A070071
a(n) = n*B(n), where B(n) are the Bell numbers, A000110.
Original entry on oeis.org
0, 1, 4, 15, 60, 260, 1218, 6139, 33120, 190323, 1159750, 7464270, 50563164, 359377681, 2672590508, 20744378175, 167682274352, 1408702786668, 12277382510862, 110822101896083, 1034483164707440, 9972266139291771, 99147746245841106, 1015496134666939958
Offset: 0
-
[n*Bell(n): n in [0..25]]; // Vincenzo Librandi, Mar 15 2014
-
with(combinat): a:=n->sum(numbcomb (n,0)*bell(n), j=1..n): seq(a(n), n=0..21); # Zerinvary Lajos, Apr 25 2007
with(combinat): a:=n->sum(bell(n), j=1..n): seq(a(n), n=0..21); # Zerinvary Lajos, Apr 25 2007
a:=n->sum(sum(Stirling2(n, k), j=1..n), k=1..n): seq(a(n), n=0..21); # Zerinvary Lajos, Jun 28 2007
-
a[n_] := n!*Coefficient[Series[x E^(E^x+x-1), {x, 0, n}], x, n]
Table[Sum[BellB[n, 1], {i, 1, n}], {n, 0, 21}] (* Zerinvary Lajos, Jul 16 2009 *)
Table[n*BellB[n], {n, 0, 20}] (* Vaclav Kotesovec, Mar 13 2014 *)
-
a(n)=local(t); if(n<0,0,t=exp(x+O(x^n)); n!*polcoeff(x*t*exp(t-1),n))
-
[bell_number(n)*n for n in range(22) ] # Zerinvary Lajos, Mar 14 2009
A137341
a(n) = n! * A000110(n) where A000110 is the sequence of Bell numbers.
Original entry on oeis.org
1, 1, 4, 30, 360, 6240, 146160, 4420080, 166924800, 7673823360, 420850080000, 27086342976000, 2018319704755200, 172142484203289600, 16642276683198566400, 1808459441303074560000, 219273812138054209536000, 29473992420094651613184000
Offset: 0
David W. K. Yeung, Eric L. H. Ku and Patricia M. Yeung (wkyeung(AT)hkbu.edu.hk), Apr 08 2008
a(0) = 1;
a(1) = C(0,0)*a(0)*1!/0! = 1;
a(2) = C(1,1)*a(1)*2!/1! + C(1,0)*a(0)*2!/0! = 4;
a(3) = C(2,2)*a(2)*3!/2! + C(2,1)*a(1)*3!/1! + C(2,0)*a(0)*3!/0! = 30;
a(4) = C(3,3)*a(3)*4!/3! + C(3,2)*a(2)*4!/2! + C(3,1)*a(1)*4!/1! + C(3,0)*a(0)*4!/0! = 360.
From _Olivier Gérard_, Aug 12 2016: (Start)
Illustration as family of lists of sublists extending set partitions.
In this interpretation the lowercase letters allow us to distinguish between integers introduced at each iteration (or generation).
Construction from the family of size n to family of size n+1 is done by insertion.
Insertion is only possible at the end of a sublist or to create a new singleton sublist at the end of the list.
:
1: {{1a}}*
4: {{1a},{1b}} {{1a,1b}} {{1a,2b}}* {{1a},{2b}}*
30: {{1a,1c},{1b}} {{1a},{1b,1c}} {{1a},{1b},{1c}}
....{{1a,2c},{1b}} {{1a},{1b,2c}} {{1a},{1b},{2c}}
....{{1a,3c},{1b}} {{1a},{1b,3c}} {{1a},{1b},{3c}}
....{{1a,1b,1c}} {{1a,1b},{1c}}
....{{1a,1b,2c}} {{1a,1b},{2c}}
....{{1a,1b,3c}} {{1a,1b},{3c}}
....{{1a,2b,1c}} {{1a,2b,2c}} {{1a,2b,3c}}*
....{{1a,2b},{1c}} {{1a,2b},{2c}} {{1a,2b},{3c}}*
....{{1a,1c},{2b}} {{1a},{2b,1c}} {{1a},{2b},{1c}}
....{{1a,2c},{2b}} {{1a},{2b,2c}} {{1a},{2b},{2c}}
....{{1a,3c},{2b}}* {{1a},{2b,3c}}* {{1a},{2b},{3c}}*
:
The lists of sublists marked with * correspond to classical set partitions counted by Bell numbers A000110. (End)
- W. Lucas and R. Thrall, N-person games in partition function form, Naval Research Logistics Quarterly X, pp. 281-298, 1963.
- Vincenzo Librandi, Table of n, a(n) for n = 0..200
- E. T. Bell, Exponential numbers, Amer. Math. Monthly, 41 (1934), 411-419.
- Abel Lacabanne, Framization of Schur-Weyl duality and Yokonuma-Hecke type algebras, arXiv:2312.14796 [math.RT], 2023. See p. 34.
- David W. K. Yeung, Eric L. H. Ku and Patricia M. Yeung, A Recursive Sequence for the Number of Positioned Partition, International Journal of Algebra, Vol. 2 (2008), No. 4, pp. 181-185.
-
b:= proc(n) option remember; `if`(n=0, 1,
add(b(n-j)*binomial(n-1, j-1), j=1..n))
end:
a:= n-> b(n)*n!:
seq(a(n), n=0..23); # Alois P. Heinz, Aug 30 2019
-
Table[n!*BellB[n],{n,0,20}] (* Vaclav Kotesovec, Mar 13 2014 *)
-
Vec(serlaplace(serlaplace(exp(exp(O(x^20)+x)-1)))) \\ Joerg Arndt, Mar 13 2009
-
from sympy import bell, factorial
[factorial(n) * bell(n) for n in range(101)] # Indranil Ghosh, Mar 20 2017
-
[factorial(m) * bell_number(m) for m in range(17)] # Zerinvary Lajos, Jul 06 2008
Original entry on oeis.org
0, 0, 1, 3, 12, 50, 225, 1092, 5684, 31572, 186300, 1163085, 7654350, 52928460, 383437327, 2902665885, 22907918640, 188082362120, 1603461748491, 14169892736484, 129594593170210, 1224875863061970, 11948280552370932, 120142063487658003, 1243853543811461148
Offset: 0
-
[seq(binomial(n,2)*combinat[bell](n-2),n=0..50)];
-
Join[{0,0},Table[Binomial[n,2]BellB[n-2],{n,2,30}]] (* Harvey P. Dale, May 06 2014 *)
-
from itertools import count, accumulate, islice
def A105479_gen(): # generator of terms
yield from (0,0,1)
blist, b, c = (1,), 1, 1
for n in count(2):
c += n
blist = list(accumulate(blist, initial=(b:=blist[-1])))
yield b*c
A105479_list = list(islice(A105479_gen(),20)) # Chai Wah Wu, Jun 22 2022
A320956
a(n) = A000110(n) * A000111(n). The exponential limit of sec + tan. Row sums of A373428.
Original entry on oeis.org
1, 1, 2, 10, 75, 832, 12383, 238544, 5733900, 167822592, 5859172975, 240072637440, 11388362495705, 618357843791872, 38057876106154882, 2632817442236631040, 203225803724876875315, 17390464322078045896704, 1640312648221489789841119, 169667967895669459925991424
Offset: 0
Illustration of the convergence:
[0] 1, 0, 0, 0, 0, 0, 0, 0, 0, ... A000007
[1] 1, 1, 1, 2, 5, 16, 61, 272, 1385, ... A000111
[2] 1, 1, 2, 8, 40, 256, 1952, 17408, 177280, ... A000828
[3] 1, 1, 2, 10, 70, 656, 7442, 99280, 1515190, ... A320957
[4] 1, 1, 2, 10, 75, 816, 11407, 194480, 3871075, ... A321394
[5] 1, 1, 2, 10, 75, 832, 12322, 232560, 5325325, ...
[6] 1, 1, 2, 10, 75, 832, 12383, 238272, 5693735, ...
[7] 1, 1, 2, 10, 75, 832, 12383, 238544, 5732515, ...
[8] 1, 1, 2, 10, 75, 832, 12383, 238544, 5733900, ...
-
ExpLim := proc(len, f) local kernel, sf, egf:
sf := proc(n) option remember; `if`(n <= 1, 1 - n, (n-1)*(sf(n-1) + sf(n-2))) end:
kernel := proc(n, k) option remember; binomial(n, k)*sf(k) end:
egf := n -> add(kernel(n, k)*f(x*(n-k)), k=0..n):
series(egf(len), x, len+2): seq(coeff(%, x, k)*k!/len!, k=0..len) end:
ExpLim(19, sec + tan);
# Alternative:
explim := (len, f) -> seq(combinat:-bell(n)*((D@@n)(f))(0), n=0..len):
explim(19, sec + tan);
# Or:
a := n -> A000110(n)*A000111(n): seq(a(n), n = 0..19); # Peter Luschny, Jun 07 2024
-
m = 20; CoefficientList[Sec[x] + Tan[x] + O[x]^m, x] * Range[0, m-1]! *
BellB[Range[0, m-1]] (* Jean-François Alcover, Jun 19 2019 *)
A126348
Limit of reversed rows of triangle A126347, in which row sums equal Bell numbers (A000110).
Original entry on oeis.org
1, 1, 2, 4, 7, 12, 20, 33, 53, 84, 131, 202, 308, 465, 695, 1030, 1514, 2209, 3201, 4609, 6596, 9386, 13284, 18705, 26211, 36561, 50776, 70226, 96742, 132765, 181540, 247369, 335940, 454756, 613689, 825698, 1107755, 1482038, 1977465, 2631664
Offset: 0
a(5) = 12: The colored compositions (defined in A253830) of 5 whose color partitions have distinct parts are
5(c1), 5(c2), 5(c3), 5(c4), 5(c5),
1(c1) + 4(c2), 1(c1) + 4(c3), 1(c1) + 4(c4),
3(c1) + 2(c2),
2(c1) + 3(c2), 2(c1) + 3(c3), 2(c2) + 3(c3). - _Peter Bala_, Jan 20 2015
-
nmax = 50; CoefficientList[Series[Product[(1 - x + x^k)/(1 - x), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Sep 16 2019 *)
-
{B(n,q)=if(n==0,1,sum(k=0,n-1,binomial(n-1,k)*B(k,q)*q^k))}
{a(n)=Vec(B(n+1,'q)+O('q^(n*(n-1)/2+1)))[n*(n-1)/2+1]}
-
{a(n) = local(t); if( n<0, 0, t = 1; polcoeff( sum(k=1, (sqrtint(8*n + 1) - 1)\2, t = t * x^k / (1 - x) / (1 - x^k) + x * O(x^n), 1), n))} /* Michael Somos, Aug 17 2008 */
A242171
Least prime divisor of B(n) which does not divide any B(k) with k < n, or 1 if such a primitive prime divisor of B(n) does not exist, where B(n) is the n-th Bell number given by A000110.
Original entry on oeis.org
1, 2, 5, 3, 13, 7, 877, 23, 19, 4639, 22619, 37, 27644437, 1800937, 251, 241, 255755771, 19463, 271, 61, 24709, 17, 89, 123419, 367, 101, 157, 67, 75979, 107, 11, 179167, 5694673, 111509, 980424262253, 193, 44101, 5399, 6353, 3221
Offset: 1
-
a(4) = 3 since B(4) = 3*5 with 3 dividing none of B(1) = 1, B(2) = 2 and B(3) = 5.
-
b[n_]:=BellB[n]
f[n_]:=FactorInteger[b[n]]
p[n_]:=Table[Part[Part[f[n],k],1],{k,1,Length[f[n]]}]
Do[If[b[n]<2,Goto[cc]];Do[Do[If[Mod[b[i],Part[p[n],k]]==0,Goto[aa]],{i,1,n-1}];Print[n," ",Part[p[n],k]];Goto[bb];Label[aa];Continue,{k,1,Length[p[n]]}];Label[cc];Print[n," ",1];Label[bb];Continue,{n,1,40}]
-
# Python 3.2 or higher required.
from itertools import accumulate
from sympy import primefactors
A242171_list, bell, blist, b = [1], [1,1], [1], 1
for _ in range(20):
blist = list(accumulate([b]+blist))
b = blist[-1]
fs = primefactors(b)
for p in fs:
if all([n % p for n in bell]):
A242171_list.append(p)
break
else:
A242171_list.append(1)
bell.append(b) # Chai Wah Wu, Sep 19 2014
A051130
Indices of prime Bell numbers A000110.
Original entry on oeis.org
2, 3, 7, 13, 42, 55, 2841
Offset: 1
The Bell numbers Bell(2)=2, Bell(3)=5, Bell(7)=877 etc. are primes.
-
[n: n in [0..1000]|IsPrime(Bell(n))]; // Vincenzo Librandi, Jan 30 2016
-
Reap[For[n = 1, n <= 3000, n++, If[PrimeQ[BellB[n]], Print[n]; Sow[n]]]][[2, 1]] (* Jean-François Alcover, Jun 05 2012 *)
Select[Range[2900],PrimeQ[BellB[#]]&] (* Harvey P. Dale, Nov 08 2012 *)
A095149
Triangle read by rows: Aitken's array (A011971) but with a leading diagonal before it given by the Bell numbers (A000110), 1, 1, 2, 5, 15, 52, ...
Original entry on oeis.org
1, 1, 1, 2, 1, 2, 5, 2, 3, 5, 15, 5, 7, 10, 15, 52, 15, 20, 27, 37, 52, 203, 52, 67, 87, 114, 151, 203, 877, 203, 255, 322, 409, 523, 674, 877, 4140, 877, 1080, 1335, 1657, 2066, 2589, 3263, 4140, 21147, 4140, 5017, 6097, 7432, 9089, 11155, 13744, 17007, 21147
Offset: 0
Triangle starts:
1;
1, 1;
2, 1, 2;
5, 2, 3, 5;
15, 5, 7, 10, 15;
52, 15, 20, 27, 37, 52;
From _Gus Wiseman_, Aug 11 2020: (Start)
Row n = 3 counts the following set partitions (described in Emeric Deutsch's comment above):
{1}{234} {12}{34} {123}{4} {1234}
{1}{2}{34} {12}{3}{4} {13}{24} {124}{3}
{1}{23}{4} {13}{2}{4} {134}{2}
{1}{24}{3} {14}{23}
{1}{2}{3}{4} {14}{2}{3}
(End)
- Alois P. Heinz, Rows n = 0..150, flattened (first 51 rows from Chai Wah Wu)
- Andrew M. Baxter and Lara K. Pudwell, Enumeration schemes for dashed patterns, arXiv:1108.2642 [math.CO], 2011.
- Anders Claesson, Generalized pattern avoidance, Europ. J. Combin., 22 7 (2001), 961-971. See Proposition 3.
- A. Bernini, M. Bouvel and L. Ferrari, Some statistics on permutations avoiding generalized patterns, PU.M.A. Vol. 18 (2007), No. 3-4, pp. 223-237 (see transposed array p. 227).
-
with(combinat): T:=proc(n,k) if k=1 then bell(n-1) elif k=2 and n>=2 then bell(n-2) elif k<=n then add(binomial(k-2,i)*bell(n-2-i),i=0..k-2) else 0 fi end: matrix(8,8,T): for n from 1 to 11 do seq(T(n,k),k=1..n) od; # yields sequence in triangular form
Q[1]:=t*s: for n from 2 to 11 do Q[n]:=expand(t^n*subs(t=1,Q[n-1])+s*diff(Q[n-1],s)-Q[n-1]+s*Q[n-1]) od: for n from 1 to 11 do P[n]:=sort(subs(s=1,Q[n])) od: for n from 1 to 11 do seq(coeff(P[n],t,k),k=1..n) od; # yields sequence in triangular form - Emeric Deutsch, Oct 29 2006
A011971 := proc(n,k) option remember ; if k = 0 then if n=0 then 1; else A011971(n-1,n-1) ; fi ; else A011971(n,k-1)+A011971(n-1,k-1) ; fi ; end: A000110 := proc(n) option remember; if n<=1 then 1 ; else add( binomial(n-1,i)*A000110(n-1-i),i=0..n-1) ; fi ; end: A095149 := proc(n,k) option remember ; if k = 0 then A000110(n) ; else A011971(n-1,k-1) ; fi ; end: for n from 0 to 11 do for k from 0 to n do printf("%d, ",A095149(n,k)) ; od ; od ; # R. J. Mathar, Feb 05 2007
# alternative Maple program:
b:= proc(n, m, k) option remember; `if`(n=0, 1, add(
b(n-1, max(j, m), max(k-1, -1)), j=`if`(k=0, m+1, 1..m+1)))
end:
T:= (n, k)-> b(n, 0, n-k):
seq(seq(T(n, k), k=0..n), n=0..10); # Alois P. Heinz, Dec 20 2018
-
nmax = 10; t[n_, 1] = t[n_, n_] = BellB[n-1]; t[n_, 2] = BellB[n-2]; t[n_, k_] /; n >= k >= 3 := t[n, k] = t[n, k-1] + t[n-1, k-1]; Flatten[ Table[ t[n, k], {n, 1, nmax}, {k, 1, n}]] (* Jean-François Alcover, Nov 15 2011, from formula with offset 1 *)
-
# requires Python 3.2 or higher.
from itertools import accumulate
A095149_list, blist = [1,1,1], [1]
for _ in range(2*10**2):
b = blist[-1]
blist = list(accumulate([b]+blist))
A095149_list += [blist[-1]]+ blist
# Chai Wah Wu, Sep 02 2014, updated Chai Wah Wu, Sep 20 2014
A101053
a(n) = n! * Sum_{k=0..n} Bell(k)/k! (cf. A000110).
Original entry on oeis.org
1, 2, 6, 23, 107, 587, 3725, 26952, 219756, 1998951, 20105485, 221838905, 2666280457, 34689290378, 485840964614, 7288997427755, 116634438986227, 1982868327635663, 35692311974248093, 678159760252918824, 13563246929216611852, 284828660383365005643
Offset: 0
-
m:=30; R:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!( Exp(Exp(x)-1)/(1-x) )); [Factorial(n-1)*b[n]: n in [1..m]]; // G. C. Greubel, Mar 31 2019
-
with(combinat): a:=n->add(bell(j)*n!/j!,j=0..n): seq(a(n),n=0..20); # Zerinvary Lajos, Mar 19 2007
-
nn = 21; Range[0, nn]! CoefficientList[Series[Exp[(Exp[x]-1)]/(1-x), {x, 0, nn}], x] (* Geoffrey Critzer, Aug 07 2015 *)
-
egf(s)=my(v=Vec(s),i); while(polcoeff(s,i)==0,i++); i--; vector(i+#v,j,polcoeff(s,j+i)*(j+i)!)
egf(exp(exp(x)-1)/(1-x)) \\ Charles R Greathouse IV, Aug 07 2015
-
my(x='x+O('x^30)); Vec(serlaplace( exp(exp(x)-1)/(1-x) )) \\ G. C. Greubel, Mar 31 2019
-
a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=sum(j=1, i, ((j-1)!+1)*binomial(i-1, j-1)*v[i-j+1])); v; \\ Seiichi Manyama, Jul 14 2022
-
m = 30; T = taylor(exp(exp(x)-1)/(1-x), x, 0, m); [factorial(n)*T.coefficient(x, n) for n in (0..m)] # G. C. Greubel, Mar 31 2019
A126347
Triangle, read by rows, where row n lists coefficients of q in B(n,q) that satisfies: B(n,q) = Sum_{k=0..n-1} C(n-1,k)*B(k,q)*q^k for n>0, with B(0,q) = 1; row sums equal the Bell numbers: B(n,1) = A000110(n).
Original entry on oeis.org
1, 1, 1, 1, 1, 2, 1, 1, 1, 3, 3, 4, 2, 1, 1, 1, 4, 6, 10, 9, 7, 7, 4, 2, 1, 1, 1, 5, 10, 20, 25, 26, 29, 26, 20, 14, 12, 7, 4, 2, 1, 1, 1, 6, 15, 35, 55, 71, 90, 101, 100, 89, 82, 68, 53, 38, 26, 20, 12, 7, 4, 2, 1, 1, 1, 7, 21, 56, 105, 161, 231, 302, 356, 379, 392, 384, 358, 314, 262
Offset: 0
Number of terms in row n is: n*(n-1)/2 + 1.
Row functions B(n,q) begin:
B(0,q) = 1;
B(1,q) = 1;
B(2,q) = 1 + q;
B(3,q) = 1 + 2*q + q^2 + q^3;
B(4,q) = 1 + 3*q + 3*q^2 + 4*q^3 + 2*q^4 + q^5 + q^6.
Triangle begins:
1;
1;
1, 1;
1, 2, 1, 1;
1, 3, 3, 4, 2, 1, 1;
1, 4, 6, 10, 9, 7, 7, 4, 2, 1, 1;
1, 5, 10, 20, 25, 26, 29, 26, 20, 14, 12, 7, 4, 2, 1, 1;
1, 6, 15, 35, 55, 71, 90, 101, 100, 89, 82, 68, 53, 38, 26, 20, 12, 7, 4, 2, 1, 1;
...
-
b:= proc(n, m, t) option remember; `if`(n=0, x^t,
add(b(n-1, max(m, j), t+j) , j=1..m+1))
end:
T:= n-> (p-> seq(coeff(p, x, i), i=n..degree(p)))(b(n, 0$2)):
seq(T(n), n=0..8); # Alois P. Heinz, Aug 02 2021
-
B[0, ] = 1; B[n, q_] := B[n, q] = Sum[Binomial[n-1, k] B[k, q] q^k, {k, 0, n-1}] // Expand; Table[CoefficientList[B[n, q], q], {n, 0, 8}] // Flatten (* Jean-François Alcover, Nov 08 2016 *)
-
{B(n,q)=if(n==0,1,sum(k=0,n-1,binomial(n-1,k)*B(k,q)*q^k))}
row(n)={Vec(B(n, 'q)+O('q^(n*(n-1)/2+1)))}
-
/* Alternative formula for the n-th q-Bell number (row n): */ {B(n,q)=local(inf=100);round((0^n + sum(k=1, inf,((q^k-1)/(q-1))^n/prod(i=1,k,(q^i-1)/(q-1)))) / prod(k=1, inf,1 + (q-1)/q^k))}
Comments