A061579
Reverse one number (0), then two numbers (2,1), then three (5,4,3), then four (9,8,7,6), etc.
Original entry on oeis.org
0, 2, 1, 5, 4, 3, 9, 8, 7, 6, 14, 13, 12, 11, 10, 20, 19, 18, 17, 16, 15, 27, 26, 25, 24, 23, 22, 21, 35, 34, 33, 32, 31, 30, 29, 28, 44, 43, 42, 41, 40, 39, 38, 37, 36, 54, 53, 52, 51, 50, 49, 48, 47, 46, 45, 65, 64, 63, 62, 61, 60, 59, 58, 57, 56, 55, 77, 76, 75, 74, 73, 72, 71, 70, 69, 68, 67, 66
Offset: 0
Read as a triangle, the sequence is:
0
2 1
5 4 3
9 8 7 6
14 13 12 11 10
(...)
As an infinite square matrix (cf. the "table" link, 2nd paragraph) it reads:
0 2 5 9 14 20 ...
1 4 8 13 19 22 ...
3 7 12 18 23 30 ...
6 11 17 24 31 39 ...
(...)
-
T:= (n,k)-> n*(n+3)/2-k:
seq(seq(T(n,k), k=0..n), n=0..12); # Alois P. Heinz, Feb 10 2023
-
Module[{nn=20},Reverse/@TakeList[Range[0,(nn(nn+1))/2],Range[nn]]]// Flatten (* Requires Mathematica version 11 or later *) (* Harvey P. Dale, Jul 06 2018 *)
-
A061579_row(n)=vector(n+=1, j, n*(n+1)\2-j)
A061579_upto(n)=concat([A061579_row(r)|r<-[0..sqrtint(2*n)]]) \\ yields approximately n terms: actual number differs by less than +- sqrt(n). - M. F. Hasler, Nov 09 2021
-
from math import isqrt
def A061579(n): return (r:=isqrt((n<<3)+1)-1>>1)*(r+2)-n # Chai Wah Wu, Feb 10 2023
A126890
Triangle read by rows: T(n,k) = n*(n+2*k+1)/2, 0 <= k <= n.
Original entry on oeis.org
0, 1, 2, 3, 5, 7, 6, 9, 12, 15, 10, 14, 18, 22, 26, 15, 20, 25, 30, 35, 40, 21, 27, 33, 39, 45, 51, 57, 28, 35, 42, 49, 56, 63, 70, 77, 36, 44, 52, 60, 68, 76, 84, 92, 100, 45, 54, 63, 72, 81, 90, 99, 108, 117, 126, 55, 65, 75, 85, 95, 105, 115, 125, 135, 145, 155, 66, 77, 88
Offset: 0
From _Philippe Deléham_, Oct 03 2011: (Start)
Triangle begins:
0;
1, 2;
3, 5, 7;
6, 9, 12, 15;
10, 14, 18, 22, 26;
15, 20, 25, 30, 35, 40;
21, 27, 33, 39, 45, 51, 57;
28, 35, 42, 49, 56, 63, 70, 77; (End)
- Léonard Euler, Introduction à l'analyse infinitésimale, tome premier, ACL-Editions, Paris, 1987, p. 353-354.
- Reinhard Zumkeller, Rows n = 0..125 of triangle, flattened
- Émile Fourrey, Les nombres abstraits, Récreations arithmétiques, 1899 and later, Vuibert, Paris, page 86-87. Triangle without right diagonal.
- Adrien-Marie Legendre, Théorie des nombres, tome 2, quatrième partie, p.131, troisième édition, Paris, 1830.
-
a126890 n k = a126890_tabl !! n !! k
a126890_row n = a126890_tabl !! n
a126890_tabl = map fst $ iterate
(\(xs@(x:_), i) -> (zipWith (+) ((x-i):xs) [2*i+1 ..], i+1)) ([0], 0)
-- Reinhard Zumkeller, Nov 10 2013
-
Flatten[Table[(n(n+2k+1))/2,{n,0,20},{k,0,n}]] (* Harvey P. Dale, Jun 21 2013 *)
A185787
Sum of first k numbers in column k of the natural number array A000027; by antidiagonals.
Original entry on oeis.org
1, 7, 25, 62, 125, 221, 357, 540, 777, 1075, 1441, 1882, 2405, 3017, 3725, 4536, 5457, 6495, 7657, 8950, 10381, 11957, 13685, 15572, 17625, 19851, 22257, 24850, 27637, 30625, 33821, 37232, 40865, 44727, 48825, 53166, 57757, 62605, 67717, 73100, 78761, 84707, 90945, 97482, 104325, 111481, 118957, 126760, 134897, 143375
Offset: 1
-
[n*(7*n^2-6*n+5)/6: n in [1..50]]; // Vincenzo Librandi, Jul 04 2012
-
f[n_,k_]:=n+(n+k-2)(n+k-1)/2;
s[k_]:=Sum[f[n,k],{n,1,k}];
Factor[s[k]]
Table[s[k],{k,1,70}] (* A185787 *)
CoefficientList[Series[(3*x^2+3*x+1)/(1-x)^4,{x,0,50}],x] (* Vincenzo Librandi, Jul 04 2012 *)
A111774
Numbers that can be written as a sum of at least three consecutive positive integers.
Original entry on oeis.org
6, 9, 10, 12, 14, 15, 18, 20, 21, 22, 24, 25, 26, 27, 28, 30, 33, 34, 35, 36, 38, 39, 40, 42, 44, 45, 46, 48, 49, 50, 51, 52, 54, 55, 56, 57, 58, 60, 62, 63, 65, 66, 68, 69, 70, 72, 74, 75, 76, 77, 78, 80, 81, 82, 84, 85, 86, 87, 88, 90, 91, 92, 93, 94, 95, 96, 98, 99, 100, 102
Offset: 1
a(1)=6 because 6 is the first number that can be written as a sum of three consecutive positive integers: 6 = 1+2+3.
From _Bob Selcoe_, Feb 23 2014: (Start)
Let the top row of an array be A000217(n). Let the diagonals (reading down and left) be A000217(n)-A000217(1), A000217(n)-A000217(2), A000217(n)-A000217(3)..., A000217(n)-A000217(n-3). This is A049777 read as a square array, starting with the third column. The array begins as follows:
6 10 15 21 28 36 45 55 66
9 14 20 27 35 44 54 65
12 18 25 33 42 52 63
15 22 30 39 49 60
18 26 35 45 56
21 30 40 51
24 34 45
27 38
30
This is (x*(x+1)-y*(y+1))/2 for nonnegative integers x,y with x-y >= 3, because it is equivalent to 1+2+3/+4/+5/...+x/-0/-1/-2/-3/-4/-5/...-(x+3)/ for all possible strings of consecutive integers, which represents every possible way to sum three or more consecutive positive integers. So for example, 4+5+6+7 = 1+2+3+4+5+6+7-1-2-3 = 22, which is (x*(x+1)-y*(y+1))/2 when x=7, y=3. Notice that values can appear more than once in the array because some numbers can be represented as sums of more than one string of three or more consecutive positive integers. For example, 30 = (x*(x+1)-y*(y+1))/2 when (a) x=11, y=8: 9+10+11; (b) x=9, y=5: 6+7+8+9; and (c) x=8, y=3: 4+5+6+7+8. By definition, x-y is the number of integers in the string. (End)
- Paul Halmos, "Problems for Mathematicians, Young and Old", Dolciani Mathematical Expositions, 1991, Solution to problem 3G p. 179.
-
ispoweroftwo := proc(n) local a, t; t := 1; while (n > t) do t := 2*t end do; if (n = t) then a := true else a := false end if; return a; end proc; f:= proc(n) if (not isprime(n)) and (not ispoweroftwo(n)) then return n end if; end proc; seq(f(i),i = 1..150);
-
max=6!;lst={};Do[z=n+(n+1);Do[z+=(n+x);If[z>max,Break[]];AppendTo[lst,z],{x,2,max}],{n,max}];Union[lst] (* Vladimir Joseph Stephan Orlovsky, Mar 06 2010 *)
-
isok(n) = !(n == 1) && !isprime(n) && !(isprimepower(n, &p) && (p == 2)); \\ Michel Marcus, Jul 02 2019
-
from sympy import primepi
def A111774(n):
def f(x): return int(n+(0 if x<=1 else primepi(x)-1)+x.bit_length())
m, k = n, f(n)
while m != k: m, k = k, f(k)
return m # Chai Wah Wu, Sep 19 2024
A046691
a(n) = (n^2 + 5*n - 2)/2.
Original entry on oeis.org
-1, 2, 6, 11, 17, 24, 32, 41, 51, 62, 74, 87, 101, 116, 132, 149, 167, 186, 206, 227, 249, 272, 296, 321, 347, 374, 402, 431, 461, 492, 524, 557, 591, 626, 662, 699, 737, 776, 816, 857, 899, 942, 986, 1031, 1077, 1124, 1172, 1221, 1271, 1322
Offset: 0
- G. C. Greubel, Table of n, a(n) for n = 0..5000
- Milan Janjic, Two Enumerative Functions
- P. Di Francesco, O. Golinelli and E. Guitter, Meander, folding and arch statistics, arXiv:hep-th/9506030, 1995.
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
-
[Binomial(n+3,2) -4: n in [0..50]]; // G. C. Greubel, Jul 31 2022
-
seq(binomial(n+3, 2)-4, n=0..49); # Zerinvary Lajos, Jan 13 2007
-
Table[(n^2 +5n -2)/2, {n, 0, 50}] (* Bruno Berselli, Dec 17 2014 *)
-
a(n)=(n^2+5*n-2)/2 \\ Charles R Greathouse IV, Oct 07 2015
-
[(n^2 +5*n -2)/2 for n in (0..50)] # G. C. Greubel, Jul 31 2022
A056115
a(n) = n*(n+11)/2.
Original entry on oeis.org
0, 6, 13, 21, 30, 40, 51, 63, 76, 90, 105, 121, 138, 156, 175, 195, 216, 238, 261, 285, 310, 336, 363, 391, 420, 450, 481, 513, 546, 580, 615, 651, 688, 726, 765, 805, 846, 888, 931, 975, 1020, 1066, 1113, 1161, 1210, 1260, 1311, 1363, 1416, 1470, 1525
Offset: 0
- A. H. Beiler, Recreations in the Theory of Numbers, Dover, N.Y., 1964, pp. 194-196.
Third column of Pascal (1, 6) triangle
A096956.
A139570
a(n) = 2*n*(n+3).
Original entry on oeis.org
0, 8, 20, 36, 56, 80, 108, 140, 176, 216, 260, 308, 360, 416, 476, 540, 608, 680, 756, 836, 920, 1008, 1100, 1196, 1296, 1400, 1508, 1620, 1736, 1856, 1980, 2108, 2240, 2376, 2516, 2660, 2808, 2960, 3116, 3276, 3440, 3608, 3780, 3956, 4136, 4320, 4508, 4700, 4896
Offset: 0
A227819
Number T(n,k) of n-node rooted identity trees of height k; triangle T(n,k), n>=1, 0<=k<=n-1, read by rows.
Original entry on oeis.org
1, 0, 1, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 2, 1, 0, 0, 0, 2, 3, 1, 0, 0, 0, 2, 5, 4, 1, 0, 0, 0, 2, 8, 9, 5, 1, 0, 0, 0, 1, 12, 18, 14, 6, 1, 0, 0, 0, 1, 17, 34, 33, 20, 7, 1, 0, 0, 0, 1, 23, 61, 72, 54, 27, 8, 1, 0, 0, 0, 0, 32, 108, 149, 132, 82, 35, 9, 1, 0, 0, 0, 0, 41, 187, 301, 303, 221, 118, 44, 10, 1
Offset: 1
: T(6,4) = 3 : T(11,3) = 1 :
: o o o : o :
: / \ | | : /( )\ :
: o o o o : o o o o :
: | / \ | : /| | | :
: o o o o : o o o o :
: | | / \ : | | :
: o o o o : o o :
: | | | : :
: o o o : :
Triangle T(n,k) begins:
1;
0, 1;
0, 0, 1;
0, 0, 1, 1;
0, 0, 0, 2, 1;
0, 0, 0, 2, 3, 1;
0, 0, 0, 2, 5, 4, 1;
0, 0, 0, 2, 8, 9, 5, 1;
0, 0, 0, 1, 12, 18, 14, 6, 1;
0, 0, 0, 1, 17, 34, 33, 20, 7, 1;
0, 0, 0, 1, 23, 61, 72, 54, 27, 8, 1;
0, 0, 0, 0, 32, 108, 149, 132, 82, 35, 9, 1;
Largest n with T(n,k)>0 is
A038093(k).
-
b:= proc(n, i, k) option remember; `if`(n=0, 1, `if`(i<1 or k<1, 0,
add(binomial(b((i-1)$2, k-1), j)*b(n-i*j, i-1, k), j=0..n/i)))
end:
T:= (n, k)-> b((n-1)$2, k) -`if`(k=0, 0, b((n-1)$2, k-1)):
seq(seq(T(n, k), k=0..n-1), n=1..15);
-
Drop[Transpose[Map[PadRight[#,15]&,Table[f[n_]:=Nest[ CoefficientList[ Series[ Product[(1+x^i)^#[[i]],{i,1,Length[#]}],{x,0,15}],x]&,{1},n]; f[m]-PadRight[f[m-1],Length[f[m]]],{m,1,15}]]],1]//Grid (* Geoffrey Critzer, Aug 01 2013 *)
A006503
a(n) = n*(n+1)*(n+8)/6.
Original entry on oeis.org
0, 3, 10, 22, 40, 65, 98, 140, 192, 255, 330, 418, 520, 637, 770, 920, 1088, 1275, 1482, 1710, 1960, 2233, 2530, 2852, 3200, 3575, 3978, 4410, 4872, 5365, 5890, 6448, 7040, 7667, 8330, 9030, 9768, 10545, 11362, 12220, 13120, 14063, 15050, 16082, 17160, 18285
Offset: 0
- A. H. Beiler, Recreations in the Theory of Numbers, Dover, N.Y., 1964, pp. 194-196.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- G. C. Greubel, Table of n, a(n) for n = 0..5000
- Margaret Bayer, Mark Denker, Marija Jelić Milutinović, Rowan Rowlands, Sheila Sundaram, and Lei Xue, Topology of Cut Complexes of Graphs, arXiv:2304.13675 [math.CO], 2023.
- G. E. Bergum and V. E. Hoggatt, Jr., Numerator polynomial coefficient array for the convolved Fibonacci sequence, Fib. Quart., 14 (1976), 43-44. (Annotated scanned copy)
- G. E. Bergum and V. E. Hoggatt, Jr., Numerator polynomial coefficient array for the convolved Fibonacci sequence, Fib. Quart., 14 (1976), 43-48.
- Milan Janjić, Hessenberg Matrices and Integer Sequences, J. Int. Seq. 13 (2010) # 10.7.8, section 3.
- P. Moree, Convoluted convolved Fibonacci numbers, arXiv:math/0311205 [math.CO], 2003.
- P. Moree, Convoluted Convolved Fibonacci Numbers, Journal of Integer Sequences, Vol. 7 (2004), Article 04.2.2.
- Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
- Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992
- Index entries for linear recurrences with constant coefficients, signature (4,-6,4,-1).
a(n) =
A095660(n+2, 3): fourth column of (1, 3)-Pascal triangle.
-
A006503:=-(-3+2*z)/(z-1)**4; # [Simon Plouffe in his 1992 dissertation.]
-
Clear["Global`*"] a[n_] := n(n + 1)(n + 8)/3! Do[Print[n, " ", a[n]], {n, 1, 25}] (* Sergio Falcon, May 22 2008 *)
Table[n(n+1)(n+8)/6,{n,0,50}] (* or *) LinearRecurrence[{4,-6,4,-1},{0,3,10,22},50] (* Harvey P. Dale, Jan 27 2016 *)
-
x='x+O('x^50); concat([0], Vec(x*(3-2*x)/(1-x)^4)) \\ G. C. Greubel, May 11 2017
A056121
a(n) = n*(n + 15)/2.
Original entry on oeis.org
0, 8, 17, 27, 38, 50, 63, 77, 92, 108, 125, 143, 162, 182, 203, 225, 248, 272, 297, 323, 350, 378, 407, 437, 468, 500, 533, 567, 602, 638, 675, 713, 752, 792, 833, 875, 918, 962, 1007, 1053, 1100, 1148, 1197, 1247, 1298, 1350, 1403, 1457, 1512, 1568, 1625
Offset: 0
-
List([0..60], n-> n*(n+15)/2 ); # G. C. Greubel, Jan 18 2020
-
[n*(n+15)/2: n in [0..60]]; // G. C. Greubel, Jan 18 2020
-
a:=n->n*(n+15)/2: seq(a(n),n=0..60);
-
Table[n*(n + 15)/2, {n, 0, 100}] (* Paolo Xausa, Aug 02 2024 *)
-
a(n)=n*(n+15)/2 \\ Charles R Greathouse IV, Sep 24 2015
-
[n*(n+15)/2 for n in (0..60)] # G. C. Greubel, Jan 18 2020
Comments