cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 10 results.

A001813 Quadruple factorial numbers: a(n) = (2n)!/n!.

Original entry on oeis.org

1, 2, 12, 120, 1680, 30240, 665280, 17297280, 518918400, 17643225600, 670442572800, 28158588057600, 1295295050649600, 64764752532480000, 3497296636753920000, 202843204931727360000, 12576278705767096320000, 830034394580628357120000, 58102407620643984998400000
Offset: 0

Views

Author

Keywords

Comments

Counts binary rooted trees (with out-degree <= 2), embedded in plane, with n labeled end nodes of degree 1. Unlabeled version gives Catalan numbers A000108.
Define a "downgrade" to be the permutation which places the items of a permutation in descending order. We are concerned with permutations that are identical to their downgrades. Only permutations of order 4n and 4n+1 can have this property; the number of permutations of length 4n having this property are equinumerous with those of length 4n+1. If a permutation p has this property then the reversal of this permutation also has it. a(n) = number of permutations of length 4n and 4n+1 that are identical to their downgrades. - Eugene McDonnell (eemcd(AT)mac.com), Oct 26 2003
Number of broadcast schemes in the complete graph on n+1 vertices, K_{n+1}. - Calin D. Morosan (cd_moros(AT)alumni.concordia.ca), Nov 28 2008
Hankel transform is A137565. - Paul Barry, Nov 25 2009
The e.g.f. of 1/a(n) = n!/(2*n)! is (exp(sqrt(x)) + exp(-sqrt(x)) )/2. - Wolfdieter Lang, Jan 09 2012
From Tom Copeland, Nov 15 2014: (Start)
Aerated with intervening zeros (1,0,2,0,12,0,120,...) = a(n) (cf. A123023 and A001147), the e.g.f. is e^(t^2), so this is the base for the Appell sequence with e.g.f. e^(t^2) e^(x*t) = exp(P(.,x),t) (reverse A059344, cf. A099174, A066325 also). P(n,x) = (a. + x)^n with (a.)^n = a_n and comprise the umbral compositional inverses for e^(-t^2)e^(x*t) = exp(UP(.,x),t), i.e., UP(n,P(.,t)) = x^n = P(n,UP(.,t)), e.g., (P(.,t))^n = P(n,t).
Equals A000407*2 with leading 1 added. (End)
a(n) is also the number of square roots of any permutation in S_{4*n} whose disjoint cycle decomposition consists of 2*n transpositions. - Luis Manuel Rivera Martínez, Mar 04 2015
Self-convolution gives A076729. - Vladimir Reshetnikov, Oct 11 2016
For n > 1, it follows from the formula dated Aug 07 2013 that a(n) is a Zumkeller number (A083207). - Ivan N. Ianakiev, Feb 28 2017
For n divisible by 4, a(n/4) is the number of ways to place n points on an n X n grid with pairwise distinct abscissae, pairwise distinct ordinates, and 90-degree rotational symmetry. For n == 1 (mod 4), the number of ways is a((n-1)/4) because the center point can be considered "fixed". For 180-degree rotational symmetry see A006882, for mirror symmetry see A000085, A135401, and A297708. - Manfred Scheucher, Dec 29 2017

Examples

			The following permutations of order 8 and their reversals have this property:
  1 7 3 5 2 4 0 6
  1 7 4 2 5 3 0 6
  2 3 7 6 1 0 4 5
  2 4 7 1 6 0 3 5
  3 2 6 7 0 1 5 4
  3 5 1 7 0 6 2 4
		

References

  • D. E. Knuth, The Art of Computer Programming, Vol. 4, Section 7.2.1.6, Eq. 32.
  • L. C. Larson, The number of essentially different nonattacking rook arrangements, J. Recreat. Math., 7 (No. 3, 1974), circa pages 180-181.
  • Eugene McDonnell, "Magic Squares and Permutations" APL Quote-Quad 7.3 (Fall, 1976)
  • R. W. Robinson, Counting arrangements of bishops, pp. 198-214 of Combinatorial Mathematics IV (Adelaide 1975), Lect. Notes Math., 560 (1976).
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • GAP
    List([0..20],n->Factorial(2*n)/Factorial(n)); # Muniru A Asiru, Nov 01 2018
    
  • Magma
    [Factorial(2*n)/Factorial(n): n in [0..20]]; // Vincenzo Librandi, Oct 09 2018
    
  • Maple
    A001813 := n->(2*n)!/n!;
    A001813 := n -> mul(k, k = select(k-> k mod 4 = 2,[$1 .. 4*n])):
    seq(A001813(n), n=0..16);  # Peter Luschny, Jun 23 2011
  • Mathematica
    Table[(2n)!/n!, {n,0,20}] (* Harvey P. Dale, May 02 2011 *)
  • Maxima
    makelist(binomial(n+n, n)*n!,n,0,30); /* Martin Ettl, Nov 05 2012 */
    
  • PARI
    a(n)=binomial(n+n,n)*n! \\ Charles R Greathouse IV, Jun 15 2011
    
  • PARI
    first(n) = x='x+O('x^n); Vec(serlaplace((1 - 4*x)^(-1/2))) \\ Iain Fox, Jan 01 2018 (corrected by Iain Fox, Jan 11 2018)
    
  • Python
    from math import factorial
    def A001813(n): return factorial(n<<1)//factorial(n) # Chai Wah Wu, Feb 14 2023
  • Sage
    [binomial(2*n,n)*factorial(n) for n in range(0, 17)] # Zerinvary Lajos, Dec 03 2009
    

Formula

E.g.f.: (1-4*x)^(-1/2).
a(n) = (2*n)!/n! = Product_{k=0..n-1} (4*k + 2) = A081125(2*n).
Integral representation as n-th moment of a positive function on a positive half-axis: a(n) = Integral_{x=0..oo} x^n*exp(-x/4)/(sqrt(x)*2*sqrt(Pi)) dx, n >= 0. This representation is unique. - Karol A. Penson, Sep 18 2001
Define a'(1)=1, a'(n) = Sum_{k=1..n-1} a'(n-k)*a'(k)*C(n, k); then a(n)=a'(n+1). - Benoit Cloitre, Apr 27 2003
With interpolated zeros (1, 0, 2, 0, 12, ...) this has e.g.f. exp(x^2). - Paul Barry, May 09 2003
a(n) = A000680(n)/A000142(n)*A000079(n) = Product_{i=0..n-1} (4*i + 2) = 4^n*Pochhammer(1/2, n) = 4^n*GAMMA(n+1/2)/sqrt(Pi). - Daniel Dockery (peritus(AT)gmail.com), Jun 13 2003
For asymptotics, see the Robinson paper.
a(k) = (2*k)!/k! = Sum_{i=1..k+1} |A008275(i,k+1)| * k^(i-1). - André F. Labossière, Jun 21 2007
a(n) = 12*A051618(a) n >= 2. - Zerinvary Lajos, Feb 15 2008
a(n) = A000984(n)*A000142(n). - Zerinvary Lajos, Mar 25 2008
a(n) = A016825(n-1)*a(n-1). - Roger L. Bagula, Sep 17 2008
a(n) = (-1)^n*A097388(n). - D. Morosan (cd_moros(AT)alumni.concordia.ca), Nov 28 2008
From Paul Barry, Jan 15 2009: (Start)
G.f.: 1/(1-2x/(1-4x/(1-6x/(1-8x/(1-10x/(1-... (continued fraction);
a(n) = (n+1)!*A000108(n). (End)
a(n) = Sum_{k=0..n} A132393(n,k)*2^(2n-k). - Philippe Deléham, Feb 10 2009
G.f.: 1/(1-2x-8x^2/(1-10x-48x^2/(1-18x-120x^2/(1-26x-224x^2/(1-34x-360x^2/(1-42x-528x^2/(1-... (continued fraction). - Paul Barry, Nov 25 2009
a(n) = A173333(2*n,n) for n>0; cf. A006963, A001761. - Reinhard Zumkeller, Feb 19 2010
From Gary W. Adamson, Jul 19 2011: (Start)
a(n) = upper left term of M^n, M = an infinite square production matrix as follows:
2, 2, 0, 0, 0, 0, ...
4, 4, 4, 0, 0, 0, ...
6, 6, 6, 6, 0, 0, ...
8, 8, 8, 8, 8, 0, ...
...
(End)
a(n) = (-2)^n*Sum_{k=0..n} 2^k*s(n+1,n+1-k), where s(n,k) are the Stirling numbers of the first kind, A048994. - Mircea Merca, May 03 2012
G.f.: 1/Q(0), where Q(k) = 1 + x*(4*k+2) - x*(4*k+4)/Q(k+1); (continued fraction). - Sergei N. Gladkovskii, May 18 2013
G.f.: 2/G(0), where G(k) = 1 + 1/(1 - x*(8*k+4)/(x*(8*k+4) - 1 + 8*x*(k+1)/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, May 30 2013
G.f.: G(0)/2, where G(k) = 1 + 1/(1 - 2*x/(2*x + 1/(2*k+1)/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, Jun 01 2013
D-finite with recurrence: a(n) = (4*n-6)*a(n-2) + (4*n-3)*a(n-1), n>=2. - Ivan N. Ianakiev, Aug 07 2013
Sum_{n>=0} 1/a(n) = (exp(1/4)*sqrt(Pi)*erf(1/2) + 2)/2 = 1 + A214869, where erf(x) is the error function. - Ilya Gutkovskiy, Nov 10 2016
Sum_{n>=0} (-1)^n/a(n) = 1 - sqrt(Pi)*erfi(1/2)/(2*exp(1/4)), where erfi(x) is the imaginary error function. - Amiram Eldar, Feb 20 2021
a(n) = 1/([x^n] hypergeom([1], [1/2], x/4)). - Peter Luschny, Sep 13 2024
a(n) = 2^n*n!*JacobiP(n, -1/2, -n, 3). - Peter Luschny, Jan 22 2025
G.f.: 2F0(1,1/2;;4x). - R. J. Mathar, Jun 07 2025

Extensions

More terms from James Sellers, May 01 2000

A067994 Hermite numbers.

Original entry on oeis.org

1, 0, -2, 0, 12, 0, -120, 0, 1680, 0, -30240, 0, 665280, 0, -17297280, 0, 518918400, 0, -17643225600, 0, 670442572800, 0, -28158588057600, 0, 1295295050649600, 0, -64764752532480000, 0, 3497296636753920000, 0, -202843204931727360000, 0
Offset: 0

Views

Author

Eric W. Weisstein, Feb 07 2002

Keywords

Comments

|a(n)| is the number of sets of ordered pairs of n labeled elements. - Steven Finch, Nov 14 2021
|a(n)| is the number of square roots of any permutation in S_{2n} whose disjoint cycle decomposition consists of n transpositions, n > 0. For n=2, permutation (1,2)(3,4) in S_4 has exactly |a(2)|=2 square roots: (1,3,2,4) and (1,4,2,3). - Luis Manuel Rivera Martínez, Feb 25 2015
Self-convolution gives A076729(n)*(-1)^n interleaved with zeros. - Vladimir Reshetnikov, Oct 11 2016
Named after the French mathematician Charles Hermite (1822-1901). - Amiram Eldar, Jun 06 2021

Examples

			From _Steven Finch_, Nov 14 2021: (Start)
|a(4)| = 12 because the sets of ordered pairs for n = 4 are
  {(1,2),(3,4)}, {(2,1),(3,4)}, {(1,2),(4,3)}, {(2,1),(4,3)},
  {(1,3),(2,4)}, {(3,1),(2,4)}, {(1,3),(4,2)}, {(3,1),(4,2)},
  {(1,4),(3,2)}, {(4,1),(3,2)}, {(1,4),(2,3)}, {(4,1),(2,3)}. (End)
		

Crossrefs

Cf. A097388 (same sequence without zeros).
Cf. A101109 (ordered triples instead of ordered pairs).

Programs

  • Magma
    m:=25; R:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!(Exp(-x^2))); [Factorial(n-1)*b[n]: n in [1..m]]; // G. C. Greubel, Jun 09 2018
  • Maple
    A067994 := n -> pochhammer(-n, n/2):
    seq(A067994(n), n = 0..31); # Peter Luschny, Nov 14 2021
  • Mathematica
    HermiteH[Range[0,50], 0]
    With[{nmax=50}, CoefficientList[Series[Exp[-x^2], {x,0,nmax}],x]*Range[0, nmax]!] (* G. C. Greubel, Jun 09 2018 *)
  • PARI
    a(n) = polhermite(n, 0); \\ Michel Marcus, Feb 27 2015
    
  • PARI
    x='x+O('x^30); Vec(serlaplace(exp(-x^2))) \\ G. C. Greubel, Jun 09 2018
    

Formula

E.g.f.: exp(-x^2). - Vladeta Jovovic, Aug 24 2002
a(n) = (-1)^(n/2)*n!/(n/2)! if n is even, 0 otherwise. - Mitch Harris, Feb 01 2006
a(n) = -(2*n-2)*a(n-2). - Alexander Karpov, Jul 24 2017
E.g.f.: U(0) where U(k) = 1 - x^2/((2*k+1) - x^2*(2*k+1)/(x^2 - 2*(k+1)/U(k+1))); (continued fraction). - Sergei N. Gladkovskii, Oct 23 2012
G.f.: 1/G(0) where G(k) = 1 + 2*x^2*(k+1)/G(k+1); (continued fraction). - Sergei N. Gladkovskii, Dec 05 2012
E.g.f.: E(0)/(1+x) where E(k) = 1 + x/(1 - x/(x - (k+1)/E(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Apr 05 2013
E.g.f.: E(0)-1, where E(k) = 2 - x^2/(2*k+1 + x^2/E(k+1) ); (continued fraction). - Sergei N. Gladkovskii, Dec 24 2013
a(2*k) = A097388(k), a(2*k+1) = 0. - Joerg Arndt, Oct 12 2016
From Peter Luschny, Nov 14 2021: (Start)
a(n) = A057077(n)*A126869(n)*A081123(n). In particular, a(n) is divisible by floor(n/2)!.
a(n) = Pochhammer(-n, n/2). (End)

A383991 Series expansion of the exponential generating function exp(-tridend(-x)) - 1 where tridend(x) = (1 - 3*x - sqrt(1-6*x+x^2)) / (4*x) (A001003).

Original entry on oeis.org

0, 1, -5, 49, -743, 15421, -407909, 13135165, -498874991, 21838772377, -1082819193029, 59983280191561, -3671752681190615, 246130081055714389, -17932045676505509093, 1410893903131294766101, -119227840965746009631839, 10769985399394862863318705
Offset: 0

Views

Author

Michael De Vlieger, May 16 2025

Keywords

Comments

The series -tridend(-x) is the inverse for the substitution of the series trias(x), given by the suspension of the Koszul dual of trias. - Bérénice Delcroix-Oger, May 28 2025

Crossrefs

Programs

  • Mathematica
    nn = 19; f[x_] := Exp[x] - 1;
    Range[0, nn]! * CoefficientList[Series[f[(1 + 3*x - Sqrt[1 + 6*x + x^2])/(4*x)], {x, 0, nn}], x]

A383995 Series expansion of the exponential generating function exp(ff6^!(x)) - 1 where ff6^!(x) = x * (1-3*x-x^2+x^3) / (1+3*x+x^2-x^3).

Original entry on oeis.org

0, 1, -11, 61, -215, -1559, 62941, -1371131, 26310481, -474554735, 7824076741, -98881279859, -176260664711, 87457412423161, -5077434546358355, 234510433823788501, -10016559114085864799, 413333665704129673249, -16704968283664639137899, 660340818239784197391325
Offset: 0

Views

Author

Michael De Vlieger, May 16 2025

Keywords

Comments

The series ff6^!(x) is the inverse for the substitution of the series ff6(x) (given by A231690), given by the suspension of the Koszul dual of FF6. - Bérénice Delcroix-Oger, May 28 2025

Crossrefs

Programs

  • Mathematica
    nn = 19; f[x_] := Exp[x] - 1;
    Range[0, nn]! * CoefficientList[Series[f[x*(1 - 3*x - x^2 + x^3)/(1 + 3*x + x^2 - x^3)], {x, 0, nn}], x]

A383992 Series expansion of the exponential generating function exp(arbustive(x)) - 1 where arbustive(x) = (log(1+x) - x^2) / (1+x).

Original entry on oeis.org

0, 1, -4, 3, 40, -330, 1626, -3150, -54592, 1060920, -13022280, 127171440, -889086648, -283184616, 179750627616, -4895777544840, 99124001788800, -1721513264431680, 25736021675994816, -292896125040673728, 639149345262276480, 106178474282318726400
Offset: 0

Views

Author

Michael De Vlieger, May 16 2025

Keywords

Crossrefs

Programs

  • Mathematica
    nn = 21; f[x_] := Exp[x] - 1;
    Range[0, nn]! * CoefficientList[Series[f[(Log[1 + x] - x^2)/(1 + x)], {x, 0, nn}], x]

A383993 Series expansion of the exponential generating function exp(tridup^!(x)) - 1 where tridup^!(x) = x / ((1+x) * (1+2*x)).

Original entry on oeis.org

0, 1, -5, 25, -119, 301, 5611, -171275, 3574705, -68597639, 1282415131, -23479249199, 409082338105, -6146707844315, 46462772999371, 2072826643602541, -160983324879816479, 8004468391727017585, -352443295329194182085, 14817357881274444545161
Offset: 0

Views

Author

Michael De Vlieger, May 16 2025

Keywords

Comments

The series tridup^!(x) is the inverse for the substitution of the series tridup(x) (given by A001003), given by the suspension of the Koszul dual of tridup. - Bérénice Delcroix-Oger, May 28 2025

Crossrefs

Programs

  • Mathematica
    nn = 19; f[x_] := Exp[x] - 1;
    Range[0, nn]! * CoefficientList[Series[f[x/((1 + x)*(1 + 2*x))], {x, 0, nn}], x]

A383994 Series expansion of the exponential generating function exp(wnp^!(x)) - 1 where wnp^!(x) = log(1+x) - x^2/(1+x).

Original entry on oeis.org

0, 1, -2, 0, 12, -60, 240, -840, 1680, 15120, -332640, 4656960, -59209920, 735134400, -9098369280, 112345833600, -1365274310400, 15746578848000, -155630893017600, 762963647846400, 22567767443020800, -1126188650069683200, 35900904478389350400
Offset: 0

Views

Author

Michael De Vlieger, May 16 2025

Keywords

Comments

The series wnp^!(x) is the inverse for the substitution of the series wnp(x) (corresponding to A048172), given by the suspension of the Koszul dual of the WithoutNPosets operad. - Bérénice Delcroix-Oger, May 28 2025

Crossrefs

Programs

  • Mathematica
    nn = 22; f[x_] := Exp[x] - 1;
    Range[0, nn]! * CoefficientList[Series[f[Log[1 + x] - x^2/(1 + x)], {x, 0, nn}], x]

A383988 Series expansion of the exponential generating function -postLie(1-exp(x)) where postLie(x) = -log((1 + sqrt(1-4*x)) / 2) (given by A006963).

Original entry on oeis.org

0, 1, -2, 12, -110, 1380, -22022, 426972, -9747950, 256176660, -7617417302, 252851339532, -9268406209790, 371843710214340, -16206868062692582, 762569209601624892, -38525315595630383630, 2079964082064837282420, -119513562475103977951862
Offset: 0

Views

Author

Michael De Vlieger, May 16 2025

Keywords

Comments

The series -postLie(-x) is the inverse for the substitution of the series comTrias(x), given by the suspension of the Koszul dual of comTrias. - Bérénice Delcroix-Oger, May 28 2025

Crossrefs

Cf. A002050, A006531, A084099, A097388, A101851, A114285, A225883, A383985, A383986, A383987, A383989. Composition of -A006963(-x) and exp(x)-1.

Programs

  • Mathematica
    nn = 18; f[x_] := Log[(1 + Sqrt[1 + 4*x])/2];
    Range[0, nn]! * CoefficientList[Series[f[-(1 - Exp[x])], {x, 0, nn}], x]

A383990 Series expansion of the exponential generating function exp(-dend(-x))-1 where dend(x) = (1 - sqrt(1+4*x)) / (2*x) + 1 (given by A000108).

Original entry on oeis.org

0, 1, -3, 19, -191, 2661, -47579, 1040047, -26888511, 802727209, -27178685459, 1029077910411, -43086906080063, 1976633329627789, -98597207392040811, 5313105048925173991, -307587436319162110079, 19038773384213189214417, -1254686724727364725716131
Offset: 0

Views

Author

Michael De Vlieger, May 16 2025

Keywords

Comments

The series -dend(-x) is the inverse for the substitution of the series dias(x), given by the suspension of the Koszul dual of dias. - Bérénice Delcroix-Oger, May 28 2025

Crossrefs

Cf. A003725, A006531, A097388, A111884, A112242, A177885, A318215, A383991, A383992, A383993, A383994, A383995. Composition of exp(x)-1 with -A000108(-x).

A128196 a(n) = (2*n - 1)*a(n - 1) + 2^n for n >= 1, a(0) = 1.

Original entry on oeis.org

1, 3, 13, 73, 527, 4775, 52589, 683785, 10257031, 174370039, 3313031765, 69573669113, 1600194393695, 40004859850567, 1080131215981693, 31323805263501865, 971037963168623351, 32044252784564701655, 1121548847459764820069, 41497307356011298866841, 1618394986884440656855375
Offset: 0

Views

Author

Peter Luschny, Feb 26 2007

Keywords

Comments

A weighted sum of quotients of double factorials.
a(n) are the row sum of triangle A126063.

Crossrefs

Programs

  • Maple
    a := n -> `if`(n=0,1,(2*n-1)*a(n-1)+2^n);
  • Mathematica
    a[n_] := Sum[2^k*((2*n-1)!!/(2*k-1)!!), {k, 0, n}]; Table[a[n], {n, 0, 14}] (* Jean-François Alcover, Jun 28 2013 *)

Formula

a(n) = (2n)!/(n! 2^n) Sum(k=0..n, 4^k k!/(2k)!)
a(n) = 2^n Gamma(n+1/2) Sum(k=0..n, 1/Gamma(k+1/2))
a(n) = Sum(k=0..n, 2^k n!!/k!!) [n!! defined as A001147(n), Gottfried Helms]
a(n) = Sum(k=0..n, 2^(2k-n)((n+1)! Catalan(n))/((k+1)! Catalan(k))) [Catalan(n) A000108]
a(n) = Sum(k=0..n, 2^(2k-n) QuadFact(n)/QuadFact(k)) [QuadFact(n) A001813]
a(n) = Sum(k=0..n, 2^(2k-n) (-1)^(n-k) A097388(n)/A097388(k) )
a(n) = A001147(n) Sum(k=0..n, 2^k / A001147(k))
a(n) = A128195(n)/A005408(n)
a(n) = A128195(n-1)+A000079(n) (if n>0)
Recursive form: a(n) = (2n-1)*a(n-1) + 2^n; a(0) = 1 [Gottfried Helms]
Note: The following constants will be used in the next formulas.
K = (1-exp(1)*Gamma(1/2,1))/Gamma(1/2)
M = sqrt(2)(1+exp(1)(Gamma(1/2)-Gamma(1/2,1)))
Generalized form: For x>0
a(x) = 2^x(exp(1)*Gamma(x+1/2,1) + K*Gamma(x+1/2))
Asymptotic formula:
a(n) ~ 2^n*(1+(exp(1)+K)*(n-1/2)!)
a(n) ~ M(2exp(-1)(n-1/(24*n+19/10*1/n)))^n
Showing 1-10 of 10 results.