cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 24 results. Next

A000041 a(n) is the number of partitions of n (the partition numbers).

Original entry on oeis.org

1, 1, 2, 3, 5, 7, 11, 15, 22, 30, 42, 56, 77, 101, 135, 176, 231, 297, 385, 490, 627, 792, 1002, 1255, 1575, 1958, 2436, 3010, 3718, 4565, 5604, 6842, 8349, 10143, 12310, 14883, 17977, 21637, 26015, 31185, 37338, 44583, 53174, 63261, 75175, 89134, 105558, 124754, 147273, 173525
Offset: 0

Views

Author

Keywords

Comments

Also number of nonnegative solutions to b + 2c + 3d + 4e + ... = n and the number of nonnegative solutions to 2c + 3d + 4e + ... <= n. - Henry Bottomley, Apr 17 2001
a(n) is also the number of conjugacy classes in the symmetric group S_n (and the number of irreducible representations of S_n).
Also the number of rooted trees with n+1 nodes and height at most 2.
Coincides with the sequence of numbers of nilpotent conjugacy classes in the Lie algebras gl(n). A006950, A015128 and this sequence together cover the nilpotent conjugacy classes in the classical A,B,C,D series of Lie algebras. - Alexander Elashvili, Sep 08 2003
Number of distinct Abelian groups of order p^n, where p is prime (the number is independent of p). - Lekraj Beedassy, Oct 16 2004
Number of graphs on n vertices that do not contain P3 as an induced subgraph. - Washington Bomfim, May 10 2005
Numbers of terms to be added when expanding the n-th derivative of 1/f(x). - Thomas Baruchel, Nov 07 2005
Sequence agrees with expansion of Molien series for symmetric group S_n up to the term in x^n. - Maurice D. Craig (towenaar(AT)optusnet.com.au), Oct 30 2006
Also the number of nonnegative integer solutions to x_1 + x_2 + x_3 + ... + x_n = n such that n >= x_1 >= x_2 >= x_3 >= ... >= x_n >= 0, because by letting y_k = x_k - x_(k+1) >= 0 (where 0 < k < n) we get y_1 + 2y_2 + 3y_3 + ... + (n-1)y_(n-1) + nx_n = n. - Werner Grundlingh (wgrundlingh(AT)gmail.com), Mar 14 2007
Let P(z) := Sum_{j>=0} b_j z^j, b_0 != 0. Then 1/P(z) = Sum_{j>=0} c_j z^j, where the c_j must be computed from the infinite triangular system b_0 c_0 = 1, b_0 c_1 + b_1 c_0 = 0 and so on (Cauchy products of the coefficients set to zero). The n-th partition number arises as the number of terms in the numerator of the expression for c_n: The coefficient c_n of the inverted power series is a fraction with b_0^(n+1) in the denominator and in its numerator having a(n) products of n coefficients b_i each. The partitions may be read off from the indices of the b_i. - Peter C. Heinig (algorithms(AT)gmx.de), Apr 09 2007
A sequence of positive integers p = p_1 ... p_k is a descending partition of the positive integer n if p_1 + ... + p_k = n and p_1 >= ... >= p_k. If formally needed p_j = 0 is appended to p for j > k. Let P_n denote the set of these partition for some n >= 1. Then a(n) = 1 + Sum_{p in P_n} floor((p_1-1)/(p_2+1)). (Cf. A000065, where the formula reduces to the sum.) Proof in Kelleher and O'Sullivan (2009). For example a(6) = 1 + 0 + 0 + 0 + 0 + 1 + 0 + 0 + 1 + 1 + 2 + 5 = 11. - Peter Luschny, Oct 24 2010
Let n = Sum( k_(p_m) p_m ) = k_1 + 2k_2 + 5k_5 + 7k_7 + ..., where p_m is the m-th generalized pentagonal number (A001318). Then a(n) is the sum over all such pentagonal partitions of n of (-1)^(k_5+k_7 + k_22 + ...) ( k_1 + k_2 + k_5 + ...)! /( k_1! k_2! k_5! ...), where the exponent of (-1) is the sum of all the k's corresponding to even-indexed GPN's. - Jerome Malenfant, Feb 14 2011
From Jerome Malenfant, Feb 14 2011: (Start)
The matrix of a(n) values
a(0)
a(1) a(0)
a(2) a(1) a(0)
a(3) a(2) a(1) a(0)
....
a(n) a(n-1) a(n-2) ... a(0)
is the inverse of the matrix
1
-1 1
-1 -1 1
0 -1 -1 1
....
-d_n -d_(n-1) -d_(n-2) ... -d_1 1
where d_q = (-1)^(m+1) if q = m(3m-1)/2 = the m-th generalized pentagonal number (A001318), = 0 otherwise. (End)
Let k > 0 be an integer, and let i_1, i_2, ..., i_k be distinct integers such that 1 <= i_1 < i_2 < ... < i_k. Then, equivalently, a(n) equals the number of partitions of N = n + i_1 + i_2 + ... + i_k in which each i_j (1 <= j <= k) appears as a part at least once. To see this, note that the partitions of N of this class must be in 1-to-1 correspondence with the partitions of n, since N - i_1 - i_2 - ... - i_k = n. - L. Edson Jeffery, Apr 16 2011
a(n) is the number of distinct degree sequences over all free trees having n + 2 nodes. Take a partition of the integer n, add 1 to each part and append as many 1's as needed so that the total is 2n + 2. Now we have a degree sequence of a tree with n + 2 nodes. Example: The partition 3 + 2 + 1 = 6 corresponds to the degree sequence {4, 3, 2, 1, 1, 1, 1, 1} of a tree with 8 vertices. - Geoffrey Critzer, Apr 16 2011
a(n) is number of distinct characteristic polynomials among n! of permutations matrices size n X n. - Artur Jasinski, Oct 24 2011
Conjecture: starting with offset 1 represents the numbers of ordered compositions of n using the signed (++--++...) terms of A001318 starting (1, 2, -5, -7, 12, 15, ...). - Gary W. Adamson, Apr 04 2013 (this is true by the pentagonal number theorem, Joerg Arndt, Apr 08 2013)
a(n) is also number of terms in expansion of the n-th derivative of log(f(x)). In Mathematica notation: Table[Length[Together[f[x]^n * D[Log[f[x]], {x, n}]]], {n, 1, 20}]. - Vaclav Kotesovec, Jun 21 2013
Conjecture: No a(n) has the form x^m with m > 1 and x > 1. - Zhi-Wei Sun, Dec 02 2013
Partitions of n that contain a part p are the partitions of n - p. Thus, number of partitions of m*n - r that include k*n as a part is A000041(h*n-r), where h = m - k >= 0, n >= 2, 0 <= r < n; see A111295 as an example. - Clark Kimberling, Mar 03 2014
a(n) is the number of compositions of n into positive parts avoiding the pattern [1, 2]. - Bob Selcoe, Jul 08 2014
Conjecture: For any j there exists k such that all primes p <= A000040(j) are factors of one or more a(n) <= a(k). Growth of this coverage is slow and irregular. k = 1067 covers the first 102 primes, thus slower than A000027. - Richard R. Forberg, Dec 08 2014
a(n) is the number of nilpotent conjugacy classes in the order-preserving, order-decreasing and (order-preserving and order-decreasing) injective transformation semigroups. - Ugbene Ifeanyichukwu, Jun 03 2015
Define a segmented partition a(n,k, ) to be a partition of n with exactly k parts, with s(j) parts t(j) identical to each other and distinct from all the other parts. Note that n >= k, j <= k, 0 <= s(j) <= k, s(1)t(1) + ... + s(j)t(j) = n and s(1) + ... + s(j) = k. Then there are up to a(k) segmented partitions of n with exactly k parts. - Gregory L. Simay, Nov 08 2015
(End)
From Gregory L. Simay, Nov 09 2015: (Start)
The polynomials for a(n, k, ) have degree j-1.
a(n, k, ) = 1 if n = 0 mod k, = 0 otherwise
a(rn, rk, ) = a(n, k, )
a(n odd, k, ) = 0
Established results can be recast in terms of segmented partitions:
For j(j+1)/2 <= n < (j+1)(j+2)/2, A000009(n) = a(n, 1, <1>) + ... + a(n, j, ), j < n
a(n, k, ) = a(n - j(j-1)/2, k)
(End)
a(10^20) was computed using the NIST Arb package. It has 11140086260 digits and its head and tail sections are 18381765...88091448. See the Johansson 2015 link. - Stanislav Sykora, Feb 01 2016
Satisfies Benford's law [Anderson-Rolen-Stoehr, 2011]. - N. J. A. Sloane, Feb 08 2017
The partition function p(n) is log-concave for all n>25 [DeSalvo-Pak, 2014]. - Michel Marcus, Apr 30 2019
a(n) is also the dimension of the n-th cohomology of the infinite real Grassmannian with coefficients in Z/2. - Luuk Stehouwer, Jun 06 2021
Number of equivalence relations on n unlabeled nodes. - Lorenzo Sauras Altuzarra, Jun 13 2022
Equivalently, number of idempotent mappings f from a set X of n elements into itself (i.e., satisfying f o f = f) up to permutation (i.e., f~f' :<=> There is a permutation sigma in Sym(X) such that f' o sigma = sigma o f). - Philip Turecek, Apr 17 2023
Conjecture: Each integer n > 2 different from 6 can be written as a sum of finitely many numbers of the form a(k) + 2 (k > 0) with no summand dividing another. This has been verified for n <= 7140. - Zhi-Wei Sun, May 16 2023
a(n) is also the number of partitions of n*(n+3)/2 into n distinct parts. - David García Herrero, Aug 20 2024
a(n) is also the number of non-isomorphic sigma algebras on {1,...,n}. A000110(n) counts all sigma algebras on {1,...,n}. Every sigma algebra on a finite set X is exactly the collection of all unions of its atoms (its minimal nonempty members), and those atoms partition X. An isomorphism of sigma algebras must map atoms to atoms, so the isomorphism class of a sigma algebra is determined by the multiset of its atom-sizes, which is an integer partition of n. - Matthew Azar, Jul 18 2025

Examples

			a(5) = 7 because there are seven partitions of 5, namely: {1, 1, 1, 1, 1}, {2, 1, 1, 1}, {2, 2, 1}, {3, 1, 1}, {3, 2}, {4, 1}, {5}. - _Bob Selcoe_, Jul 08 2014
G.f. = 1 + x + 2*x^2 + 3*x^3 + 5*x^4 + 7*x^5 + 11*x^6 + 15*x^7 + 22*x^8 + ...
G.f. = 1/q + q^23 + 2*q^47 + 3*q^71 + 5*q^95 + 7*q^119 + 11*q^143 + 15*q^167 + ...
From _Gregory L. Simay_, Nov 08 2015: (Start)
There are up to a(4)=5 segmented partitions of the partitions of n with exactly 4 parts. They are a(n,4, <4>), a(n,4,<3,1>), a(n,4,<2,2>), a(n,4,<2,1,1>), a(n,4,<1,1,1,1>).
The partition 8,8,8,8 is counted in a(32,4,<4>).
The partition 9,9,9,5 is counted in a(32,4,<3,1>).
The partition 11,11,5,5 is counted in a(32,4,<2,2>).
The partition 13,13,5,1 is counted in a(32,4,<2,1,1>).
The partition 14,9,6,3 is counted in a(32,4,<1,1,1,1>).
a(n odd,4,<2,2>) = 0.
a(12, 6, <2,2,2>) = a(6,3,<1,1,1>) = a(6-3,3) = a(3,3) = 1. The lone partition is 3,3,2,2,1,1.
(End)
		

References

  • George E. Andrews, The Theory of Partitions, Addison-Wesley, Reading, Mass., 1976.
  • George E. Andrews and K. Ericksson, Integer Partitions, Cambridge University Press 2004.
  • T. M. Apostol, Introduction to Analytic Number Theory, Springer-Verlag, 1976, page 307.
  • R. Ayoub, An Introduction to the Analytic Theory of Numbers, Amer. Math. Soc., 1963; Chapter III.
  • Mohammad K. Azarian, A Generalization of the Climbing Stairs Problem, Mathematics and Computer Education Journal, Vol. 31, No. 1, pp. 24-28, Winter 1997.
  • Mohammad K. Azarian, A Generalization of the Climbing Stairs Problem II, Missouri Journal of Mathematical Sciences, Vol. 16, No. 1, Winter 2004, pp. 12-17. Zentralblatt MATH, Zbl 1071.05501.
  • Bruce C. Berndt, Ramanujan's Notebooks Part V, Springer-Verlag.
  • B. C. Berndt, Number Theory in the Spirit of Ramanujan, Chap. I Amer. Math. Soc. Providence RI 2006.
  • Miklos Bona, editor, Handbook of Enumerative Combinatorics, CRC Press, 2015, page 999.
  • J. M. Borwein, D. H. Bailey and R. Girgensohn, Experimentation in Mathematics, A K Peters, Ltd., Natick, MA, 2004. x+357 pp. See p. 183.
  • Florian Cajori, A History of Mathematical Notations, Dover edition (2012), par. 411.
  • John H. Conway and Richard K. Guy, The Book of Numbers, New York: Springer-Verlag, 1996. See pp. 94-96.
  • L. E. Dickson, History of the Theory of Numbers, Vol.II Chapter III pp. 101-164, Chelsea NY 1992.
  • N. J. Fine, Basic Hypergeometric Series and Applications, Amer. Math. Soc., 1988; p. 37, Eq. (22.13).
  • H. Gupta et al., Tables of Partitions. Royal Society Mathematical Tables, Vol. 4, Cambridge Univ. Press, 1958, p. 90.
  • G. H. Hardy and S. Ramanujan, Asymptotic formulas in combinatorial analysis, Proc. London Math. Soc., 17 (1918), 75-.
  • G. H. Hardy, Ramanujan: twelve lectures on subjects suggested by his life and work, Cambridge, University Press, 1940, pp. 83-100, 113-131.
  • G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers (Fifth edition), Oxford Univ. Press (Clarendon), 1979, 273-296.
  • D. E. Knuth, The Art of Computer Programming, vol. 4A, Combinatorial Algorithms, Section 7.2.1.4, p. 396.
  • D. S. Mitrinovic et al., Handbook of Number Theory, Kluwer, Section XIV.1, p. 491.
  • S. Ramanujan, Collected Papers, Chap. 25, Cambridge Univ. Press 1927 (Proceedings of the Camb. Phil. Soc., 19 (1919), pp. 207-213).
  • S. Ramanujan, Collected Papers, Chap. 28, Cambridge Univ. Press 1927 (Proceedings of the London Math. Soc., 2, 18(1920)).
  • S. Ramanujan, Collected Papers, Chap. 30, Cambridge Univ. Press 1927 (Mathematische Zeitschrift, 9 (1921), pp. 147-163).
  • S. Ramanujan, Collected Papers, Ed. G. H. Hardy et al., Cambridge 1927; Chelsea, NY, 1962. See Table IV on page 308.
  • J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, p. 122.
  • J. E. Roberts, Lure of the Integers, pp. 168-9 MAA 1992.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • R. E. Tapscott and D. Marcovich, "Enumeration of Permutational Isomers: The Porphyrins", Journal of Chemical Education, 55 (1978), 446-447.
  • James J. Tattersall, Elementary Number Theory in Nine Chapters, Cambridge University Press, 1999, pages 286-289, 297-298, 303.
  • Robert M. Young, "Excursions in Calculus", Mathematical Association of America, p. 367.

Crossrefs

Partial sums give A000070.
For successive differences see A002865, A053445, A072380, A081094, A081095.
Antidiagonal sums of triangle A092905. a(n) = A054225(n,0).
Boustrophedon transforms: A000733, A000751.
Cf. A167376 (complement), A061260 (multisets), A000700 (self-conjug), A330644 (not self-conj).

Programs

  • GAP
    List([1..10],n->Size(OrbitsDomain(SymmetricGroup(IsPermGroup,n),SymmetricGroup(IsPermGroup,n),\^))); # Attila Egri-Nagy, Aug 15 2014
    
  • Haskell
    import Data.MemoCombinators (memo2, integral)
    a000041 n = a000041_list !! n
    a000041_list = map (p' 1) [0..] where
       p' = memo2 integral integral p
       p _ 0 = 1
       p k m = if m < k then 0 else p' k (m - k) + p' (k + 1) m
    -- Reinhard Zumkeller, Nov 03 2015, Nov 04 2013
    
  • Julia
    # DedekindEta is defined in A000594
    A000041List(len) = DedekindEta(len, -1)
    A000041List(50) |> println # Peter Luschny, Mar 09 2018
  • Magma
    a:= func< n | NumberOfPartitions(n) >; [ a(n) : n in [0..10]];
    
  • Maple
    A000041 := n -> combinat:-numbpart(n): [seq(A000041(n), n=0..50)]; # Warning: Maple 10 and 11 give incorrect answers in some cases: A110375.
    spec := [B, {B=Set(Set(Z,card>=1))}, unlabeled ];
    [seq(combstruct[count](spec, size=n), n=0..50)];
    with(combstruct):ZL0:=[S,{S=Set(Cycle(Z,card>0))}, unlabeled]: seq(count(ZL0,size=n),n=0..45); # Zerinvary Lajos, Sep 24 2007
    G:={P=Set(Set(Atom,card>0))}: combstruct[gfsolve](G,labeled,x); seq(combstruct[count]([P,G,unlabeled],size=i),i=0..45); # Zerinvary Lajos, Dec 16 2007
    # Using the function EULER from Transforms (see link at the bottom of the page).
    1,op(EULER([seq(1,n=1..49)])); # Peter Luschny, Aug 19 2020
  • Mathematica
    Table[ PartitionsP[n], {n, 0, 45}]
    a[ n_] := SeriesCoefficient[ q^(1/24) / DedekindEta[ Log[q] / (2 Pi I)], {q, 0, n}]; (* Michael Somos, Jul 11 2011 *)
    a[ n_] := SeriesCoefficient[ 1 / Product[ 1 - x^k, {k, n}], {x, 0, n}]; (* Michael Somos, Jul 11 2011 *)
    CoefficientList[1/QPochhammer[q] + O[q]^100, q] (* Jean-François Alcover, Nov 25 2015 *)
    a[0] := 1; a[n_] := a[n] = Block[{k=1, s=0, i=n-1}, While[i >= 0, s=s-(-1)^k (a[i]+a[i-k]); k=k+1; i=i-(3 k-2)]; s]; Map[a, Range[0, 49]] (* Oliver Seipel, Jun 01 2024 after Euler *)
  • Maxima
    num_partitions(60,list); /* Emanuele Munarini, Feb 24 2014 */
    
  • MuPAD
    combinat::partitions::count(i) $i=0..54 // Zerinvary Lajos, Apr 16 2007
    
  • PARI
    {a(n) = if( n<0, 0, polcoeff( 1 / eta(x + x * O(x^n)), n))};
    
  • PARI
    /* The Hardy-Ramanujan-Rademacher exact formula in PARI is as follows (this is no longer necessary since it is now built in to the numbpart command): */
    Psi(n, q) = local(a, b, c); a=sqrt(2/3)*Pi/q; b=n-1/24; c=sqrt(b); (sqrt(q)/(2*sqrt(2)*b*Pi))*(a*cosh(a*c)-(sinh(a*c)/c))
    L(n, q) = if(q==1,1,sum(h=1,q-1,if(gcd(h,q)>1,0,cos((g(h,q)-2*h*n)*Pi/q))))
    g(h, q) = if(q<3,0,sum(k=1,q-1,k*(frac(h*k/q)-1/2)))
    part(n) = round(sum(q=1,max(5,0.5*sqrt(n)),L(n,q)*Psi(n,q)))
    /* Ralf Stephan, Nov 30 2002, fixed by Vaclav Kotesovec, Apr 09 2018 */
    
  • PARI
    {a(n) = numbpart(n)};
    
  • PARI
    {a(n) = if( n<0, 0, polcoeff( sum( k=1, sqrtint(n), x^k^2 / prod( i=1, k, 1 - x^i, 1 + x * O(x^n))^2, 1), n))};
    
  • PARI
    f(n)= my(v,i,k,s,t);v=vector(n,k,0);v[n]=2;t=0;while(v[1]1,i--;s+=i*(v[i]=(n-s)\i));t++);t \\ Thomas Baruchel, Nov 07 2005
    
  • PARI
    a(n)=if(n<0, 0, polcoeff(exp(sum(k=1, n, x^k/(1-x^k)/k, x*O(x^n))), n)) \\ Joerg Arndt, Apr 16 2010
    
  • Perl
    use ntheory ":all"; my @p = map { partitions($) } 0..100; say "[@p]"; # _Dana Jacobsen, Sep 06 2015
    
  • Python
    from sympy.functions.combinatorial.numbers import partition
    print([partition(i) for i in range(101)]) # Joan Ludevid, May 25 2025
    
  • Racket
    #lang racket
    ; SUM(k,-inf,+inf) (-1)^k p(n-k(3k-1)/2)
    ; For k outside the range (1-(sqrt(1-24n))/6 to (1+sqrt(1-24n))/6) argument n-k(3k-1)/2 < 0.
    ; Therefore the loops below are finite. The hash avoids repeated identical computations.
    (define (p n) ; Nr of partitions of n.
    (hash-ref h n
      (λ ()
       (define r
        (+
         (let loop ((k 1) (n (sub1 n)) (s 0))
          (if (< n 0) s
           (loop (add1 k) (- n (* 3 k) 1) (if (odd? k) (+ s (p n)) (- s (p n))))))
         (let loop ((k -1) (n (- n 2)) (s 0))
          (if (< n 0) s
           (loop (sub1 k) (+ n (* 3 k) -2) (if (odd? k) (+ s (p n)) (- s (p n))))))))
       (hash-set! h n r)
       r)))
    (define h (make-hash '((0 . 1))))
    ; (for ((k (in-range 0 50))) (printf "~s, " (p k))) runs in a moment.
    ; Jos Koot, Jun 01 2016
    
  • Sage
    [number_of_partitions(n) for n in range(46)]  # Zerinvary Lajos, May 24 2009
    
  • Sage
    @CachedFunction
    def A000041(n):
        if n == 0: return 1
        S = 0; J = n-1; k = 2
        while 0 <= J:
            T = A000041(J)
            S = S+T if is_odd(k//2) else S-T
            J -= k if is_odd(k) else k//2
            k += 1
        return S
    [A000041(n) for n in range(50)]  # Peter Luschny, Oct 13 2012
    
  • Sage
    # uses[EulerTransform from A166861]
    a = BinaryRecurrenceSequence(1, 0)
    b = EulerTransform(a)
    print([b(n) for n in range(50)]) # Peter Luschny, Nov 11 2020
    

Formula

G.f.: Product_{k>0} 1/(1-x^k) = Sum_{k>= 0} x^k Product_{i = 1..k} 1/(1-x^i) = 1 + Sum_{k>0} x^(k^2)/(Product_{i = 1..k} (1-x^i))^2.
G.f.: 1 + Sum_{n>=1} x^n/(Product_{k>=n} 1-x^k). - Joerg Arndt, Jan 29 2011
a(n) - a(n-1) - a(n-2) + a(n-5) + a(n-7) - a(n-12) - a(n-15) + ... = 0, where the sum is over n-k and k is a generalized pentagonal number (A001318) <= n and the sign of the k-th term is (-1)^([(k+1)/2]). See A001318 for a good way to remember this!
a(n) = (1/n) * Sum_{k=0..n-1} sigma(n-k)*a(k), where sigma(k) is the sum of divisors of k (A000203).
a(n) ~ 1/(4*n*sqrt(3)) * e^(Pi * sqrt(2n/3)) as n -> infinity (Hardy and Ramanujan). See A050811.
a(n) = a(0)*b(n) + a(1)*b(n-2) + a(2)*b(n-4) + ... where b = A000009.
From Jon E. Schoenfield, Aug 17 2014: (Start)
It appears that the above approximation from Hardy and Ramanujan can be refined as
a(n) ~ 1/(4*n*sqrt(3)) * e^(Pi * sqrt(2n/3 + c0 + c1/n^(1/2) + c2/n + c3/n^(3/2) + c4/n^2 + ...)), where the coefficients c0 through c4 are approximately
c0 = -0.230420145062453320665537
c1 = -0.0178416569128570889793
c2 = 0.0051329911273
c3 = -0.0011129404
c4 = 0.0009573,
as n -> infinity. (End)
From Vaclav Kotesovec, May 29 2016 (c4 added Nov 07 2016): (Start)
c0 = -0.230420145062453320665536704197233... = -1/36 - 2/Pi^2
c1 = -0.017841656912857088979502135349949... = 1/(6*sqrt(6)*Pi) - sqrt(3/2)/Pi^3
c2 = 0.005132991127342167594576391633559... = 1/(2*Pi^4)
c3 = -0.001112940489559760908236602843497... = 3*sqrt(3/2)/(4*Pi^5) - 5/(16*sqrt(6)*Pi^3)
c4 = 0.000957343284806972958968694349196... = 1/(576*Pi^2) - 1/(24*Pi^4) + 93/(80*Pi^6)
a(n) ~ exp(Pi*sqrt(2*n/3))/(4*sqrt(3)*n) * (1 - (sqrt(3/2)/Pi + Pi/(24*sqrt(6)))/sqrt(n) + (1/16 + Pi^2/6912)/n).
a(n) ~ exp(Pi*sqrt(2*n/3) - (sqrt(3/2)/Pi + Pi/(24*sqrt(6)))/sqrt(n) + (1/24 - 3/(4*Pi^2))/n) / (4*sqrt(3)*n).
(End)
a(n) < exp( (2/3)^(1/2) Pi sqrt(n) ) (Ayoub, p. 197).
G.f.: Product_{m>=1} (1+x^m)^A001511(m). - Vladeta Jovovic, Mar 26 2004
a(n) = Sum_{i=0..n-1} P(i, n-i), where P(x, y) is the number of partitions of x into at most y parts and P(0, y)=1. - Jon Perry, Jun 16 2003
G.f.: Product_{i>=1} Product_{j>=0} (1+x^((2i-1)*2^j))^(j+1). - Jon Perry, Jun 06 2004
G.f. e^(Sum_{k>0} (x^k/(1-x^k)/k)). - Franklin T. Adams-Watters, Feb 08 2006
a(n) = A114099(9*n). - Reinhard Zumkeller, Feb 15 2006
Euler transform of all 1's sequence (A000012). Weighout transform of A001511. - Franklin T. Adams-Watters, Mar 15 2006
a(n) = A027187(n) + A027193(n) = A000701(n) + A046682(n). - Reinhard Zumkeller, Apr 22 2006
A026820(a(n),n) = A134737(n) for n > 0. - Reinhard Zumkeller, Nov 07 2007
Convolved with A152537 gives A000079, powers of 2. - Gary W. Adamson, Dec 06 2008
a(n) = A026820(n, n); a(n) = A108949(n) + A045931(n) + A108950(n) = A130780(n) + A171966(n) - A045931(n) = A045931(n) + A171967(n). - Reinhard Zumkeller, Jan 21 2010
a(n) = Tr(n)/(24*n-1) = A183011(n)/A183010(n), n>=1. See the Bruinier-Ono paper in the Links. - Omar E. Pol, Jan 23 2011
From Jerome Malenfant, Feb 14 2011: (Start)
a(n) = determinant of the n X n Toeplitz matrix:
1 -1
1 1 -1
0 1 1 -1
0 0 1 1 -1
-1 0 0 1 1 -1
. . .
d_n d_(n-1) d_(n-2)...1
where d_q = (-1)^(m+1) if q = m(3m-1)/2 = p_m, the m-th generalized pentagonal number (A001318), otherwise d_q = 0. Note that the 1's run along the diagonal and the -1's are on the superdiagonal. The (n-1) row (not written) would end with ... 1 -1. (End)
Empirical: let F*(x) = Sum_{n=0..infinity} p(n)*exp(-Pi*x*(n+1)), then F*(2/5) = 1/sqrt(5) to a precision of 13 digits.
F*(4/5) = 1/2+3/2/sqrt(5)-sqrt(1/2*(1+3/sqrt(5))) to a precision of 28 digits. These are the only values found for a/b when a/b is from F60, Farey fractions up to 60. The number for F*(4/5) is one of the real roots of 25*x^4 - 50*x^3 - 10*x^2 - 10*x + 1. Note here the exponent (n+1) compared to the standard notation with n starting at 0. - Simon Plouffe, Feb 23 2011
The constant (2^(7/8)*GAMMA(3/4))/(exp(Pi/6)*Pi^(1/4)) = 1.0000034873... when expanded in base exp(4*Pi) will give the first 52 terms of a(n), n>0, the precision needed is 300 decimal digits. - Simon Plouffe, Mar 02 2011
a(n) = A035363(2n). - Omar E. Pol, Nov 20 2009
G.f.: A(x)=1+x/(G(0)-x); G(k) = 1 + x - x^(k+1) - x*(1-x^(k+1))/G(k+1); (continued fraction Euler's kind, 1-step ). - Sergei N. Gladkovskii, Jan 25 2012
Convolution of A010815 with A000712. - Gary W. Adamson, Jul 20 2012
G.f.: 1 + x*(1 - G(0))/(1-x) where G(k) = 1 - 1/(1-x^(k+1))/(1-x/(x-1/G(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Jan 22 2013
G.f.: Q(0) where Q(k) = 1 + x^(4*k+1)/( (x^(2*k+1)-1)^2 - x^(4*k+3)*(x^(2*k+1)-1)^2/( x^(4*k+3) + (x^(2*k+2)-1)^2/Q(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Feb 16 2013
a(n) = 24*spt(n) + 12*N_2(n) - Tr(n) = 24*A092269(n) + 12*A220908(n) - A183011(n), n >= 1. - Omar E. Pol, Feb 17 2013
a(n) = A066186(n)/n, n >= 1. - Omar E. Pol, Aug 16 2013
From Peter Bala, Dec 23 2013: (Start)
a(n-1) = Sum_{parts k in all partitions of n} mu(k), where mu(k) is the arithmetical Möbius function (see A008683).
Let P(2,n) denote the set of partitions of n into parts k >= 2. Then a(n-2) = -Sum_{parts k in all partitions in P(2,n)} mu(k).
n*( a(n) - a(n-1) ) = Sum_{parts k in all partitions in P(2,n)} k (see A138880).
Let P(3,n) denote the set of partitions of n into parts k >= 3. Then
a(n-3) = (1/2)*Sum_{parts k in all partitions in P(3,n)} phi(k), where phi(k) is the Euler totient function (see A000010). Using this result and Mertens's theorem on the average order of the phi function, we can find an approximate 3-term recurrence for the partition function: a(n) ~ a(n-1) + a(n-2) + (Pi^2/(3*n) - 1)*a(n-3). For example, substituting the values a(47) = 124754, a(48) = 147273 and a(49) = 173525 into the recurrence gives the approximation a(50) ~ 204252.48... compared with the true value a(50) = 204226. (End)
a(n) = Sum_{k=1..n+1} (-1)^(n+1-k)*A000203(k)*A002040(n+1-k). - Mircea Merca, Feb 27 2014
a(n) = A240690(n) + A240690(n+1), n >= 1. - Omar E. Pol, Mar 16 2015
From Gary W. Adamson, Jun 22 2015: (Start)
A production matrix for the sequence with offset 1 is M, an infinite n x n matrix of the following form:
a, 1, 0, 0, 0, 0, ...
b, 0, 1, 0, 0, 0, ...
c, 0, 0, 1, 0, 0, ...
d, 0, 0, 0, 1, 0, ...
.
.
... such that (a, b, c, d, ...) is the signed version of A080995 with offset 1: (1,1,0,0,-1,0,-1,...)
and a(n) is the upper left term of M^n.
This operation is equivalent to the g.f. (1 + x + 2x^2 + 3x^3 + 5x^4 + ...) = 1/(1 - x - x^2 + x^5 + x^7 - x^12 - x^15 + x^22 + ...). (End)
G.f.: x^(1/24)/eta(log(x)/(2 Pi i)). - Thomas Baruchel, Jan 09 2016, after Michael Somos (after Richard Dedekind).
a(n) = Sum_{k=-inf..+inf} (-1)^k a(n-k(3k-1)/2) with a(0)=1 and a(negative)=0. The sum can be restricted to the (finite) range from k = (1-sqrt(1-24n))/6 to (1+sqrt(1-24n))/6, since all terms outside this range are zero. - Jos Koot, Jun 01 2016
G.f.: (conjecture) (r(x) * r(x^2) * r(x^4) * r(x^8) * ...) where r(x) is A000009: (1, 1, 1, 2, 2, 3, 4, ...). - Gary W. Adamson, Sep 18 2016; Doron Zeilberger observed today that "This follows immediately from Euler's formula 1/(1-z) = (1+z)*(1+z^2)*(1+z^4)*(1+z^8)*..." Gary W. Adamson, Sep 20 2016
a(n) ~ 2*Pi * BesselI(3/2, sqrt(24*n-1)*Pi/6) / (24*n-1)^(3/4). - Vaclav Kotesovec, Jan 11 2017
G.f.: Product_{k>=1} (1 + x^k)/(1 - x^(2*k)). - Ilya Gutkovskiy, Jan 23 2018
a(n) = p(1, n) where p(k, n) = p(k+1, n) + p(k, n-k) if k < n, 1 if k = n, and 0 if k > n. p(k, n) is the number of partitions of n into parts >= k. - Lorraine Lee, Jan 28 2020
Sum_{n>=1} 1/a(n) = A078506. - Amiram Eldar, Nov 01 2020
Sum_{n>=0} a(n)/2^n = A065446. - Amiram Eldar, Jan 19 2021
From Simon Plouffe, Mar 12 2021: (Start)
Sum_{n>=0} a(n)/exp(Pi*n) = 2^(3/8)*Gamma(3/4)/(Pi^(1/4)*exp(Pi/24)).
Sum_{n>=0} a(n)/exp(2*Pi*n) = 2^(1/2)*Gamma(3/4)/(Pi^(1/4)*exp(Pi/12)).
[corrected by Vaclav Kotesovec, May 12 2023] (End)
[These are the reciprocals of phi(exp(-Pi)) (A259148) and phi(exp(-2*Pi)) (A259149), where phi(q) is the Euler modular function. See B. C. Berndt (RLN, Vol. V, p. 326), and formulas (13) and (14) in I. Mező, 2013. - Peter Luschny, Mar 13 2021]
a(n) = A000009(n) + A035363(n) + A006477(n). - R. J. Mathar, Feb 01 2022
a(n) = A008284(2*n,n) is also the number of partitions of 2n into n parts. - Ryan Brooks, Jun 11 2022
a(n) = A000700(n) + A330644(n). - R. J. Mathar, Jun 15 2022
a(n) ~ exp(Pi*sqrt(2*n/3)) / (4*n*sqrt(3)) * (1 + Sum_{r>=1} w(r)/n^(r/2)), where w(r) = 1/(-4*sqrt(6))^r * Sum_{k=0..(r+1)/2} binomial(r+1,k) * (r+1-k) / (r+1-2*k)! * (Pi/6)^(r-2*k) [Cormac O'Sullivan, 2023, pp. 2-3]. - Vaclav Kotesovec, Mar 15 2023

Extensions

Additional comments from Ola Veshta (olaveshta(AT)my-deja.com), Feb 28 2001
Additional comments from Dan Fux (dan.fux(AT)OpenGaia.com or danfux(AT)OpenGaia.com), Apr 07 2001

A088902 Numbers n such that n = product (p_k)^(c_k) and set of its (c_k k's)'s is a self-conjugate partition, where p_k is k-th prime and c_k > 0.

Original entry on oeis.org

1, 2, 6, 9, 20, 30, 56, 75, 84, 125, 176, 210, 264, 350, 416, 441, 624, 660, 735, 1088, 1100, 1386, 1560, 1632, 1715, 2310, 2401, 2432, 2600, 3267, 3276, 3648, 4080, 5390, 5445, 5460, 5888, 6800, 7546, 7722, 8568, 8832, 9120, 12705, 12740, 12870, 13689
Offset: 1

Views

Author

Naohiro Nomoto, Nov 28 2003

Keywords

Comments

The Heinz numbers of the self-conjugate partitions. We define the Heinz number of a partition p = [p_1, p_2, ..., p_r] to be Product(p_j-th prime, j=1..r) (a concept used by Alois P. Heinz in A215366 as an "encoding" of a partition). For example, for the partition [1, 1, 1, 4] we get 2*2*2*7 = 56. It is in the sequence since [1,1,1,4] is self-conjugate. - Emeric Deutsch, Jun 05 2015

Examples

			20 is in the sequence because 20 = 2^2 * 5^1 = (p_1)^2 *(p_3)^1, (two 1's, one 3's) = (1,1,3) is a self-conjugate partition of 5.
From _Gus Wiseman_, Jun 28 2022: (Start)
The terms together with their prime indices begin:
    1: ()
    2: (1)
    6: (2,1)
    9: (2,2)
   20: (3,1,1)
   30: (3,2,1)
   56: (4,1,1,1)
   75: (3,3,2)
   84: (4,2,1,1)
  125: (3,3,3)
  176: (5,1,1,1,1)
  210: (4,3,2,1)
  264: (5,2,1,1,1)
(End)
		

Crossrefs

Fixed points of A122111.
A002110 (primorial numbers) is a subsequence.
After a(1) and a(2), a subsequence of A241913.
These partitions are counted by A000700.
The same count comes from A258116.
The complement is A352486, counted by A330644.
These are the positions of zeros in A352491.
A000041 counts integer partitions, strict A000009.
A325039 counts partitions w/ product = conjugate product, ranked by A325040.
Heinz number (rank) and partition:
- A003963 = product of partition, conjugate A329382.
- A008480 = number of permutations of partition, conjugate A321648.
- A056239 = sum of partition.
- A296150 = parts of partition, reverse A112798, conjugate A321649.
- A352487 = less than conjugate, counted by A000701.
- A352488 = greater than or equal to conjugate, counted by A046682.
- A352489 = less than or equal to conjugate, counted by A046682.
- A352490 = greater than conjugate, counted by A000701.

Programs

  • Maple
    with(numtheory): c := proc (n) local B, C: B := proc (n) local pf: pf := op(2, ifactors(n)): [seq(seq(pi(op(1, op(i, pf))), j = 1 .. op(2, op(i, pf))), i = 1 .. nops(pf))] end proc: C := proc (P) local a: a := proc (j) local c, i: c := 0: for i to nops(P) do if j <= P[i] then c := c+1 else end if end do: c end proc: [seq(a(k), k = 1 .. max(P))] end proc: mul(ithprime(C(B(n))[q]), q = 1 .. nops(C(B(n)))) end proc: SC := {}: for i to 14000 do if c(i) = i then SC := `union`(SC, {i}) else end if end do: SC; # Emeric Deutsch, May 09 2015
  • Mathematica
    Select[Range[14000], Function[n, n == If[n == 1, 1, Module[{l = #, m = 0}, Times @@ Power @@@ Table[l -= m; l = DeleteCases[l, 0]; {Prime@ Length@ l, m = Min@ l}, Length@ Union@ l]] &@ Catenate[ConstantArray[PrimePi@ #1, #2] & @@@ FactorInteger@ n]]]] (* Michael De Vlieger, Aug 27 2016, after JungHwan Min at A122111 *)

Extensions

More terms from David Wasserman, Aug 26 2005

A000701 One half of number of non-self-conjugate partitions; also half of number of asymmetric Ferrers graphs with n nodes.

Original entry on oeis.org

0, 0, 1, 1, 2, 3, 5, 7, 10, 14, 20, 27, 37, 49, 66, 86, 113, 146, 190, 242, 310, 392, 497, 623, 782, 973, 1212, 1498, 1851, 2274, 2793, 3411, 4163, 5059, 6142, 7427, 8972, 10801, 12989, 15572, 18646, 22267, 26561, 31602, 37556, 44533, 52743, 62338, 73593
Offset: 0

Views

Author

Keywords

Comments

Also number of cycle types of odd permutations.
Also number of partitions of n with an odd number of even parts. There is no restriction on the odd parts. - N. Sato, Jul 20 2005. E.g., a(6)=5 because we have [6],[4,1,1],[3,2,1],[2,2,2] and [2,1,1,1,1]. - Emeric Deutsch, Mar 02 2006
Also number of partitions of n with largest part not congruent to n modulo 2: a(2*n)=A027193(2*n), a(2*n+1)=A027187(2*n+1); a(n)=A000041(n)-A046682(n). - Reinhard Zumkeller, Apr 22 2006
From Gus Wiseman, Mar 31 2022: (Start)
Also the number of integer partitions of n with Heinz number greater than that of their conjugate, where the Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). These partitions are ranked by A352490. The complement is counted by A046682. For example, the a(n) partitions for n = 2...8 are:
(11) (111) (211) (221) (222) (331) (2222)
(1111) (2111) (2211) (2221) (3221)
(11111) (3111) (3211) (3311)
(21111) (22111) (22211)
(111111) (31111) (32111)
(211111) (41111)
(1111111) (221111)
(311111)
(2111111)
(11111111)
Also the number of integer partitions of n with Heinz number less than that of their conjugate, ranked by A352487. For example, the a(n) partitions for n = 2...8 are:
(2) (3) (4) (5) (6) (7) (8)
(31) (32) (33) (43) (44)
(41) (42) (52) (53)
(51) (61) (62)
(411) (322) (71)
(421) (422)
(511) (431)
(521)
(611)
(5111)
(End)

Examples

			G.f. = x^2 + x^3 + 2*x^4 + 3*x^5 + 5*x^6 + 7*x^7 + 10*x^8 + 14*x^9 + ...
		

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

A000700 counts self-conjugate partitions, ranked by A088902.
A330644 counts non-self-conjugate partitions, ranked by A352486.
Heinz number (rank) and partition:
- A122111 = rank of conjugate.
- A296150 = parts of partition, conjugate A321649.
- A352487 = rank less than conjugate, counted by A000701.
- A352488 = rank greater than or equal to conjugate, counted by A046682.
- A352489 = rank less than or equal to conjugate, counted by A046682.
- A352490 = rank greater than conjugate, counted by A000701.
- A352491 = rank minus conjugate.

Programs

  • Maple
    with(combinat); A000701 := n->(numbpart(n)-A000700(n))/2;
  • Mathematica
    a41 = PartitionsP; a700[n_] := SeriesCoefficient[ Product[1 + x^k, {k, 1, n, 2}], {x, 0, n}]; a[0] = 0; a[n_] := (a41[n] - a700[n])/2; Table[a[n], {n, 0, 48}] (* Jean-François Alcover, Feb 21 2012, after first formula *)
    a[ n_] := SeriesCoefficient[ (1 / QPochhammer[ x] - 1 / QPochhammer[ x, -x]) / 2, {x, 0, n}]; (* Michael Somos, Aug 25 2015 *)
    a[ n_] := SeriesCoefficient[ (1 - EllipticTheta[ 4, 0, x^2]) / (2 QPochhammer[ x]), {x, 0, n}]; (* Michael Somos, Aug 25 2015 *)
    a[ n_] := SeriesCoefficient[ QPochhammer[ -x, x] Sum[ x^(2 k) / QPochhammer[ x^2, x^2, k], {k, 1, n/2, 2}], {x, 0, n}] (* Michael Somos, Aug 25 2015 *)
    a[ n_] := If[ n < 0, 0, SeriesCoefficient[ Sum[ (1 / QPochhammer[ x, x, k]^2 - 1 / QPochhammer[ x^2, x^2, k]) x^k^2, {k, Sqrt@n}] / 2, {x, 0, n}]]; (* Michael Somos, Aug 25 2015 *)
    conj[y_]:=If[Length[y]==0,y,Table[Length[Select[y,#>=k&]],{k,1,Max[y]}]];
    Table[Length[Select[IntegerPartitions[n],Times@@Prime/@#>Times@@Prime/@conj[#]&]],{n,0,15}] (* Gus Wiseman, Mar 31 2022 *)
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( (1 - eta(x^2 + A)^2 / eta(x^4 + A) ) / (2 * eta(x + A)), n))}; /* Michael Somos, Aug 25 2015 */
    
  • PARI
    q='q+O('q^60); concat([0, 0], Vec((1-eta(q^2)^2/eta(q^4))/(2*eta(q)))) \\ Altug Alkan, Sep 26 2018

Formula

a(n) = (A000041(n) - A000700(n))/2.
From Bill Gosper, Aug 08 2005: (Start)
Sum a(n) q^n = q^2 + q^3 + 2 q^4 + 3 q^5 + 5 q^6 + 7 q^7 + ...
= -( Sum_{n>=1} (-q^2)^(n^2) ) / ( Sum_{ n = -oo..oo } (-1)^n q^(n(3n-1)/2) )
= (- q; q){oo} Sum{n>=1} q^(2(2n-1))/(q^2;q^2)_{2n-1}
= (1/(q;q)_oo - 1/(q;-q)_oo)/2
= (1/(q;q)_oo - (-q;q^2)_oo)/2
= Sum{k>=0} ( 1/((q;q)_k)^2 - 1/(q^2;q^2)_k ) q^(k^2)/2
using the "q-Pochhammer" notation (a;q)n := Product{k=0..n-1} (1 - a*q^k).
(End)
a(n) = p(n-2) - p(n-8) + p(n-18) - p(n-32) + ... + (-1)^(k+1)*p(n-2*k^2) + ..., where p() is A000041(). E.g., a(20) = p(18) - p(12) + p(2) = 385 - 77 + 2 = 310. - Vladeta Jovovic, Aug 08 2004
G.f.: (1/2)*(1 - Product_{j>=1} (1-x^(2j))/(1+x^(2j)))/Product_{j>=1} (1 - x^j). - Emeric Deutsch, Mar 02 2006
a(2*n) = A236559(n). a(2*n + 1) = A236914(n). - Michael Somos, Aug 25 2015
a(n) = A330644(n)/2. - Omar E. Pol, Jan 10 2020
a(n) = A000041(n) - A046682(n) = A046682(n) - A000700(n). - Gus Wiseman, Mar 31 2022

Extensions

Better description and more terms from Christian G. Bower, Apr 27 2000

A064428 Number of partitions of n with nonnegative crank.

Original entry on oeis.org

1, 0, 1, 2, 3, 4, 6, 8, 12, 16, 23, 30, 42, 54, 73, 94, 124, 158, 206, 260, 334, 420, 532, 664, 835, 1034, 1288, 1588, 1962, 2404, 2953, 3598, 4392, 5328, 6466, 7808, 9432, 11338, 13632, 16326, 19544, 23316, 27806, 33054, 39273, 46534, 55096, 65076, 76808
Offset: 0

Views

Author

Vladeta Jovovic, Sep 30 2001

Keywords

Comments

For a partition p, let l(p) = largest part of p, w(p) = number of 1's in p, m(p) = number of parts of p larger than w(p). The crank of p is given by l(p) if w(p) = 0, otherwise m(p)-w(p).
From Gus Wiseman, Mar 30 2021 and May 21 2022: (Start)
Also the number of even-length compositions of n with alternating parts strictly decreasing, or properly 2-colored partitions (proper = no equal parts of the same color) with the same number of parts of each color, or ordered pairs of strict partitions of the same length with total n. The odd-length case is A001522, and there are a total of A000041 compositions with alternating parts strictly decreasing (see A342528 for a bijective proof). The a(2) = 1 through a(7) = 8 ordered pairs of strict partitions of the same length are:
(1)(1) (1)(2) (1)(3) (1)(4) (1)(5) (1)(6)
(2)(1) (2)(2) (2)(3) (2)(4) (2)(5)
(3)(1) (3)(2) (3)(3) (3)(4)
(4)(1) (4)(2) (4)(3)
(5)(1) (5)(2)
(21)(21) (6)(1)
(21)(31)
(31)(21)
Conjecture: Also the number of integer partitions y of n without a fixed point y(i) = i, ranked by A352826. This is stated at A238394, but Resta tells me he may not have had a proof. The a(2) = 1 through a(7) = 8 partitions without a fixed point are:
(2) (3) (4) (5) (6) (7)
(21) (31) (41) (33) (43)
(211) (311) (51) (61)
(2111) (411) (331)
(3111) (511)
(21111) (4111)
(31111)
(211111)
The version for permutations is A000166, complement A002467.
The version for compositions is A238351.
This is column k = 0 of A352833.
A238352 counts reversed partitions by fixed points, rank statistic A352822.
A238394 counts reversed partitions without a fixed point, ranked by A352830.
A238395 counts reversed partitions with a fixed point, ranked by A352872. (End)
The above conjecture is true. See Section 4 of the Blecher-Knopfmacher paper in the Links section. - Jeremy Lovejoy, Sep 26 2022

Examples

			G.f. = 1 + x^2 + 2*x^3 + 3*x^4 + 4*x^5 + 6*x^6 + 8*x^7 + 12*x^8 + 16*x^9 + 23*x^10 + ... - _Michael Somos_, Jan 15 2018
From _Gus Wiseman_, May 21 2022: (Start)
The a(0) = 1 through a(8) = 12 partitions with nonnegative crank:
  ()  .  (2)  (3)   (4)   (5)    (6)    (7)     (8)
              (21)  (22)  (32)   (33)   (43)    (44)
                    (31)  (41)   (42)   (52)    (53)
                          (221)  (51)   (61)    (62)
                                 (222)  (322)   (71)
                                 (321)  (331)   (332)
                                        (421)   (422)
                                        (2221)  (431)
                                                (521)
                                                (2222)
                                                (3221)
                                                (3311)
(End)
		

References

  • B. C. Berndt, Ramanujan's Notebooks Part III, Springer-Verlag, see p. 18 Entry 9 Corollary (i).
  • G. E. Andrews, B. C. Berndt, Ramanujan's Lost Notebook Part I, Springer, see p. 169 Entry 6.7.1.

Crossrefs

These are the row-sums of the right (or left) half of A064391, inclusive.
The case of crank 0 is A064410, ranked by A342192.
The strict case is A352828.
These partitions are ranked by A352873.
A000700 = self-conjugate partitions, ranked by A088902, complement A330644.
A001522 counts partitions with positive crank, ranked by A352874.
A034008 counts even-length compositions.
A115720 and A115994 count partitions by their Durfee square.
A224958 counts compositions w/ alternating parts unequal (even: A342532).
A257989 gives the crank of the partition with Heinz number n.
A342527 counts compositions w/ alternating parts equal (even: A065608).
A342528 = compositions w/ alternating parts weakly decr. (even: A114921).

Programs

  • Mathematica
    a[ n_] := If[ n < 0, 0, SeriesCoefficient[ Sum[ (-1)^k x^(k (k + 1)/2) , {k, 0, (Sqrt[1 + 8 n] - 1)/2}] / QPochhammer[ x], {x, 0, n}]]; (* Michael Somos, Jan 15 2018 *)
    a[ n_] := If[ n < 0, 0, SeriesCoefficient[ Sum[  x^(k (k + 1)) / QPochhammer[ x, x, k]^2 , {k, 0, (Sqrt[1 + 4 n] - 1)/2}], {x, 0, n}]]; (* Michael Somos, Jan 15 2018 *)
    ck[y_]:=With[{w=Count[y,1]},If[w==0,If[y=={},0,Max@@y],Count[y,?(#>w&)]-w]];Table[Length[Select[IntegerPartitions[n],ck[#]>=0&]],{n,0,30}] (* _Gus Wiseman, Mar 30 2021 *)
    ici[q_]:=And@@Table[q[[i]]>q[[i+2]],{i,Length[q]-2}];
    Table[Length[Select[Join@@Permutations/@Select[IntegerPartitions[n], EvenQ@*Length],ici]],{n,0,15}] (* Gus Wiseman, Mar 30 2021 *)
  • PARI
    {a(n) = if( n<0, 0, polcoeff( sum(k=0, (sqrtint(1 + 8*n) -1)\2, (-1)^k * x^((k+k^2)/2)) / eta( x + x * O(x^n)), n))}; /* Michael Somos, Jul 28 2003 */

Formula

a(n) = (A000041(n) + A064410(n)) / 2, n>1. - Michael Somos, Jul 28 2003
G.f.: (Sum_{k>=0} (-1)^k * x^(k(k+1)/2)) / (Product_{k>0} 1-x^k). - Michael Somos, Jul 28 2003
G.f.: Sum_{i>=0} x^(i*(i+1)) / (Product_{j=1..i} 1-x^j )^2. - Jon Perry, Jul 18 2004
a(n) ~ exp(Pi*sqrt(2*n/3)) / (8*n*sqrt(3)). - Vaclav Kotesovec, Sep 26 2016
G.f.: (Sum_{i>=0} x^i / (Product_{j=1..i} 1-x^j)^2 ) * (Product_{k>0} 1-x^k). - Li Han, May 23 2020
a(n) = A000041(n) - A001522(n). - Gus Wiseman, Mar 30 2021
a(n) = A064410(n) + A001522(n). - Gus Wiseman, May 21 2022

A114088 Triangle read by rows: T(n,k) is number of partitions of n whose tail below its Durfee square has k parts (n >= 1; 0 <= k <= n-1).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 2, 1, 1, 1, 3, 3, 2, 1, 1, 1, 3, 4, 3, 2, 1, 1, 1, 4, 5, 5, 3, 2, 1, 1, 1, 5, 6, 6, 5, 3, 2, 1, 1, 1, 6, 8, 8, 7, 5, 3, 2, 1, 1, 1, 7, 10, 10, 9, 7, 5, 3, 2, 1, 1, 1, 9, 13, 13, 12, 10, 7, 5, 3, 2, 1, 1, 1, 10, 16, 17, 15, 13, 10, 7, 5, 3, 2, 1, 1, 1, 12, 20, 22, 20, 17
Offset: 1

Views

Author

Emeric Deutsch, Feb 12 2006

Keywords

Comments

From Gus Wiseman, May 21 2022: (Start)
Also the number of integer partitions of n with k parts below the diagonal. For example, the partition (3,2,2,1) has two parts (at positions 3 and 4) below the diagonal (1,2,3,4). Row n = 8 counts the following partitions:
8 71 611 5111 41111 311111 2111111 11111111
44 332 2222 22211 221111
53 422 3221 32111
62 431 3311
521 4211
Indices of parts below the diagonal are also called strong nonexcedances.
(End)

Examples

			T(7,2)=3 because we have [5,1,1], [3,2,1,1] and [2,2,2,1] (the bottom tails are [1,1], [1,1] and [2,1], respectively).
Triangle starts:
  1;
  1, 1;
  1, 1, 1;
  2, 1, 1, 1;
  2, 2, 1, 1, 1;
  3, 3, 2, 1, 1, 1;
  3, 4, 3, 2, 1, 1, 1;
		

References

  • G. E. Andrews, The Theory of Partitions, Addison-Wesley, 1976 (pp. 27-28).
  • G. E. Andrews and K. Eriksson, Integer Partitions, Cambridge Univ. Press, 2004 (pp. 75-78).

Crossrefs

Row sums: A000041.
Column k = 0: A003114.
Weak opposite: A115994.
Permutations: A173018, weak A123125.
Ordered: A352521, rank stat A352514, weak A352522.
Opposite ordered: A352524, first col A008930, rank stat A352516.
Weak opposite ordered: A352525, first col A177510, rank stat A352517.
Weak: A353315.
Opposite: A353318.
A000700 counts self-conjugate partitions, ranked by A088902.
A115720 counts partitions by Durfee square, rank stat A257990.
A352490 gives the (strong) nonexcedance set of A122111, counted by A000701.

Programs

  • Maple
    g:=sum(z^(k^2)/product((1-z^j)*(1-t*z^j),j=1..k),k=1..20): gserz:=simplify(series(g,z=0,30)): for n from 1 to 14 do P[n]:=coeff(gserz,z^n) od: for n from 1 to 14 do seq(coeff(t*P[n],t^j),j=1..n) od; # yields sequence in triangular form
  • Mathematica
    subdiags[y_]:=Length[Select[Range[Length[y]],#>y[[#]]&]];
    Table[Length[Select[IntegerPartitions[n],subdiags[#]==k&]],{n,1,15},{k,0,n-1}] (* Gus Wiseman, May 21 2022 *)
  • PARI
    T_qt(max_row) = {my(N=max_row+1, q='q+O('q^N), h = sum(k=1,N, q^(k^2)/prod(j=1,k, (1-q^j)*(1-t*q^j))) ); for(i=1, N-1, print(Vecrev(polcoef(h, i))))}
    T_qt(10) \\ John Tyler Rascoe, Oct 24 2024

Formula

G.f. = Sum_{k>=1} q^(k^2) / Product_{j=1..k} (1 - q^j)*(1 - t*q^j).
Sum_{k=0..n-1} k*T(n,k) = A114089(n).

A046682 Number of cycle types of conjugacy classes of all even permutations of n elements.

Original entry on oeis.org

1, 1, 1, 2, 3, 4, 6, 8, 12, 16, 22, 29, 40, 52, 69, 90, 118, 151, 195, 248, 317, 400, 505, 632, 793, 985, 1224, 1512, 1867, 2291, 2811, 3431, 4186, 5084, 6168, 7456, 9005, 10836, 13026, 15613, 18692, 22316, 26613, 31659, 37619, 44601, 52815, 62416, 73680, 86809, 102162
Offset: 0

Views

Author

Keywords

Comments

Also number of partitions of n with even number of even parts. There is no restriction on the odd parts.
a(n) = u(n) + v(n), n >= 2, of the Osima reference, p. 383.
Also number of partitions of n with largest part congruent to n modulo 2: a(2*n) = A027187(2*n), a(2*n-1) = A027193(2*n-1); a(n) = A000041(n) - A000701(n). - Reinhard Zumkeller, Apr 22 2006
Equivalently, number of partitions of n with number of parts having the same parity as n. - Olivier Gérard, Apr 04 2012
Also number of distinct free Young diagrams (Ferrers graphs with n nodes). Free Young diagrams are distinct when none is a rigid transformation (translation, rotation, reflection or glide reflection) of another. - Jani Melik, May 08 2016
Let the cycle type of an even permutation be represented by the partition A=(O1,O2,...,Oi,E1,E2,...,E2j), where the Os are parts with odd length and the Es are parts with even lengths, and where j may be zero, using Reinhard Zumkeller's observation that the partition associated with a cycle type of an even permutation has an even number of even parts. The set of even cycle types enumerated here can be considered a monoid under a binary operation *: Let A be as above and B=(o1,o2,...,ok,e1,e2,...,e2m). A*B is the partition (O1o1,O1o2,...,O1ok,O1e1,...,O1e2m,O2o1,...,O2e2m,...,Oio1,...,Oie2m,E1o1,...,E1e2m,...,E2je2m). This product has 2im+2jk+4jm even parts, so it represents the cycle type of an even permutation. - Richard Locke Peterson, Aug 20 2018
From Gus Wiseman, Mar 31 2022: (Start)
Also the number of integer partitions of n with Heinz number greater than or equal to that of their conjugate, where the Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). These partitions are ranked by A352488. The complement is counted by A000701. For example, the a(n) partitions for n = 1...7 are:
(1) (11) (21) (22) (221) (222) (331)
(111) (211) (311) (321) (2221)
(1111) (2111) (2211) (3211)
(11111) (3111) (4111)
(21111) (22111)
(111111) (31111)
(211111)
(1111111)
Also the number of integer partitions of n with Heinz number less than or equal to their conjugate, ranked by A352489. For example, the a(n) partitions for n = 1...7 are:
(1) (2) (3) (4) (5) (6) (7)
(21) (22) (32) (33) (43)
(31) (41) (42) (52)
(311) (51) (61)
(321) (322)
(411) (421)
(511)
(4111)
(End)

Examples

			1 + x + x^2 + 2*x^3 + 3*x^4 + 4*x^5 + 6*x^6 + 8*x^7 + 12*x^8 + 16*x^9 + ...
a(3)=2 since cycle types of even permutations of 3 elements is (.)(.)(.), (...).
a(4)=3 since cycle types of even permutations of 4 elements is (.)(.)(.)(.), (...)(.), (..)(..).
a(5)=4 (free Young diagrams):
  XXXXX XXXX. XXX.. XXX..
  ..... X.... XX... X....
  ..... ..... ..... X....
  ..... ..... ..... .....
  ..... ..... ..... .....
		

Crossrefs

For the number of conjugacy classes of the alternating group A_n, n>=2, see A000702.
Cf. A118301.
A000041 counts integer partitions.
A000700 counts self-conjugate partitions, ranked by A088902.
A330644 counts non-self-conjugate partitions, ranked by A352486.
Heinz number (rank) and partition:
- A122111 = rank of conjugate.
- A296150 = parts of partition, conjugate A321649.
- A352487 = rank less than conjugate, counted by A000701.
- A352488 = rank greater than or equal to conjugate, counted by A046682.
- A352489 = rank less than or equal to conjugate, counted by A046682.
- A352490 = rank greater than conjugate, counted by A000701.
- A352491 = rank minus conjugate.

Programs

  • Maple
    seq(add((-1)^(n-k)*combinat:-numbpart(n,k),k=0..n),n=0..48); # Peter Luschny, Aug 03 2015
  • Mathematica
    max = 48; f[q_] := Sum[(-q^2)^n^2, {n, 0, max}]/Product[1-q^n, {n, 1, max}]; CoefficientList[ Series[f[q], {q, 0, max}], q] (* Jean-François Alcover, Oct 18 2011, after g.f. *)
    conj[y_]:=If[Length[y]==0,y,Table[Length[Select[y,#>=k&]],{k,1,Max[y]}]];
    Table[Length[Select[IntegerPartitions[n],Times@@Prime/@#>=Times@@Prime/@conj[#]&]],{n,0,15}] (* Gus Wiseman, Mar 31 2022 *)
  • PARI
    list(lim)=my(q='q);Vec(sum(n=0,sqrt(lim),(-q^2)^(n^2))/prod(n=1,lim,1-q^n)+O(q^(lim\1+1))) \\ Charles R Greathouse IV, Oct 18 2011
    
  • PARI
    {a(n) = if( n<0, 0, (numbpart(n) + polcoeff( 1 / prod( k=1, n, 1 + (-x)^k, 1 + x * O(x^n)), n)) / 2)} /* Michael Somos, Jul 24 2012 */

Formula

G.f.: Sum_{n>=0} (-q^2)^(n^2) / Product_{m>=1} (1-q^m ) = ( 1/Product_{m>=1} (1-q^m) + Product_{m>=1} (1+q^(2*m-1) ) ) / 2. - Mamuka Jibladze, Sep 07 2003
a(n) = (A000041(n) + A000700(n)) / 2.
a(n) = A000041(n) - A000701(n). - Gus Wiseman, Mar 31 2022

A352523 Number of integer compositions of n with exactly k nonfixed points (parts not on the diagonal).

Original entry on oeis.org

1, 1, 0, 0, 2, 0, 1, 1, 2, 0, 0, 4, 2, 2, 0, 0, 5, 5, 4, 2, 0, 1, 3, 12, 8, 6, 2, 0, 0, 7, 14, 19, 14, 8, 2, 0, 0, 8, 21, 33, 32, 22, 10, 2, 0, 0, 9, 30, 54, 63, 54, 32, 12, 2, 0, 1, 6, 47, 80, 116, 116, 86, 44, 14, 2, 0, 0, 11, 53, 129, 194, 229, 202, 130, 58, 16, 2, 0
Offset: 0

Views

Author

Gus Wiseman, Mar 26 2022

Keywords

Comments

A nonfixed point in a composition c is an index i such that c_i != i.

Examples

			Triangle begins:
   1
   1   0
   0   2   0
   1   1   2   0
   0   4   2   2   0
   0   5   5   4   2   0
   1   3  12   8   6   2   0
   0   7  14  19  14   8   2   0
   0   8  21  33  32  22  10   2   0
   0   9  30  54  63  54  32  12   2   0
   1   6  47  80 116 116  86  44  14   2   0
   ...
For example, row n = 6 counts the following compositions (empty column indicated by dot):
  (123)  (6)   (24)    (231)    (2112)   (21111)    .
         (15)  (33)    (312)    (2121)   (111111)
         (42)  (51)    (411)    (3111)
               (114)   (1113)   (11112)
               (132)   (1122)   (11121)
               (141)   (1311)   (11211)
               (213)   (2211)
               (222)   (12111)
               (321)
               (1131)
               (1212)
               (1221)
		

Crossrefs

Column k = 0 is A010054.
Row sums are A011782.
The version for permutations is A098825.
The corresponding rank statistic is A352513.
Column k = 1 is A352520.
A238349 and A238350 count comps by fixed points, first col A238351, rank stat A352512.
A352486 gives the nonfixed points of A122111, counted by A330644.
A352521 counts comps by strong nonexcedances, first A219282, stat A352514.
A352522 counts comps by weak nonexcedances, first col A238874, stat A352515.
A352524 counts comps by strong excedances, first col A008930, stat A352516.
A352525 counts comps by weak excedances, first col A177510, stat A352517.

Programs

  • Maple
    b:= proc(n, i) option remember; expand(`if`(n=0, 1,
          add(`if`(i=j, 1, x)*b(n-j, i+1), j=1..n)))
        end:
    T:= n-> (p-> seq(coeff(p, x, i), i=0..n))(b(n, 1)):
    seq(T(n), n=0..12);  # Alois P. Heinz, Mar 19 2025
  • Mathematica
    pnq[y_]:=Length[Select[Range[Length[y]],#!=y[[#]]&]];
    Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],pnq[#]==k&]],{n,0,9},{k,0,n}]
  • PARI
    T_xy(max_row) = {my(N=max_row+1, x='x+O('x^N), h= sum(i=0, N, prod(j=1, i, y*(x/(1-x)-x^j)+x^j))); vector(N, n, my(r=Vecrev(polcoeff(h, n-1))); if(n<2, r, concat(r,[0])))}
    T_xy(10) \\ John Tyler Rascoe, Mar 21 2025

Formula

G.f.: Sum_{i>=0} Product_{j=1..i} y*(x/(1-x) - x^j) + x^j. - John Tyler Rascoe, Mar 19 2025

A352486 Heinz numbers of non-self-conjugate integer partitions.

Original entry on oeis.org

3, 4, 5, 7, 8, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 21, 22, 23, 24, 25, 26, 27, 28, 29, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73
Offset: 1

Views

Author

Gus Wiseman, Mar 20 2022

Keywords

Comments

The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). This gives a bijective correspondence between positive integers and integer partitions. The sequence lists all Heinz numbers of partitions whose Heinz number is different from that of their conjugate.

Examples

			The terms together with their prime indices begin:
   3: (2)
   4: (1,1)
   5: (3)
   7: (4)
   8: (1,1,1)
  10: (3,1)
  11: (5)
  12: (2,1,1)
  13: (6)
  14: (4,1)
  15: (3,2)
  16: (1,1,1,1)
  17: (7)
  18: (2,2,1)
For example, the self-conjugate partition (4,3,3,1) has Heinz number 350, so 350 is not in the sequence.
		

Crossrefs

The complement is A088902, counted by A000700.
These partitions are counted by A330644.
These are the positions of nonzero terms in A352491.
A000041 counts integer partitions, strict A000009.
A098825 counts permutations by unfixed points.
A238349 counts compositions by fixed points, rank statistic A352512.
A325039 counts partitions w/ same product as conjugate, ranked by A325040.
A352523 counts compositions by unfixed points, rank statistic A352513.
Heinz number (rank) and partition:
- A003963 = product of partition, conjugate A329382
- A008480 = number of permutations of partition, conjugate A321648.
- A056239 = sum of partition
- A122111 = rank of conjugate partition
- A296150 = parts of partition, reverse A112798, conjugate A321649
- A352487 = less than conjugate, counted by A000701
- A352488 = greater than or equal to conjugate, counted by A046682
- A352489 = less than or equal to conjugate, counted by A046682
- A352490 = greater than conjugate, counted by A000701

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    conj[y_]:=If[Length[y0]==0,y,Table[Length[Select[y,#>=k&]],{k,1,Max[y]}]];
    Select[Range[100],#!=Times@@Prime/@conj[primeMS[#]]&]

Formula

a(n) != A122111(a(n)).

A188674 Stack polyominoes with square core.

Original entry on oeis.org

1, 1, 0, 0, 1, 2, 3, 4, 5, 7, 9, 13, 17, 24, 31, 42, 54, 71, 90, 117, 147, 188, 236, 298, 371, 466, 576, 716, 882, 1088, 1331, 1633, 1987, 2422, 2935, 3557, 4290, 5177, 6216, 7465, 8932, 10682, 12731, 15169, 18016, 21387, 25321, 29955, 35353, 41696, 49063, 57689, 67698, 79375, 92896, 108633, 126817, 147922, 172272
Offset: 0

Views

Author

Emanuele Munarini, Apr 08 2011

Keywords

Comments

a(n) is the number of stack polyominoes of area n with square core.
The core of stack is the set of all maximal columns.
The core is a square when the number of columns is equal to their height.
Equivalently, a(n) is the number of unimodal compositions of n, where the number of the parts of maximum value equal the maximum value itself. For instance, for n = 10, we have the following stacks:
(1,3,3,3), (3,3,3,1), (1,1,1,1,1,1,2,2), (1,1,1,1,1,2,2,1), (1,1,1,1,2,2,1,1), (1,1,1,2,2,1,1,1), (1,1,2,2,1,1,1,1), (1,2,2,1,1,1,1,1), (2,2,1,1,1,1,1,1).
From Gus Wiseman, Apr 06 2019 and May 21 2022: (Start)
Also the number of integer partitions of n with final part in their inner lining partition equal to 1, where the k-th part of the inner lining partition of a partition is the number of squares in its Young diagram that are k diagonal steps from the lower-right boundary. For example, the a(4) = 1 through a(10) = 9 partitions are:
(22) (32) (42) (52) (62) (72) (82)
(221) (321) (421) (521) (333) (433)
(2211) (3211) (4211) (621) (721)
(22111) (32111) (5211) (3331)
(221111) (42111) (6211)
(321111) (52111)
(2211111) (421111)
(3211111)
(22111111)
Also partitions that have a fixed point and a conjugate fixed point, ranked by A353317. The strict case is A352829. For example, the a(0) = 0 through a(9) = 7 partitions are:
() . . (21) (31) (41) (51) (61) (71)
(211) (311) (411) (511) (332)
(2111) (3111) (4111) (611)
(21111) (31111) (5111)
(211111) (41111)
(311111)
(2111111)
Also partitions of n + 1 without a fixed point or conjugate fixed point.
(End)

Crossrefs

Cf. A001523 (stacks).
Positive crank: A001522, ranked by A352874.
Zero crank: A064410, ranked by A342192.
Nonnegative crank: A064428, ranked by A352873.
Fixed point but no conjugate fixed point: A118199, ranked by A353316.
A000041 counts partitions, strict A000009.
A002467 counts permutations with a fixed point, complement A000166.
A115720/A115994 count partitions by Durfee square, rank statistic A257990.
A238352 counts reversed partitions by fixed points, rank statistic A352822.
A238394 counts reversed partitions without a fixed point, ranked by A352830.
A238395 counts reversed partitions with a fixed point, ranked by A352872.
A352833 counts partitions by fixed points.

Programs

  • Mathematica
    a[n_]:=CoefficientList[Series[1+Sum[x^((k+1)^2)/Product[(1-x^i)^2,{i,1,k}],{k,0,n}],{x,0,n}],x]
    (* second program *)
    pml[ptn_]:=If[ptn=={},{},FixedPointList[If[#=={},{},DeleteCases[Rest[#]-1,0]]&,ptn][[-3]]];
    Table[Length[Select[IntegerPartitions[n],pml[#]=={1}&]],{n,0,30}] (* Gus Wiseman, Apr 06 2019 *)

Formula

G.f.: 1 + sum(k>=0, x^((k+1)^2)/((1-x)^2*(1-x^2)^2*...*(1-x^k)^2)).

A352512 Number of fixed points in the n-th composition in standard order.

Original entry on oeis.org

0, 1, 0, 1, 0, 0, 2, 1, 0, 0, 1, 0, 1, 2, 1, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 1, 2, 2, 2, 1, 1, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 3, 2, 2, 2, 1, 2, 1, 1, 1, 1, 1, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 2, 1, 1
Offset: 0

Views

Author

Gus Wiseman, Mar 26 2022

Keywords

Comments

The k-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions. See also A000120, A059893, A070939, A114994, A225620.
A fixed point of composition c is an index i such that c_i = i.

Examples

			The 169th composition in standard order is (2,2,3,1), with fixed points {2,3}, so a(169) = 2.
		

Crossrefs

The version counting permutations is A008290, unfixed A098825.
The triangular version is A238349, first column A238351.
Unfixed points are counted by A352513, triangle A352523, first A352520.
A011782 counts compositions.
A088902 gives the fixed points of A122111, counted by A000700.
A352521 counts comps by strong nonexcedances, first A219282, stat A352514.
A352522 counts comps by weak nonexcedances, first col A238874, stat A352515.
A352524 counts comps by strong excedances, first col A008930, stat A352516.
A352525 counts comps by weak excedances, first col A177510, stat A352517.

Programs

  • Mathematica
    stc[n_]:=Differences[Prepend[Join@@ Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
    pq[y_]:=Length[Select[Range[Length[y]],#==y[[#]]&]];
    Table[pq[stc[n]],{n,0,100}]

Formula

A000120(n) = A352512(n) + A352513(n).
Showing 1-10 of 24 results. Next