A268057 Triangle T(n,k), 1<=k<=n, read by rows: T(n,k) = number of iterations of A048158(n, A048158(n, ... A048158(n, k)...)) to reach 0.
1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 2, 3, 2, 1, 1, 1, 1, 2, 2, 1, 1, 2, 2, 3, 3, 2, 1, 1, 1, 2, 1, 3, 2, 2, 1, 1, 2, 1, 2, 3, 2, 3, 2, 1, 1, 1, 2, 2, 1, 3, 3, 2, 2, 1, 1, 2, 3, 4, 2, 3, 5, 4, 3, 2, 1, 1, 1, 1, 1, 2, 1, 3, 2, 2, 2, 2, 1, 1, 2, 2, 2, 3, 2, 3, 4, 3
Offset: 1
Examples
T(5, 3) = 3 because the algorithm requires three steps to reach 0. 5 % 3 = 2 5 % 2 = 1 5 % 1 = 0 Triangle begins: 1 1 1 1 2 1 1 1 2 1 1 2 3 2 1 1 1 1 2 2 1 1 2 2 3 3 2 1 1 1 2 1 3 2 2 1 1 2 1 2 3 2 3 2 1 1 1 2 2 1 3 3 2 2 1 1 2 3 4 2 3 5 4 3 2 1 1 1 1 1 2 1 3 2 2 2 2 1
Links
- Peter Kagey, Table of n, a(n) for n = 1..10000
- "ModernModest", Reddit discussion
Programs
-
Maple
T:= proc(n,k) option remember; local m; if k = 0 then 0 else 1 + procname(n,n mod k) fi end proc: seq(seq(T(n,k),k=1..n),n=1..30); # Robert Israel, Feb 02 2016
-
Mathematica
T[n_, k_] := T[n, k] = If[k == 0, 0, 1 + T[n, Mod[n, k]]]; Table[Table[T[n, k], {k, 1, n}], {n, 1, 30}] // Flatten (* Jean-François Alcover, Jan 31 2023, after Robert Israel *)
Comments