jonathan Sondow and Eric W. Weisstein, MathWorld: Harmonic Number.
- Roberto Tauraso, Some Congruences for Central Binomial Sums Involving Fibonacci and Lucas Numbers, JIS 19 (2016) # 16.5.4.
- Eric Weisstein's World of Mathematics, Book Stacking Problem, Wolstenholme's Theorem, Harmonic Mean, Digamma Function.
- Wikipedia, Harmonic number.
Cf.
A002805 (denominators),
A007406,
A007408,
A007410,
A075135,
A001220,
A125854,
A121999,
A014566,
A056903,
A067657,
A177427,
A177690.
-
List([1..30],n->NumeratorRat(Sum([1..n],i->1/i))); # Muniru A Asiru, Dec 20 2018
-
import Data.Ratio ((%), numerator)
a001008 = numerator . sum . map (1 %) . enumFromTo 1
a001008_list = map numerator $ scanl1 (+) $ map (1 %) [1..]
-- Reinhard Zumkeller, Jul 03 2012
-
[Numerator(HarmonicNumber(n)): n in [1..30]]; // Bruno Berselli, Feb 17 2016
-
A001008 := proc(n)
add(1/k,k=1..n) ;
numer(%) ;
end proc:
seq( A001008(n),n=1..40) ; # Zerinvary Lajos, Mar 28 2007; R. J. Mathar, Dec 02 2016
-
Table[Numerator[HarmonicNumber[n]], {n, 30}]
(* Procedure generating A[1,n](m) (see Comments section) *) m =1; aa = {}; Do[k = 0; Do[k = k + m^(r - d)/d, {d, 1, r - 1}]; AppendTo[aa, k], {r, 1, 20}]; aa (* Artur Jasinski, Oct 16 2008 *)
Numerator[Accumulate[1/Range[25]]] (* Alonso del Arte, Nov 21 2018 *)
Numerator[Table[((n - 1)/2)*HypergeometricPFQ[{1, 1, 2 - n}, {2, 3}, 1] + 1, {n, 1, 29}]] (* Artur Jasinski, Jan 08 2021 *)
-
A001008(n) = numerator(sum(i=1,n,1/i)) \\ Michael B. Porter, Dec 08 2009
-
H1008=List(1); A001008(n)={for(k=#H1008,n-1,listput(H1008,H1008[k]+1/(k+1))); numerator(H1008[n])} \\ about 100x faster for n=1..1500. - M. F. Hasler, Jul 03 2019
-
from sympy import Integer
[sum(1/Integer(i) for i in range(1, n + 1)).numerator() for n in range(1, 31)] # Indranil Ghosh, Mar 23 2017
-
def harmonic(a, b): # See the F. Johansson link.
if b - a == 1:
return 1, a
m = (a+b)//2
p, q = harmonic(a,m)
r, s = harmonic(m,b)
return p*s+q*r, q*s
def A001008(n): H = harmonic(1,n+1); return numerator(H[0]/H[1])
[A001008(n) for n in (1..29)] # Peter Luschny, Sep 01 2012
Changed title, deleting the incorrect name "Wolstenholme numbers" which conflicted with the definition of the latter in both Weisstein's World of Mathematics and in Wikipedia, as well as with OEIS
A007406. -
Stanislav Sykora, Mar 25 2016
A015237
a(n) = (2*n - 1)*n^2.
Original entry on oeis.org
0, 1, 12, 45, 112, 225, 396, 637, 960, 1377, 1900, 2541, 3312, 4225, 5292, 6525, 7936, 9537, 11340, 13357, 15600, 18081, 20812, 23805, 27072, 30625, 34476, 38637, 43120, 47937, 53100, 58621, 64512
Offset: 0
- Vincenzo Librandi, Table of n, a(n) for n = 0..5000
- M. Janjic and B. Petkovic, A counting function, arXiv preprint arXiv:1301.4550 [math.CO], 2013.
- M. Janjic, B. Petkovic, A Counting Function Generalizing Binomial Coefficients and Some Other Classes of Integers, J. Int. Seq. 17 (2014) # 14.3.5
- Milan Janjić, Pascal Matrices and Restricted Words, J. Int. Seq., Vol. 21 (2018), Article 18.5.2.
- Index entries for linear recurrences with constant coefficients, signature (4,-6,4,-1).
Cf.
A100177 (structured prisms);
A100145 (more on structured numbers).
Cf. similar sequences, with the formula (k*n-k+2)*n^2/2, listed in
A262000.
-
List([0..40],n->(2*n-1)*n^2); # Muniru A Asiru, Feb 05 2019
-
[(2*n-1)*n^2: n in [0..40]]; // Vincenzo Librandi, Jul 19 2011
-
[(2*n-1)*n^2$n=0..40]; # Muniru A Asiru, Feb 05 2019
-
RecurrenceTable[{a[0]==0, a[1]==1, a[2]==12, a[n]== 3*a[n-1] - 3*a[n-2] + a[n-3] + 12}, a, {n, 30}] (* G. C. Greubel, Jul 31 2015 *)
Table[(2 n - 1) n^2, {n, 0, 40}] (* Bruno Berselli, Sep 08 2015 *)
-
a(n)=(2*n-1)*n^2 \\ Charles R Greathouse IV, Oct 07 2015
A083061
Triangle of coefficients of a companion polynomial to the Gandhi polynomial.
Original entry on oeis.org
1, 1, 3, 4, 15, 15, 34, 147, 210, 105, 496, 2370, 4095, 3150, 945, 11056, 56958, 111705, 107415, 51975, 10395, 349504, 1911000, 4114110, 4579575, 2837835, 945945, 135135, 14873104, 85389132, 197722980, 244909665, 178378200, 77567490
Offset: 0
Triangle starts (with an additional first column 1,0,0,...):
[1]
[0, 1]
[0, 1, 3]
[0, 4, 15, 15]
[0, 34, 147, 210, 105]
[0, 496, 2370, 4095, 3150, 945]
[0, 11056, 56958, 111705, 107415, 51975, 10395]
[0, 349504, 1911000, 4114110, 4579575, 2837835, 945945, 135135]
- R. P. Brent, Generalising Tuenter's binomial sums, arXiv:1407.3533 [math.CO], 2014.
- R. B. Brent, Generalizing Tuenter's Binomial Sums, J. Int. Seq. 18 (2015) # 15.3.2.
- Marc Joye, Pascal Paillier and Berry Schoenmakers, On Second-Order Differential Power Analysis, in Cryptographic Hardware and Embedded Systems-CHES 2005, editors: Josyula R. Rao and Berk Sunar, Lecture Notes in Computer Science 3659 (2005) 293-308, Springer-Verlag.
- H. J. H. Tuenter, Walking into an absolute sum, The Fibonacci Quarterly, 40 (2002), 175-180.
A002105 equals the row sums (n>=2) and the first left hand column (n>=1).
(End)
-
imax := 6;
T1(0, x) := 1:
T1(0, x+1) := 1:
for i from 1 to imax do
T1(i, x) := expand((2*x+1) * (x+1) * T1(i-1, x+1) - 2*x^2*T1(i-1, x)):
dx := degree(T1(i, x)):
for k from 0 to dx do
c(k) := coeff(T1(i, x), x, k)
od:
T1(i, x+1) := sum(c(j1)*(x+1)^(j1), j1 = 0..dx):
od:
for i from 0 to imax do
for j from 0 to i do
a(i, j) := coeff(T1(i, x), x, j)
od:
od:
seq(seq(a(i, j), j = 0..i), i = 0..imax);
# Johannes W. Meijer, Jun 27 2009, revised Sep 23 2012
-
b[0, 0] = 1;
b[n_, k_] := b[n, k] = Sum[2^j*(Binomial[k + j, 1 + j] + Binomial[k + j + 1, 1 + j])*b[n - 1, k - 1 + j], {j, Max[0, 1 - k], n - k}];
a[0, 0] = 1;
a[n_, k_] := b[n, k]/2^(n - k);
Table[a[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jun 19 2018, after Philippe Deléham *)
-
# uses[fr2_row from A088874]
A083061_row = lambda n: [(-1)^(n-k)*m*2^(-n+k) for k,m in enumerate(fr2_row(n))]
for n in (0..7): print(A083061_row(n)) # Peter Luschny, Sep 19 2017
A160485
Triangle of the RBS1 polynomial coefficients.
Original entry on oeis.org
1, 1, -2, 1, -8, 12, 1, -2, 60, -120, 1, -128, -168, 0, 1680, 1, 2638, 7320, -5040, -25200, -30240, 1, -98408, -300828, 52800, 1053360, 1330560, 665280, 1, 5307118, 17914260, 2522520, -56456400, -90810720, -60540480, -17297280
Offset: 1
The first few rows of the triangle are:
[1]
[1, -2]
[1, -8, 12]
[1, -2, 60, -120]
[1, -128, -168, 0, 1680]
The first few RBS1(1-2*m,n) polynomials are:
RBS1(-1,n) = 1
RBS1(-3,n) = 1 - 2*n
RBS1(-5,n) = 1 - 8*n + 12*n^2
RBS1(-7,n) = 1 - 2*n + 60*n^2 - 120*n^3
From _Peter Bala_, Jan 22 2019: (Start)
Qbar(r,n) = binomial(2*n+2,n+1)/(2^(2*n+1)) * Sum_{k = 0..n} binomial(n,k)/binomial(n+k+1,k)*(2*k + 1)^(2*r):
Case r = 2: Qbar(2,n) = binomial(2*n+2,n+1)/2^(2*n+1) * ( 1 + 3^4*n/(n+2) + 5^4*n*(n-1)/((n+2)*(n+3)) + 7^4*n*(n-1)*(n-2)/((n+2)*(n+3)*(n+4)) + ... ) = 12*n^2 + 8*n + 1, valid for n a nonnegative integer (when the series terminates). The identity is also valid for complex n with real part greater than 1 (provided the factor binomial(2*n,n) is replaced with the appropriate expression involving the gamma function).
Case r = 3: Qbar(3,n) = binomial(2*n+2,n+1)/(2^(2*n+1)) * ( 1 + 3^6*n/(n+2) + 5^6*n*(n-1)/((n+2)*(n+3)) + 7^6*n*(n-1)*(n-2)/((n+2)*(n+3)*(n+4)) + ... ) = 120*n^3 + 60*n^2 + 2*n + 1, valid for n a nonnegative integer. The identity is also valid for complex n with real part greater than 2.
Note, the case r = 0 is equivalent to the identity 1 = binomial(2*n,n)/2^(2*n-1) * ( 1 + (n-1)/(n+1) + (n-1)*(n-2)/((n+1)*(n+2)) + (n-1)*(n-2)*(n-3)/((n+1)*(n+2)*(n+3)) + ... ), which is valid for complex n with real part greater than 0. This identity was found by Ramanujan. See Example 6, Chapter 10 in Berndt. (End)
- B. C. Berndt, Ramanujan's Notebooks Part II, Springer-Verlag, Chapter 10, p. 21.
A009389(2*n) equals the second left hand column divided by 2.
A001813 equals the first right hand column.
The absolute values of the row sums equal the Euler numbers
A000364.
-
nmax := 8; mmax := nmax: A(1, 1) := 1: RBS1(n, 2) := (2*n-1)^2*1-(2*n)*(2*n-1)*1: for m from 3 to mmax do for k from 0 to m-1 do A(m-1, k+1) := coeff(RBS1(n, m-1), n, k) od; RBS1(n+1, m-1) := 0: for k from 0 to m-1 do RBS1(n+1, m-1) := RBS1(n+1, m-1) + A(m-1, k+1)*(n+1)^k od: RBS1(n, m) := (2*n-1)^2*RBS1(n, m-1)-(2*n)*(2*n-1) * RBS1(n+1, m-1) od: for k from 0 to nmax-1 do A(nmax, k+1) := coeff(RBS1(n, nmax), n, k) od: seq(seq(A(n, m), m=1..n), n=1..nmax);
A245244
Triangle of coefficients of the Pbar polynomials, read by rows.
Original entry on oeis.org
1, -3, 4, 25, -56, 32, -427, 1228, -1184, 384, 12465, -41840, 52416, -29184, 6144, -555731, 2079892, -3076288, 2258688, -829440, 122880, 35135945, -142843304, 237829600, -208562688, 102279168, -26787840, 2949120, -2990414715, 12987478876, -23672564832, 23581133952, -13947525120, 4929576960, -970260480
Offset: 0
Pbar(1,n) = 4*n-3, Pbar(2,n) = 32*n^2 - 56*n + 25.
Triangle begins:
1,
-3, 4,
25, -56, 32,
-427, 1228, -1184, 384,
12465, -41840, 52416, -29184, 6144,
...
From _Peter Bala_, Jan 22 2018: (Start)
The polynomials Pbar(r,n) as hypergeometric series:
r = 0: n*Pbar(0,n) = n = 1 + 3*(n-1)/(n+1) + 5*(n-1)*(n-2)/((n+1)*(n+2)) + 7*(n-1)*(n-2)*(n-3)/((n+1)*(n+2)*(n+3)) + ..., for n a positive integer (when the series terminates). The identity is also valid for complex n with real part greater than 1/2.
r = 1: n*Pbar(1,n) = n*(4*n - 3) = 1 + 3^3*(n-1)/(n+1) + 5^3*(n-1)*(n-2)/((n+1)*(n+2)) + 7^3*(n-1)*(n-2)*(n-3)/((n+1)*(n+2)*(n+3)) + ..., for n a positive integer (when the series terminates). The identity is also valid for complex n with real part greater than 3/2.
r = 2: n*Pbar(2,n) = n*(32*n^2 - 56*n + 25) = 1 + 3^5*(n-1)/(n+1) + 5^5*(n-1)*(n-2)/((n+1)*(n+2)) + 7^5*(n-1)*(n-2)*(n-3)/((n+1)*(n+2)*(n+3)) + ..., for n a positive integer (when the series terminates). The identity is also valid for complex n with real part greater than 5/2.
The above identities when r = 0 and r = 1 were found by Ramanujan. See Example 5 and Example 13 in Chapter 10 of Berndt. (End)
- B. C. Berndt, Ramanujan's Notebooks Part II, Springer-Verlag, Chapter 10, p. 20 and p. 23.
- P. Bala, A245244 and A160485 and some hypergeometric series evaluations of Ramanujan
- R. P. Brent, Generalising Tuenter's binomial sums, arXiv:1407.3533 [math.CO], 2014.
- R. P. Brent, Generalizing Tuenter's binomial sums, Journal of Integer Sequences, 18 (2015), Article 15.3.2.
- L. Carlitz, Explicit formulas for the Dumont-Foata polynomials, Discrete Mathematics, 30 (1980), 211-255.
- H. J. H. Tuenter, Walking into an absolute sum, The Fibonacci Quarterly, 40 (2002), 175-180.
(-1)^r Pbar(r,0) is sequence
A009843. The leading coefficient of Pbar(r,n) is sequence
A047053. Cf. also
A036970,
A083061,
A160485 for analogous moments of Bernoulli random walks.
-
N=10; P=vector(N+2); P[1]=1;
Pbar(r)=P[r+1];
for (r=0, N, P[r+2] = (2*n-1)^2 * Pbar(r) - 4*(n-1)^2 * subst(Pbar(r),n,n-1) );
seq=[]; for(r=1,N, seq=concat(seq, Vecrev(P[r])); ); seq
\\ Joerg Arndt, Jan 27 2015
A272378
a(n) = n*(6*n^2 - 8*n + 3).
Original entry on oeis.org
0, 1, 22, 99, 268, 565, 1026, 1687, 2584, 3753, 5230, 7051, 9252, 11869, 14938, 18495, 22576, 27217, 32454, 38323, 44860, 52101, 60082, 68839, 78408, 88825, 100126, 112347, 125524, 139693, 154890, 171151, 188512, 207009, 226678, 247555, 269676, 293077
Offset: 0
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Richard P. Brent, Generalising Tuenter's binomial sums, arXiv:1407.3533 [math.CO], 2014 (page 16).
- Richard P. Brent, Generalising Tuenter's binomial sums, Journal of Integer Sequences, 18 (2015), Article 15.3.2.
- Index entries for linear recurrences with constant coefficients, signature (4,-6,4,-1)
-
[n*(6*n^2 - 8*n + 3): n in [0..50]];
-
Table[n (6 n^2 - 8 n + 3), {n, 0, 50}]
LinearRecurrence[{4,-6,4,-1},{0,1,22,99},40] (* Harvey P. Dale, Dec 29 2017 *)
-
vector(100, n, n--; n*(6*n^2 - 8*n + 3)) \\ Altug Alkan, Apr 29 2016
-
for n in range(0,10**3):print(n*(6*n**2-8*n+3),end=", ") # Soumil Mandal, Apr 30 2016
A272379
a(n) = n*(24*n^3 - 60*n^2 + 54*n - 17).
Original entry on oeis.org
0, 1, 86, 759, 3100, 8765, 19986, 39571, 70904, 117945, 185230, 277871, 401556, 562549, 767690, 1024395, 1340656, 1725041, 2186694, 2735335, 3381260, 4135341, 5009026, 6014339, 7163880, 8470825, 9948926, 11612511, 13476484, 15556325, 17868090, 20428411
Offset: 0
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Richard P. Brent, Generalising Tuenter's binomial sums, arXiv:1407.3533 [math.CO], 2014 (page 16).
- Richard P. Brent, Generalising Tuenter's binomial sums, Journal of Integer Sequences, 18 (2015), Article 15.3.2.
- Index entries for linear recurrences with constant coefficients, signature (5,-10,10,-5,1)
-
[n*(24*n^3 - 60*n^2 + 54*n - 17): n in [0..50]];
-
Table[n (24 n^3 - 60 n^2 + 54 n - 17), {n, 0, 50}]
LinearRecurrence[{5,-10,10,-5,1},{0,1,86,759,3100},40] (* Harvey P. Dale, Mar 24 2021 *)
-
vector(100, n, n--; n*(24*n^3 - 60*n^2 + 54*n - 17)) \\ Altug Alkan, Apr 29 2016
A272380
a(n) = n*(120*n^4 - 480*n^3 + 762*n^2 - 556*n + 155).
Original entry on oeis.org
0, 1, 342, 6315, 40492, 157125, 456546, 1099567, 2321880, 4448457, 7907950, 13247091, 21145092, 32428045, 48083322, 69273975, 97353136, 133878417, 180626310, 239606587, 313076700, 403556181, 513841042, 647018175, 806479752, 995937625, 1219437726, 1481374467
Offset: 0
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Richard P. Brent, Generalising Tuenter's binomial sums, arXiv:1407.3533 [math.CO], 2014 (page 16).
- Richard P. Brent, Generalising Tuenter's binomial sums, Journal of Integer Sequences, 18 (2015), Article 15.3.2.
- Index entries for linear recurrences with constant coefficients, signature (6,-15,20,-15,6,-1).
-
[n*(120*n^4 - 480*n^3 + 762*n^2 - 556*n + 155): n in [0..50]];
-
Table[n (120 n^4 - 480 n^3 + 762 n^2 - 556 n + 155), {n, 0, 50}]
LinearRecurrence[{6,-15,20,-15,6,-1},{0,1,342,6315,40492,157125},40] (* Harvey P. Dale, Mar 15 2018 *)
-
vector(100, n, n--; n*(120*n^4 - 480*n^3 + 762*n^2 - 556*n + 155)) \\ Altug Alkan, Apr 29 2016
A005440
Coefficients of Gandhi polynomials.
Original entry on oeis.org
2, 8, 54, 556, 8146, 161424, 4163438, 135634292, 5448798090, 264689281240, 15296907175462, 1037373202178748, 81588771795362114, 7366855482991121696, 756909709680583939806, 87807399365909591247364
Offset: 2
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Robert Israel, Table of n, a(n) for n = 2..275
- D. Dumont, Interprétations combinatoires des nombres de Genocchi, Duke Math. J., 41 (1974), 305-318.
- D. Dumont, Interprétations combinatoires des nombres de Genocchi, Duke Math. J., 41 (1974), 305-318. (Annotated scanned copy)
-
B[1]:= X -> X^2:
for n from 2 to 50 do B[n]:= unapply(expand(X^2*(B[n-1](X+1)-B[n-1](X))), X) od:
seq(D(B[n])(1),n=1..50); # Robert Israel, Apr 21 2016
Showing 1-10 of 15 results.
Comments