cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 18 results. Next

A049400 Partial sums of rows of A047884. Young Tableaux by height.

Original entry on oeis.org

1, 1, 2, 1, 3, 4, 1, 6, 9, 10, 1, 10, 21, 25, 26, 1, 20, 51, 70, 75, 76, 1, 35, 127, 196, 225, 231, 232, 1, 70, 323, 588, 715, 756, 763, 764, 1, 126, 835, 1764, 2347, 2556, 2611, 2619, 2620, 1, 252, 2188, 5544, 7990, 9096, 9415, 9486, 9495, 9496, 1, 462, 5798, 17424, 27908, 33231, 35135, 35596
Offset: 1

Views

Author

Keywords

Examples

			1;
1,  2;
1,  3,   4;
1,  6,   9,  10;
1, 10,  21,  25,  26;
1, 20,  51,  70,  75,  76;
1, 35, 127, 196, 225, 231, 232;
1, 70, 323, 588, 715, 756, 763, 764;
		

Crossrefs

Programs

  • Maple
    h:= proc(l) local n; n:=nops(l); add(i, i=l)! /mul(mul(1+l[i]-j+
          add(`if`(l[k]>=j, 1, 0), k=i+1..n), j=1..l[i]), i=1..n)
        end:
    g:= proc(n, i, l) option remember;
          `if`(n=0, h(l), `if`(i<1, 0, `if`(i=1, h([l[], 1$n]), g(n, i-1, l)+
          `if`(i>n, 0, g(n-i, i, [l[], i])))))
        end:
    T:= (n, k)-> g(n, k, []):
    seq(seq(T(n, k), k=1..n), n=1..12); # Alois P. Heinz, Apr 16 2012
  • Mathematica
    Accumulate /@ Table[ Plus @@ NumberOfTableaux /@ Reverse /@ Union[ Sort /@ (Compositions[n - m, m] + 1)], {n, 1, 12}, {m, 1, n}] // Flatten (* Jean-François Alcover, Jan 29 2013, after Mathematica program for A047884 *)

A000085 Number of self-inverse permutations on n letters, also known as involutions; number of standard Young tableaux with n cells.

Original entry on oeis.org

1, 1, 2, 4, 10, 26, 76, 232, 764, 2620, 9496, 35696, 140152, 568504, 2390480, 10349536, 46206736, 211799312, 997313824, 4809701440, 23758664096, 119952692896, 618884638912, 3257843882624, 17492190577600, 95680443760576, 532985208200576, 3020676745975552
Offset: 0

Views

Author

Keywords

Comments

a(n) is also the number of n X n symmetric permutation matrices.
a(n) is also the number of matchings (Hosoya index) in the complete graph K(n). - Ola Veshta (olaveshta(AT)my-deja.com), Mar 25 2001
a(n) is also the number of independent vertex sets and vertex covers in the n-triangular graph. - Eric W. Weisstein, May 22 2017
Equivalently, this is the number of graphs on n labeled nodes with degrees at most 1. - Don Knuth, Mar 31 2008
a(n) is also the sum of the degrees of the irreducible representations of the symmetric group S_n. - Avi Peretz (njk(AT)netvision.net.il), Apr 01 2001
a(n) is the number of partitions of a set of n distinguishable elements into sets of size 1 and 2. - Karol A. Penson, Apr 22 2003
Number of tableaux on the edges of the star graph of order n, S_n (sometimes T_n). - Roberto E. Martinez II, Jan 09 2002
The Hankel transform of this sequence is A000178 (superfactorials). Sequence is also binomial transform of the sequence 1, 0, 1, 0, 3, 0, 15, 0, 105, 0, 945, ... (A001147 with interpolated zeros). - Philippe Deléham, Jun 10 2005
Row sums of the exponential Riordan array (e^(x^2/2),x). - Paul Barry, Jan 12 2006
a(n) is the number of nonnegative lattice paths of upsteps U = (1,1) and downsteps D = (1,-1) that start at the origin and end on the vertical line x = n in which each downstep (if any) is marked with an integer between 1 and the height of its initial vertex above the x-axis. For example, with the required integer immediately preceding each downstep, a(3) = 4 counts UUU, UU1D, UU2D, U1DU. - David Callan, Mar 07 2006
Equals row sums of triangle A152736 starting with offset 1. - Gary W. Adamson, Dec 12 2008
Proof of the recurrence relation a(n) = a(n-1) + (n-1)*a(n-2): number of involutions of [n] containing n as a fixed point is a(n-1); number of involutions of [n] containing n in some cycle (j, n), where 1 <= j <= n-1, is (n-1) times the number of involutions of [n] containing the cycle (n-1 n) = (n-1)*a(n-2). - Emeric Deutsch, Jun 08 2009
Number of ballot sequences (or lattice permutations) of length n. A ballot sequence B is a string such that, for all prefixes P of B, h(i) >= h(j) for i < j, where h(x) is the number of times x appears in P. For example, the ballot sequences of length 4 are 1111, 1112, 1121, 1122, 1123, 1211, 1212, 1213, 1231, and 1234. The string 1221 does not appear in the list because in the 3-prefix 122 there are two 2's but only one 1. (Cf. p. 176 of Bruce E. Sagan: "The Symmetric Group"). - Joerg Arndt, Jun 28 2009
Number of standard Young tableaux of size n; the ballot sequences are obtained as a length-n vector v where v_k is the (number of the) row in which the number r occurs in the tableaux. - Joerg Arndt, Jul 29 2012
Number of factorial numbers of length n-1 with no adjacent nonzero digits. For example the 10 such numbers (in rising factorial radix) of length 3 are 000, 001, 002, 003, 010, 020, 100, 101, 102, and 103. - Joerg Arndt, Nov 11 2012
Also called restricted Stirling numbers of the second kind (see Mezo). - N. J. A. Sloane, Nov 27 2013
a(n) is the number of permutations of [n] that avoid the consecutive patterns 123 and 132. Proof. Write a self-inverse permutation in standard cycle form: smallest entry in each cycle in first position, first entries decreasing. For example, (6,7)(3,4)(2)(1,5) is in standard cycle form. Then erase parentheses. This is a bijection to the permutations that avoid consecutive 123 and 132 patterns. - David Callan, Aug 27 2014
Getu (1991) says these numbers are also known as "telephone numbers". - N. J. A. Sloane, Nov 23 2015
a(n) is the number of elements x in the symmetric group S_n such that x^2 = e where e is the identity. - Jianing Song, Aug 22 2018 [Edited on Jul 24 2025]
a(n) is the number of congruence orbits of upper-triangular n X n matrices on skew-symmetric matrices, or the number of Borel orbits in largest sect of the type DIII symmetric space SO_{2n}(C)/GL_n(C). Involutions can also be thought of as fixed-point-free partial involutions. See [Bingham and Ugurlu] link. - Aram Bingham, Feb 08 2020
From Thomas Anton, Apr 20 2020: (Start)
Apparently a(n) = b*c where b is odd iff a(n+b) (when a(n) is defined) is divisible by b.
Apparently a(n) = 2^(f(n mod 4)+floor(n/4))*q where f:{0,1,2,3}->{0,1,2} is given by f(0),f(1)=0, f(2)=1 and f(3)=2 and q is odd. (End)
From Iosif Pinelis, Mar 12 2021: (Start)
a(n) is the n-th initial moment of the normal distribution with mean 1 and variance 1. This follows because the moment generating function of that distribution is the e.g.f. of the sequence of the a(n)'s.
The recurrence a(n) = a(n-1) + (n-1)*a(n-2) also follows, by writing E(Z+1)^n=EZ(Z+1)^(n-1)+E(Z+1)^(n-1), where Z is a standard normal random variable, and then taking the first of the latter two integrals by parts. (End)

Examples

			Sequence starts 1, 1, 2, 4, 10, ... because possibilities are {}, {A}, {AB, BA}, {ABC, ACB, BAC, CBA}, {ABCD, ABDC, ACBD, ADCB, BACD, BADC, CBAD, CDAB, DBCA, DCBA}. - _Henry Bottomley_, Jan 16 2001
G.f. = 1 + x + 2*x^2 + 4*x^4 + 10*x^5 + 26*x^6 + 76*x^7 + 232*x^8 + 764*x^9 + ...
From _Gus Wiseman_, Jan 08 2021: (Start)
The a(4) = 10 standard Young tableaux:
  1 2 3 4
.
  1 2   1 3   1 2 3   1 2 4   1 3 4
  3 4   2 4   4       3       2
.
  1 2   1 3   1 4
  3     2     2
  4     4     3
.
  1
  2
  3
  4
The a(0) = 1 through a(4) = 10 set partitions into singletons or pairs:
  {}  {{1}}  {{1,2}}    {{1},{2,3}}    {{1,2},{3,4}}
             {{1},{2}}  {{1,2},{3}}    {{1,3},{2,4}}
                        {{1,3},{2}}    {{1,4},{2,3}}
                        {{1},{2},{3}}  {{1},{2},{3,4}}
                                       {{1},{2,3},{4}}
                                       {{1,2},{3},{4}}
                                       {{1},{2,4},{3}}
                                       {{1,3},{2},{4}}
                                       {{1,4},{2},{3}}
                                       {{1},{2},{3},{4}}
(End)
		

References

  • Miklos Bona, editor, Handbook of Enumerative Combinatorics, CRC Press, 2015, pages 32, 911.
  • S. Chowla, The asymptotic behavior of solutions of difference equations, in Proceedings of the International Congress of Mathematicians (Cambridge, MA, 1950), Vol. I, 377, Amer. Math. Soc., Providence, RI, 1952.
  • W. Fulton, Young Tableaux, Cambridge, 1997.
  • D. E. Knuth, The Art of Computer Programming, Vol. 3, Section 5.1.4, p. 65.
  • L. C. Larson, The number of essentially different nonattacking rook arrangements, J. Recreat. Math., 7 (No. 3, 1974), circa pages 180-181.
  • T. Muir, A Treatise on the Theory of Determinants. Dover, NY, 1960, p. 6.
  • J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, p. 86.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 2, 1999; see Example 5.2.10.

Crossrefs

See also A005425 for another version of the switchboard problem.
Equals 2 * A001475(n-1) for n>1.
First column of array A099020.
A069943(n+1)/A069944(n+1) = a(n)/A000142(n) in lowest terms.
Cf. A152736, A128229. - Gary W. Adamson, Dec 12 2008
Diagonal of A182172. - Alois P. Heinz, May 30 2012
Row sums of: A047884, A049403, A096713 (absolute value), A100861, A104556 (absolute value), A111924, A117506 (M_4 numbers), A122848, A238123.
A320663/A339888 count unlabeled multiset partitions into singletons/pairs.
A322661 counts labeled covering half-loop-graphs.
A339742 counts factorizations into distinct primes or squarefree semiprimes.

Programs

  • Haskell
    a000085 n = a000085_list !! n
      a000085_list = 1 : 1 : zipWith (+)
        (zipWith (*) [1..] a000085_list) (tail a000085_list) -- Reinhard Zumkeller, May 16 2013
    
  • Maple
    A000085 := proc(n) option remember; if n=0 then 1 elif n=1 then 1 else procname(n-1)+(n-1)*procname(n-2); fi; end;
    with(combstruct):ZL3:=[S,{S=Set(Cycle(Z,card<3))}, labeled]:seq(count(ZL3,size=n),n=0..25); # Zerinvary Lajos, Sep 24 2007
    with (combstruct):a:=proc(m) [ZL, {ZL=Set(Cycle(Z, m>=card))}, labeled]; end: A:=a(2):seq(count(A, size=n), n=0..25); # Zerinvary Lajos, Jun 11 2008
  • Mathematica
    <Roger L. Bagula, Oct 06 2006 *)
    With[{nn=30},CoefficientList[Series[Exp[x+x^2/2],{x,0,nn}],x] Range[0,nn]!] (* Harvey P. Dale, May 28 2013 *)
    a[ n_] := Sum[(2 k - 1)!! Binomial[ n, 2 k], {k, 0, n/2}]; (* Michael Somos, Jun 01 2013 *)
    a[ n_] := If[ n < 0, 0, HypergeometricU[ -n/2, 1/2, -1/2] / (-1/2)^(n/2)]; (* Michael Somos, Jun 01 2013 *)
    a[ n_] := If[ n < 0, 0, n! SeriesCoefficient[ Exp[ x + x^2 / 2], {x, 0, n}]]; (* Michael Somos, Jun 01 2013 *)
    Table[(I/Sqrt[2])^n HermiteH[n, -I/Sqrt[2]], {n, 0, 100}] (* Emanuele Munarini, Mar 02 2016 *)
    a[n_] := Sum[StirlingS1[n, k]*2^k*BellB[k, 1/2], {k, 0, n}]; Table[a[n], {n, 0, 40}] (* Jean-François Alcover, Jul 18 2017, after Emanuele Munarini *)
    RecurrenceTable[{a[n] == a[n-1] + (n-1)*a[n-2], a[0] == 1, a[1] == 1}, a, {n, 0, 20}] (* Joan Ludevid, Jun 17 2022 *)
    sds[{}]:={{}};sds[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sds[Complement[set,s]]]/@Cases[Subsets[set,{1,2}],{i,_}]; Table[Length[sds[Range[n]]],{n,0,10}] (* Gus Wiseman, Jan 11 2021 *)
  • Maxima
    B(n,x):=sum(stirling2(n,k)*x^k,k,0,n);
      a(n):=sum(stirling1(n,k)*2^k*B(k,1/2),k,0,n);
      makelist(a(n),n,0,40); /* Emanuele Munarini, May 16 2014 */
    
  • Maxima
    makelist((%i/sqrt(2))^n*hermite(n,-%i/sqrt(2)),n,0,12); /* Emanuele Munarini, Mar 02 2016 */
    
  • PARI
    {a(n) = if( n<0, 0, n! * polcoeff( exp( x + x^2 / 2 + x * O(x^n)), n))}; /* Michael Somos, Nov 15 2002 */
    
  • PARI
    N=66; x='x+O('x^N); egf=exp(x+x^2/2); Vec(serlaplace(egf)) \\ Joerg Arndt, Mar 07 2013
    
  • Python
    from math import factorial
    def A000085(n): return sum(factorial(n)//(factorial(n-(k<<1))*factorial(k)*(1<>1)+1)) # Chai Wah Wu, Aug 31 2023
  • Sage
    A000085 = lambda n: hypergeometric([-n/2,(1-n)/2], [], 2)
    [simplify(A000085(n)) for n in range(28)] # Peter Luschny, Aug 21 2014
    
  • Sage
    def a85(n): return sum(factorial(n) / (factorial(n-2*k) * 2**k * factorial(k)) for k in range(1+n//2))
    for n in range(100): print(n, a85(n)) # Manfred Scheucher, Jan 07 2018
    

Formula

D-finite with recurrence a(0) = a(1) = 1, a(n) = a(n-1) + (n-1)*a(n-2) for n>1.
E.g.f.: exp(x+x^2/2).
a(n) = a(n-1) + A013989(n-2) = A013989(n)/(n+1) = 1+A001189(n).
a(n) = Sum_{k=0..floor(n/2)} n!/((n-2*k)!*2^k*k!).
a(m+n) = Sum_{k>=0} k!*binomial(m, k)*binomial(n, k)*a(m-k)*a(n-k). - Philippe Deléham, Mar 05 2004
For n>1, a(n) = 2*(A000900(n) + A000902(floor(n/2))). - Max Alekseyev, Oct 31 2015
The e.g.f. y(x) satisfies y^2 = y''y' - (y')^2.
a(n) ~ c*(n/e)^(n/2)exp(n^(1/2)) where c=2^(-1/2)exp(-1/4). [Chowla]
a(n) = HermiteH(n, 1/(sqrt(2)*i))/(-sqrt(2)*i)^n, where HermiteH are the Hermite polynomials. - Karol A. Penson, May 16 2002
a(n) = Sum_{k=0..n} A001498((n+k)/2, (n-k)/2)(1+(-1)^(n-k))/2. - Paul Barry, Jan 12 2006
For asymptotics see the Robinson paper.
a(n) = Sum_{m=0..n} A099174(n,m). - Roger L. Bagula, Oct 06 2006
O.g.f.: A(x) = 1/(1-x-1*x^2/(1-x-2*x^2/(1-x-3*x^2/(1-... -x-n*x^2/(1- ...))))) (continued fraction). - Paul D. Hanna, Jan 17 2006
From Gary W. Adamson, Dec 29 2008: (Start)
a(n) = (n-1)*a(n-2) + a(n-1); e.g., a(7) = 232 = 6*26 + 76.
Starting with offset 1 = eigensequence of triangle A128229. (End)
a(n) = (1/sqrt(2*Pi))*Integral_{x=-oo..oo} exp(-x^2/2)*(x+1)^n. - Groux Roland, Mar 14 2011
Row sums of |A096713|. a(n) = D^n(exp(x)) evaluated at x = 0, where D is the operator sqrt(1+2*x)*d/dx. Cf. A047974 and A080599. - Peter Bala, Dec 07 2011
From Sergei N. Gladkovskii, Dec 03 2011 - Oct 28 2013: (Start)
Continued fractions:
E.g.f.: 1+x*(2+x)/(2*G(0)-x*(2+x)) where G(k)=1+x*(x+2)/(2+2*(k+1)/G(k+1)).
G.f.: 1/(U(0) - x) where U(k) = 1 + x*(k+1) - x*(k+1)/(1 - x/U(k+1)).
G.f.: 1/Q(0) where Q(k) = 1 + x*k - x/(1 - x*(k+1)/Q(k+1)).
G.f.: -1/(x*Q(0)) where Q(k) = 1 - 1/x - (k+1)/Q(k+1).
G.f.: T(0)/(1-x) where T(k) = 1 - x^2*(k+1)/( x^2*(k+1) - (1-x)^2/T(k+1)). (End)
a(n) ~ (1/sqrt(2)) * exp(sqrt(n)-n/2-1/4) * n^(n/2) * (1 + 7/(24*sqrt(n))). - Vaclav Kotesovec, Mar 07 2014
a(n) = Sum_{k=0..n} s(n,k)*(-1)^(n-k)*2^k*B(k,1/2), where the s(n,k) are (signless) Stirling numbers of the first kind, and the B(n,x) = Sum_{k=0..n} S(n,k)*x^k are the Stirling polynomials, where the S(n,k) are the Stirling numbers of the second kind. - Emanuele Munarini, May 16 2014
a(n) = hyper2F0([-n/2,(1-n)/2],[],2). - Peter Luschny, Aug 21 2014
0 = a(n)*(+a(n+1) + a(n+2) - a(n+3)) + a(n+1)*(-a(n+1) + a(n+2)) for all n in Z. - Michael Somos, Aug 22 2014
From Peter Bala, Oct 06 2021: (Start)
a(n+k) == a(n) (mod k) for all n >= 0 and all positive odd integers k.
Hence for each odd k, the sequence obtained by taking a(n) modulo k is a periodic sequence and the exact period divides k. For example, taking a(n) modulo 7 gives the purely periodic sequence [1, 1, 2, 4, 3, 5, 6, 1, 1, 2, 4, 3, 5, 6, 1, 1, 2, 4, 3, 5, 6, ...] of period 7. For similar results see A047974 and A115329. (End)

A182172 Number A(n,k) of standard Young tableaux of n cells and height <= k; square array A(n,k), n>=0, k>=0, read by antidiagonals.

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 2, 1, 0, 1, 1, 2, 3, 1, 0, 1, 1, 2, 4, 6, 1, 0, 1, 1, 2, 4, 9, 10, 1, 0, 1, 1, 2, 4, 10, 21, 20, 1, 0, 1, 1, 2, 4, 10, 25, 51, 35, 1, 0, 1, 1, 2, 4, 10, 26, 70, 127, 70, 1, 0, 1, 1, 2, 4, 10, 26, 75, 196, 323, 126, 1, 0, 1, 1, 2, 4, 10, 26, 76, 225, 588, 835, 252, 1, 0
Offset: 0

Views

Author

Alois P. Heinz, Apr 16 2012

Keywords

Comments

Also the number A(n,k) of standard Young tableaux of n cells and <= k columns.
A(n,k) is also the number of n-length words w over a k-ary alphabet {a1,a2,...,ak} such that for every prefix z of w we have #(z,a1) >= #(z,a2) >= ... >= #(z,ak), where #(z,x) counts the letters x in word z. The A(4,4) = 10 words of length 4 over alphabet {a,b,c,d} are: aaaa, aaab, aaba, abaa, aabb, abab, aabc, abac, abca, abcd.

Examples

			A(4,2) = 6, there are 6 standard Young tableaux of 4 cells and height <= 2:
  +------+  +------+  +---------+  +---------+  +---------+  +------------+
  | 1  3 |  | 1  2 |  | 1  3  4 |  | 1  2  4 |  | 1  2  3 |  | 1  2  3  4 |
  | 2  4 |  | 3  4 |  | 2 .-----+  | 3 .-----+  | 4 .-----+  +------------+
  +------+  +------+  +---+        +---+        +---+
Square array A(n,k) begins:
  1,  1,  1,   1,   1,   1,   1,   1,   1, ...
  0,  1,  1,   1,   1,   1,   1,   1,   1, ...
  0,  1,  2,   2,   2,   2,   2,   2,   2, ...
  0,  1,  3,   4,   4,   4,   4,   4,   4, ...
  0,  1,  6,   9,  10,  10,  10,  10,  10, ...
  0,  1, 10,  21,  25,  26,  26,  26,  26, ...
  0,  1, 20,  51,  70,  75,  76,  76,  76, ...
  0,  1, 35, 127, 196, 225, 231, 232, 232, ...
  0,  1, 70, 323, 588, 715, 756, 763, 764, ...
		

Crossrefs

Main diagonal gives A000085.
A(2n,n) gives A293128.

Programs

  • Maple
    h:= proc(l) local n; n:=nops(l); add(i, i=l)! /mul(mul(1+l[i]-j
           +add(`if`(l[k]>=j, 1, 0), k=i+1..n), j=1..l[i]), i=1..n)
        end:
    g:= proc(n, i, l) option remember;
          `if`(n=0, h(l), `if`(i<1, 0, `if`(i=1, h([l[], 1$n]),
            g(n, i-1, l) +`if`(i>n, 0, g(n-i, i, [l[], i])))))
        end:
    A:= (n, k)-> g(n, k, []):
    seq(seq(A(n, d-n), n=0..d), d=0..15);
  • Mathematica
    h[l_List] := Module[{n = Length[l]}, Sum[i, {i, l}]!/Product[Product[1 + l[[i]] - j + Sum[If[l[[k]] >= j, 1, 0], {k, i+1, n}], {j, 1, l[[i]]}], {i, 1, n}]];
    g[n_, i_, l_List] := g[n, i, l] = If[n == 0, h[l], If[i < 1, 0, If[i == 1, h[Join[l, Array[1&, n]]], g [n, i-1, l] + If[i > n, 0, g[n-i, i, Append[l, i]]]]]];
    a[n_, k_] := g[n, k, {}];
    Table[Table[a[n, d-n], {n, 0, d}], {d, 0, 15}] // Flatten (* Jean-François Alcover, Dec 06 2013, translated from Maple *)

Formula

Conjecture: A(n,k) ~ k^n/Pi^(k/2) * (k/n)^(k*(k-1)/4) * Product_{j=1..k} Gamma(j/2). - Vaclav Kotesovec, Sep 12 2013

A047874 Triangle of numbers T(n,k) = number of permutations of (1,2,...,n) with longest increasing subsequence of length k (1<=k<=n).

Original entry on oeis.org

1, 1, 1, 1, 4, 1, 1, 13, 9, 1, 1, 41, 61, 16, 1, 1, 131, 381, 181, 25, 1, 1, 428, 2332, 1821, 421, 36, 1, 1, 1429, 14337, 17557, 6105, 841, 49, 1, 1, 4861, 89497, 167449, 83029, 16465, 1513, 64, 1, 1, 16795, 569794, 1604098, 1100902, 296326, 38281, 2521, 81, 1
Offset: 1

Views

Author

Eric Rains (rains(AT)caltech.edu)

Keywords

Comments

Mirror image of triangle in A126065.
T(n,m) is also the sum of squares of n!/(product of hook lengths), summed over the partitions of n in exactly m parts (Robinson-Schensted correspondence). - Wouter Meeussen, Sep 16 2010
Table I "Distribution of L_n" on p. 98 of the Pilpel reference. - Joerg Arndt, Apr 13 2013
In general, for column k is a(n) ~ product(j!, j=0..k-1) * k^(2*n+k^2/2) / (2^((k-1)*(k+2)/2) * Pi^((k-1)/2) * n^((k^2-1)/2)) (result due to Regev) . - Vaclav Kotesovec, Mar 18 2014

Examples

			T(3,2) = 4 because 132, 213, 231, 312 have longest increasing subsequences of length 2.
Triangle T(n,k) begins:
  1;
  1,   1;
  1,   4,    1;
  1,  13,    9,    1;
  1,  41,   61,   16,   1;
  1, 131,  381,  181,  25,  1;
  1, 428, 2332, 1821, 421, 36,  1;
  ...
		

Crossrefs

Cf. A047887 and A047888.
Row sums give A000142.
Cf. A047884. - Wouter Meeussen, Sep 16 2010
Cf. A224652 (Table II "Distribution of F_n" on p. 99 of the Pilpel reference).
Cf. A245667.
T(2n,n) gives A267433.
Cf. A003316.

Programs

  • Maple
    h:= proc(l) local n; n:= nops(l); add(i, i=l)! /mul(mul(1+l[i]-j
          +add(`if`(l[k]>=j, 1, 0), k=i+1..n), j=1..l[i]), i=1..n) end:
    g:= (n, i, l)-> `if`(n=0 or i=1, h([l[], 1$n])^2, `if`(i<1, 0,
                    add(g(n-i*j, i-1, [l[], i$j]), j=0..n/i))):
    T:= n-> seq(g(n-k, min(n-k, k), [k]), k=1..n):
    seq(T(n), n=1..12);  # Alois P. Heinz, Jul 05 2012
  • Mathematica
    Table[Total[NumberOfTableaux[#]^2&/@ IntegerPartitions[n,{k}]],{n,7},{k,n}] (* Wouter Meeussen, Sep 16 2010, revised Nov 19 2013 *)
    h[l_List] := Module[{n = Length[l]}, Total[l]!/Product[Product[1+l[[i]]-j+Sum[If[l[[k]] >= j, 1, 0], {k, i+1, n}], {j, 1, l[[i]]}], {i, 1, n}]]; g[n_, i_, l_List] := If[n == 0 || i == 1, h[Join[l, Array[1&, n]]]^2, If[i<1, 0, Sum[g[n-i*j, i-1, Join[l, Array[i&, j]]], {j, 0, n/i}]]]; T[n_] := Table[g[n-k, Min[n-k, k], {k}], {k, 1, n}]; Table[T[n], {n, 1, 12}] // Flatten (* Jean-François Alcover, Mar 06 2014, after Alois P. Heinz *)

Formula

Sum_{k=1..n} k * T(n,k) = A003316(n). - Alois P. Heinz, Nov 04 2018

A122848 Exponential Riordan array (1, x(1+x/2)).

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 0, 0, 3, 1, 0, 0, 3, 6, 1, 0, 0, 0, 15, 10, 1, 0, 0, 0, 15, 45, 15, 1, 0, 0, 0, 0, 105, 105, 21, 1, 0, 0, 0, 0, 105, 420, 210, 28, 1, 0, 0, 0, 0, 0, 945, 1260, 378, 36, 1, 0, 0, 0, 0, 0, 945, 4725, 3150, 630, 45, 1, 0, 0, 0, 0, 0, 0, 10395, 17325, 6930, 990, 55, 1, 0, 0
Offset: 0

Views

Author

Paul Barry, Sep 14 2006

Keywords

Comments

Entries are Bessel polynomial coefficients. Row sums are A000085. Diagonal sums are A122849. Inverse is A122850. Product of A007318 and A122848 gives A100862.
T(n,k) is the number of self-inverse permutations of {1,2,...,n} having exactly k cycles. - Geoffrey Critzer, May 08 2012
Bessel numbers of the second kind. For relations to the Hermite polynomials and the Catalan (A033184 and A009766) and Fibonacci (A011973, A098925, and A092865) matrices, see Yang and Qiao. - Tom Copeland, Dec 18 2013.
Also the inverse Bell transform of the double factorial of odd numbers Product_{k= 0..n-1} (2*k+1) (A001147). For the definition of the Bell transform see A264428 and for cross-references A265604. - Peter Luschny, Dec 31 2015

Examples

			Triangle begins:
    1
    0    1
    0    1    1
    0    0    3    1
    0    0    3    6    1
    0    0    0   15   10    1
    0    0    0   15   45   15    1
    0    0    0    0  105  105   21    1
    0    0    0    0  105  420  210   28    1
    0    0    0    0    0  945 1260  378   36    1
From _Gus Wiseman_, Jan 12 2021: (Start)
As noted above, a(n) is the number of set partitions of {1..n} into k singletons or pairs. This is also the number of set partitions of subsets of {1..n} into n - k pairs. In the first case, row n = 5 counts the following set partitions:
  {{1},{2,3},{4,5}}  {{1},{2},{3},{4,5}}  {{1},{2},{3},{4},{5}}
  {{1,2},{3},{4,5}}  {{1},{2},{3,4},{5}}
  {{1,2},{3,4},{5}}  {{1},{2,3},{4},{5}}
  {{1,2},{3,5},{4}}  {{1,2},{3},{4},{5}}
  {{1},{2,4},{3,5}}  {{1},{2},{3,5},{4}}
  {{1},{2,5},{3,4}}  {{1},{2,4},{3},{5}}
  {{1,3},{2},{4,5}}  {{1},{2,5},{3},{4}}
  {{1,3},{2,4},{5}}  {{1,3},{2},{4},{5}}
  {{1,3},{2,5},{4}}  {{1,4},{2},{3},{5}}
  {{1,4},{2},{3,5}}  {{1,5},{2},{3},{4}}
  {{1,4},{2,3},{5}}
  {{1,4},{2,5},{3}}
  {{1,5},{2},{3,4}}
  {{1,5},{2,3},{4}}
  {{1,5},{2,4},{3}}
In the second case, we have:
  {{1,2},{3,4}}  {{1,2}}  {}
  {{1,2},{3,5}}  {{1,3}}
  {{1,2},{4,5}}  {{1,4}}
  {{1,3},{2,4}}  {{1,5}}
  {{1,3},{2,5}}  {{2,3}}
  {{1,3},{4,5}}  {{2,4}}
  {{1,4},{2,3}}  {{2,5}}
  {{1,4},{2,5}}  {{3,4}}
  {{1,4},{3,5}}  {{3,5}}
  {{1,5},{2,3}}  {{4,5}}
  {{1,5},{2,4}}
  {{1,5},{3,4}}
  {{2,3},{4,5}}
  {{2,4},{3,5}}
  {{2,5},{3,4}}
(End)
		

Crossrefs

Row sums are A000085.
Column sums are A001515.
Same as A049403 but with a first column k = 0.
The same set partitions counted by number of pairs are A100861.
Reversing rows gives A111924 (without column k = 0).
A047884 counts standard Young tableaux by size and greatest row length.
A238123 counts standard Young tableaux by size and least row length.
A320663/A339888 count unlabeled multiset partitions into singletons/pairs.
A322661 counts labeled covering half-loop-graphs.
A339742 counts factorizations into distinct primes or squarefree semiprimes.

Programs

  • Maple
    # The function BellMatrix is defined in A264428.
    BellMatrix(n -> `if`(n<2,1,0), 9); # Peter Luschny, Jan 27 2016
  • Mathematica
    t[n_, k_] := k!*Binomial[n, k]/((2 k - n)!*2^(n - k)); Table[ t[n, k], {n, 0, 11}, {k, 0, n}] // Flatten
    (* Second program: *)
    rows = 12;
    t = Join[{1, 1}, Table[0, rows]];
    T[n_, k_] := BellY[n, k, t];
    Table[T[n, k], {n, 0, rows}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jun 23 2018,after Peter Luschny *)
    sbs[{}]:={{}};sbs[set:{i_,_}]:=Join@@Function[s,(Prepend[#1,s]&)/@sbs[Complement[set,s]]]/@Cases[Subsets[set],{i}|{i,_}];
    Table[Length[Select[sbs[Range[n]],Length[#]==k&]],{n,0,6},{k,0,n}] (* Gus Wiseman, Jan 12 2021 *)
  • PARI
    {T(n,k)=if(2*kn, 0, n!/(2*k-n)!/(n-k)!*2^(k-n))} /* Michael Somos, Oct 03 2006 */
    
  • Sage
    # uses[inverse_bell_transform from A265605]
    multifact_2_1 = lambda n: prod(2*k + 1 for k in (0..n-1))
    inverse_bell_matrix(multifact_2_1, 9) # Peter Luschny, Dec 31 2015

Formula

Number triangle T(n,k) = k!*C(n,k)/((2k-n)!*2^(n-k)).
T(n,k) = A001498(k,n-k). - Michael Somos, Oct 03 2006
E.g.f.: exp(y(x+x^2/2)). - Geoffrey Critzer, May 08 2012
Triangle equals the matrix product A008275*A039755. Equivalently, the n-th row polynomial R(n,x) is given by the Type B Dobinski formula R(n,x) = exp(-x/2)*Sum_{k>=0} P(n,2*k+1)*(x/2)^k/k!, where P(n,x) = x*(x-1)*...*(x-n+1) denotes the falling factorial polynomial. Cf. A113278. - Peter Bala, Jun 23 2014
From Daniel Checa, Aug 28 2022: (Start)
E.g.f. for the m-th column: (x^2/2+x)^m/m!.
T(n,k) = T(n-1,k-1) + (n-1)*T(n-2,k-1) for n>1 and k=1..n, T(0,0) = 1. (End)

A014495 Central binomial coefficient - 1.

Original entry on oeis.org

0, 0, 1, 2, 5, 9, 19, 34, 69, 125, 251, 461, 923, 1715, 3431, 6434, 12869, 24309, 48619, 92377, 184755, 352715, 705431, 1352077, 2704155, 5200299, 10400599, 20058299, 40116599, 77558759, 155117519, 300540194, 601080389, 1166803109, 2333606219, 4537567649
Offset: 0

Views

Author

N. J. A. Sloane, Denis Pochuev (denis(AT)cdc.Informatik.TH-Darmstadt.de)

Keywords

Comments

For n > 0: sum of positive elements in row (n-1) of triangle A214292. - Reinhard Zumkeller, Jul 12 2012
Number of Young tableaux with n cells and 2 rows. Also number of self-inverse permutations in S_n with longest increasing subsequence of length 2. The a(4) = 5 permutations are 1432, 2143, 3214, 3412, 4231 and the a(5) = 9 permutations are 15432, 21543, 32154, 35142, 42513, 43215, 45312, 52431, 53241. - Alois P. Heinz, Oct 03 2012
Number of nonempty subsets of {1,2,...,n} that contain the same number of even and odd numbers. For example, a(5)=9 and the 9 subsets are {1,2}, {1,4}, {2,3}, {2,5}, {3,4}, {4,5}, {1,2,3,4}, {1,2,4,5}, {2,3,4,5}. - Enrique Navarrete, Feb 10 2018

Crossrefs

Cf. A001405, A037952 (first differences).
a(n) = A094718(n, n) = A094718(n-1, n)+1.
a(n) = A047884(n, 2) for n>=2. - Alois P. Heinz, Oct 03 2012
Cf. A214292.

Programs

  • Magma
    [Binomial(n, Floor(n/2))-1: n in [0..50]]; // Vincenzo Librandi, Feb 11 2018
  • Maple
    a:= n-> binomial(n, iquo(n, 2))-1:
    seq(a(n), n=0..40);  # Alois P. Heinz, Oct 03 2012
  • Mathematica
    Table[Binomial[n, Floor[n/2]] - 1, {n, 0, 50}] (* Bruno Berselli, Oct 03 2012 *)
  • Maxima
    A014495(n):=binomial(n,floor(n/2))-1$
    makelist(A014495(n),n,0,30); /* Martin Ettl, Nov 01 2012 */
    

Formula

a(n) = A001405(n)-1.
a(n) = C(n,floor(n/2))-1. - Alois P. Heinz, Oct 03 2012
(n+1)*a(n)-2*a(n-1)-4*(n-1)*a(n-2) = 3*n-3 with n>1, a(0)=a(1)=0. - Bruno Berselli, Oct 03 2012
D-finite with recurrence: -(n+1)*(n-2)*a(n) +(n^2+n-4)*a(n-1) +2*(n-1)*(2*n-5)*a(n-2) -4*(n-1)*(n-2)*a(n-3)=0. - Conjectured by R. J. Mathar, Jan 04 2017, confirmed by Robert Israel, Feb 11 2018
G.f.: (x+1)/(2*x*(x-1)) - sqrt(1-4*x^2)/(2*x*(2*x-1)). - Robert Israel, Feb 11 2018

Extensions

Edited by Andrey Zabolotskiy, Apr 14 2025

A049401 Number of Young tableaux of height <= 5.

Original entry on oeis.org

1, 1, 2, 4, 10, 26, 75, 225, 715, 2347, 7990, 27908, 99991, 365587, 1362310, 5159208, 19831101, 77233517, 304423574, 1212962072, 4881181036, 19821471956, 81165639197, 334925706659, 1391935877463, 5823186349671, 24511802558326, 103772782048252, 441696903185704
Offset: 0

Views

Author

Keywords

Comments

Also the number of n-length words w over alphabet {a,b,c,d,e} such that for every prefix z of w we have #(z,a) >= #(z,b) >= #(z,c) >= #(z,d) >= #(z,e), where #(z,x) counts the letters x in word z. The a(5) = 26 words are: aaaaa, aaaab, aaaba, aabaa, abaaa, aaabb, aabab, abaab, aabba, ababa, aaabc, aabac, abaac, aabca, abaca, abcaa, aabbc, ababc, aabcb, abacb, abcab, aabcd, abacd, abcad, abcda, abcde. - Alois P. Heinz, May 30 2012

References

  • R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 2, 1999; see Problem 7.16(b), y_5(n), p. 452.

Crossrefs

Sum of first five diagonals of A047884. Cf. A007579.
Column k=5 of A182172. - Alois P. Heinz, May 30 2012

Programs

  • Maple
    a:= proc(n) option remember;
          `if`(n<3, [1, 1, 2][n+1], ((3*n^2+17*n+15)*a(n-1)
           +(n-1)*(13*n+9)*a(n-2) -15*(n-1)*(n-2)*a(n-3)) /
           ((n+4)*(n+6)))
        end:
    seq(a(n), n=0..30);  # Alois P. Heinz, Oct 12 2012
  • Mathematica
    a[n_] := a[n] = If[n<3, {1, 1, 2}[[n+1]], ((3*n^2+17*n+15)*a[n-1] + (n-1)*(13*n+9)*a[n-2] - 15*(n-1)*(n-2)*a[n-3]) / ((n+4)*(n+6))]; Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Mar 10 2014, after Alois P. Heinz *)
  • PARI
    a(n) = 6*n!*sum(k=0, n\2, (2*k+2)!/((n-2*k)!*k!*(k+1)!*(k+2)!*(k+3)!)); \\ Seiichi Manyama, Mar 27 2025

Formula

E.g.f.: e^x*(BesselI(0, 2*x)^2 - BesselI(0, 2*x)*BesselI(2, 2*x) - BesselI(0, 2*x)*BesselI(4, 2*x) - BesselI(1, 2*x)^2 + 2*BesselI(1, 2*x)*BesselI(3, 2*x) + BesselI(2, 2*x)*BesselI(4, 2*x) - BesselI(3, 2*x)^2) (BesselI = modified Bessel function of first kind).
a(n) ~ 3*5^(n+5)/(8*Pi*n^5). - Vaclav Kotesovec, Aug 18 2013
D-finite with recurrence (n+6)*(n+4)*a(n) +(-3*n^2-17*n-15)*a(n-1) -(13*n+9)*(n-1)*a(n-2) +15*(n-1)*(n-2)*a(n-3)=0. - R. J. Mathar, Sep 23 2021
a(n) = 6 * n! * Sum_{k=0..floor(n/2)} (2*k+2)!/((n-2*k)!*k!*(k+1)!*(k+2)!*(k+3)!). - Seiichi Manyama, Mar 27 2025

Extensions

More terms from Antonio G. Astudillo (afg_astudillo(AT)hotmail.com), Jun 17 2001

A182222 Number T(n,k) of standard Young tableaux of n cells and height >= k; triangle T(n,k), n>=0, 0<=k<=n, read by rows.

Original entry on oeis.org

1, 1, 1, 2, 2, 1, 4, 4, 3, 1, 10, 10, 9, 4, 1, 26, 26, 25, 16, 5, 1, 76, 76, 75, 56, 25, 6, 1, 232, 232, 231, 197, 105, 36, 7, 1, 764, 764, 763, 694, 441, 176, 49, 8, 1, 2620, 2620, 2619, 2494, 1785, 856, 273, 64, 9, 1, 9496, 9496, 9495, 9244, 7308, 3952, 1506, 400, 81, 10, 1
Offset: 0

Views

Author

Alois P. Heinz, Apr 19 2012

Keywords

Comments

Also number of self-inverse permutations in S_n with longest increasing subsequence of length >= k. T(4,3) = 4: 1234, 1243, 1324, 2134; T(3,0) = T(3,1) = 4: 123, 132, 213, 321; T(5,3) = 16: 12345, 12354, 12435, 12543, 13245, 13254, 14325, 14523, 15342, 21345, 21354, 21435, 32145, 34125, 42315, 52341.

Examples

			T(4,3) = 4, there are 4 standard Young tableaux of 4 cells and height >= 3:
  +---+   +------+   +------+   +------+
  | 1 |   | 1  2 |   | 1  3 |   | 1  4 |
  | 2 |   | 3 .--+   | 2 .--+   | 2 .--+
  | 3 |   | 4 |      | 4 |      | 3 |
  | 4 |   +---+      +---+      +---+
  +---+
Triangle T(n,k) begins:
    1;
    1,   1;
    2,   2,   1;
    4,   4,   3,   1;
   10,  10,   9,   4,   1;
   26,  26,  25,  16,   5,   1;
   76,  76,  75,  56,  25,   6,  1;
  232, 232, 231, 197, 105,  36,  7,  1;
  764, 764, 763, 694, 441, 176, 49,  8,  1;
  ...
		

Crossrefs

Diagonal and lower diagonals give: A000012, A000027(n+1), A000290(n+1) for n>0, A131423(n+1) for n>1.
T(2n,n) gives A318289.

Programs

  • Maple
    h:= proc(l) local n; n:=nops(l); add(i, i=l)! /mul(mul(1+l[i]-j+
           add(`if`(l[k]>=j, 1, 0), k=i+1..n), j=1..l[i]), i=1..n)
        end:
    g:= proc(n, i, l) option remember;
          `if`(n=0, h(l), `if`(i<1, 0, `if`(i=1, h([l[], 1$n]),
            g(n, i-1, l) +`if`(i>n, 0, g(n-i, i, [l[], i])))))
        end:
    T:= (n, k)-> g(n, n, []) -`if`(k=0, 0, g(n, k-1, [])):
    seq(seq(T(n, k), k=0..n), n=0..12);
  • Mathematica
    h[l_] := Module[{n = Length[l]}, Sum[i, {i, l}]! / Product[ Product[1 + l[[i]] - j + Sum [If[l[[k]] >= j, 1, 0], {k, i+1, n}], {j, 1, l[[i]]}], {i, 1, n}]];
    g[n_, i_, l_] := g[n, i, l] = If[n == 0, h[l], If[i < 1, 0, If[i == 1, h[Join[l, Array[1&, n]]], g [n, i-1, l] + If[i > n, 0, g[n-i, i, Append[l, i]]]]]];
    t[n_, k_] := g[n, n, {}] - If[k == 0, 0, g[n, k-1, {}]];
    Table[Table[t[n, k], {k, 0, n}], {n, 0, 12}] // Flatten (* Jean-François Alcover, Dec 12 2013, translated from Maple *)

Formula

T(n,k) = A182172(n,n) - A182172(n,k-1) for k>0, T(n,0) = A182172(n,n).

A267436 Number of self-inverse permutations of [2n] with longest increasing subsequence of length n.

Original entry on oeis.org

1, 1, 5, 31, 265, 2446, 26069, 294386, 3628517, 46938514, 645978814, 9265791393, 139408562319, 2174338555026, 35259402634616, 590187761512336, 10209739522685893, 181678453872654154, 3326776921054665350, 62485419303819431072, 1203772979032614462448
Offset: 0

Views

Author

Alois P. Heinz, Jan 15 2016

Keywords

Comments

Also the number of 2n-length words w over n-ary alphabet {a1,a2,...,an} such that for every prefix z of w we have #(z,a1) >= #(z,a2) >= ... >= #(z,an) >= 1, where #(z,x) counts the letters x in word z. The a(2) = 5 words of length 4 over alphabet {a,b} are: aaab, aaba, abaa, aabb, abab.

Examples

			a(2) = 5: 1432, 2143, 3214, 3412, 4231.
		

Crossrefs

Programs

  • Maple
    h:= proc(l) local n; n:= nops(l); add(i, i=l)!/mul(mul(1+l[i]-j+
        add(`if`(l[k]>=j, 1, 0), k=i+1..n), j=1..l[i]), i=1..n) end:
    g:= (n, i, l)-> `if`(n=0 or i=1, h([l[], 1$n]), add(
                    g(n-i*j, i-1, [l[], i$j]), j=0..n/i)):
    a:= n-> g(n$2, [n]):
    seq(a(n), n=0..25);
  • Mathematica
    h[l_] := With[{n = Length[l]}, Total[l]!/Product[Product[1 + l[[i]] - j + Sum[If[l[[k]] >= j, 1, 0], {k, i + 1, n}], {j, 1, l[[i]]}], {i, 1, n}]];
    g[n_, i_, l_] := If[n == 0 || i == 1, h[Join[l, Table[1, {n}]]], Sum[g[n - i*j, i - 1, Join[l, Table[i, {j}]]], {j, 0, n/i}]];
    a[n_] := g[n, n, {n}];
    a /@ Range[0, 25] (* Jean-François Alcover, Jan 02 2021, after Alois P. Heinz *)

Formula

a(n) = A047884(2n,n).

A217323 Number of self-inverse permutations in S_n with longest increasing subsequence of length 3.

Original entry on oeis.org

1, 3, 11, 31, 92, 253, 709, 1936, 5336, 14587, 40119, 110202, 304137, 840597, 2332469, 6487762, 18106906, 50667263, 142194843, 400057791, 1128408337, 3190023641, 9038202201, 25659417876, 72987714502, 207983161609, 593665226069, 1697230353691, 4859461136196
Offset: 3

Views

Author

Alois P. Heinz, Sep 30 2012

Keywords

Comments

Also the number of Young tableaux with n cells and 3 rows.

Examples

			a(3) = 1: 123.
a(4) = 3: 1243, 1324, 2134.
a(5) = 11: 12543, 13254, 14325, 14523, 15342, 21354, 21435, 32145, 34125, 42315, 52341.
		

Crossrefs

Column k=3 of A047884.

Programs

  • Maple
    a:= proc(n) option remember; `if`(n<3, 0, `if`(n=3, 1,
          ((n+1)*(6*n^3-5*n^2-7*n-24)*a(n-1)
           +n*(n-1)*(21*n^2-28*n-109)*a(n-2)
           -2*(n-1)*(n-2)*(12*n^2+11*n-3)*a(n-3)
           -12*(3*n+5)*(n-1)*(n-2)*(n-3)*a(n-4))/
          ((n-3)*(3*n+2)*(n+2)*(n+1))))
        end:
    seq(a(n), n=3..40);
  • Mathematica
    MotzkinNumber = DifferenceRoot[Function[{y, n}, {(-3n-3)*y[n] + (-2n-5)*y[n+1] + (n+4)*y[n+2] == 0, y[0] == 1, y[1] == 1}]];
    a[n_] := MotzkinNumber[n] - Binomial[n, Quotient[n, 2]];
    Table[a[n], {n, 3, 40}] (* Jean-François Alcover, Oct 27 2021, from 2nd formula *)

Formula

a(n) = A182172(n,3) - A182172(n,2) = A001006(n) - A001405(n).
Showing 1-10 of 18 results. Next