cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 288 results. Next

A002104 Logarithmic numbers.

Original entry on oeis.org

0, 1, 3, 8, 24, 89, 415, 2372, 16072, 125673, 1112083, 10976184, 119481296, 1421542641, 18348340127, 255323504932, 3809950977008, 60683990530225, 1027542662934915, 18430998766219336, 349096664728623336, 6962409983976703337, 145841989688186383359, 3201192743180799343844
Offset: 0

Views

Author

Keywords

Comments

Prime p divides a(p+1). - Alexander Adamchuk, Jul 05 2006
Also number of lists of elements from {1,..,n} with (1st element) = (smallest element), where a list means an ordered subset (cf. A000262), see also Haskell program. - Reinhard Zumkeller, Oct 26 2010
a(n+1) = p_n(-1) where p_n(x) is the unique degree-n polynomial such that p_n(k) = A133942(k) for k = 0, 1, ..., n. - Michael Somos, Apr 30 2012
a(n) = A006231(n) + n. - Geoffrey Critzer, Oct 04 2012

Examples

			From _Reinhard Zumkeller_, Oct 26 2010: (Start)
a(3) = #{[1], [1,2], [1,2,3], [1,3], [1,3,2], [2], [2,3], [3]} = 8;
a(4) = #{[1], [1,2], [1,2,3], [1,2,3,4], [1,2,4], [1,2,4,3], [1,3], [1,3,2], [1,3,2,4], [1,3,4], [1,3,4,2], [1,4], [1,4,2], [1,4,2,3], [1,4,3], [1,4,3,2], [2], [2,3], [2,3,4], [2,4], [2,4,3], [3], [3,4], [4]} = 24. (End)
G.f. = x + 3*x^2 + 8*x^3 + 24*x^4 + 89*x^5 + 415*x^6 + 2372*x^7 + ...
		

References

  • J. M. Gandhi, On logarithmic numbers, Math. Student, 31 (1963), 73-83.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Haskell
    import Data.List (subsequences, permutations)
    a002104 = length . filter (\xs -> head xs == minimum xs) .
                       tail . choices . enumFromTo 1
       where choices = concat . map permutations . subsequences
    -- Reinhard Zumkeller, Feb 21 2012, Oct 25 2010
    
  • Maple
    a := proc(n) option remember; ifelse(n < 2, n, n*a(n-1) - (n-1)*a(n-2) + 1) end:
    seq(a(n), n = 0..23); # Peter Luschny, Dec 05 2023
  • Mathematica
    Table[Sum[Sum[m!/k!,{k,0,m}],{m,0,n-1}],{n,1,30}] (* Alexander Adamchuk, Jul 05 2006 *)
    a[n_] = n*(HypergeometricPFQ[{1, 1, 1-n}, {2}, -1]); Table[a[n], {n, 1, 20}] (* Jean-François Alcover, Mar 29 2011 *)
  • PARI
    x='x+O('x^99); concat([0], Vec(serlaplace(-log(1-x)*exp(x)))) \\ Altug Alkan, Dec 17 2017
    
  • PARI
    {a(n) = sum(k=0, n-1, binomial(n, k) * (n-k-1)!)}; /* Michael Somos, May 08 2019 */

Formula

E.g.f.: -log(1 - x) * exp(x).
a(n) = Sum_{k=1..n} Sum_{i=0..n-k} (n-k)!/i!.
a(n) = Sum_{k=1..n} n(n-1)...(n-k+1)/k = A006231(n) + n - Avi Peretz (njk(AT)netvision.net.il), Mar 24 2001
a(n+1) - a(n) = A000522(n).
a(n) = sum{k=0..n-1, binomial(n, k)*(n-k-1)!}, row sums of A111492. - Paul Barry, Aug 26 2004
a(n) = Sum[Sum[m!/k!,{k,0,m}],{m,0,n-1}]. a(n) = Sum[A000522(m),{m,0,n-1}]. - Alexander Adamchuk, Jul 05 2006
For n > 1, the arithmetic mean of the first n terms is a(n-1) + 1. - Franklin T. Adams-Watters, May 20 2010
a(n) = n * 3F1((1,1,1-n); (2); -1). - Jean-François Alcover, Mar 29 2011
Conjecture: a(n) +(-n-1)*a(n-1) +2*(n-1)*a(n-2) +(-n+2)*a(n-3)=0. - R. J. Mathar, Dec 02 2012
From Emanuele Munarini, Dec 16 2017: (Start)
The generating series A(x) = -exp(x)*log(1-x) satisfies the differential equations:
(1-x)*A'(x) - (1-x)*A(x) = exp(x)
(1-x)*A''(x) - (3-2*x)*A'(x) + (2-x)*A(x) = 0.
From the first one, we have the recurrence reported below by R. R. Forberg. From the second one, we have the recurrence conjectured above. (End)
G.f.: conjecture: T(0)*x/(1-2*x)/(1-x), where T(k) = 1 - x^2*(k+1)^2/(x^2*(k+1)^2 - (1 - 2*x*(k+1))*(1 - 2*x*(k+2))/T(k+1) ); (continued fraction). - Sergei N. Gladkovskii, Nov 18 2013
a(n) ~ exp(1)*(n-1)!. - Vaclav Kotesovec, Mar 10 2014
a(n) = n*a(n-1) - (n-1)*a(n-2) + 1, a(0) = 0, a(1) = 1. - Richard R. Forberg, Dec 15 2014
a(n) = A007526(n) + A006231(n+1) - A030297(n). - Anton Zakharov, Sep 05 2016
0 = +a(n)*(+a(n+1) -4*a(n+2) +4*a(n+3) -a(n+4)) +a(n+1)*(+2*a(n+2) -5*a(n+3) +2*a(n+4)) +a(n+2)*(+2*a(n+2) -a(n+3) -a(n+4)) +a(n+3)*(+a(n+3)) for all n>=0. - Michael Somos, May 08 2019
From Peter Bala, Sep 12 2022: (Start)
For n, m >= 0, a(n) - a(n + m) == ( a(1) - a(m) ) (mod m). The sequence {mod(a(1) - a(m+1), m): m >= 1} begins [0, 1, 1, 0, 1, 5, 1, 0, 3, 7, 1, 4, 1, 9, 8, 0, 1, 15, 1, 4, ...].
Conjectures:
1) for n, m >= 0, k >= 2, a(n + m*2^k) - a(n) is divisible by 2^k.
2) for n >= 0, a(n + m*p^k) - a(n) + m*p^(k-1) is divisible by p^k for all positive integers m and k, and for all odd primes p. The particular case n = m = k = 1 is stated in the Comments section by Adamchuk. (End)
a(n) = Integral_{t=0..oo} ((t + 1)^n - 1)/(t*e^t) dt. - Velin Yanev, Apr 13 2024
a(n) = Gamma(n)*(e - ((-1)^n)*Gamma(1 - n, -1)) + hypergeom([1, 1], [2, n + 2], 1)/(n + 1) - polygamma(n) - 1/n + i*Pi for n > 0, where polygamma is the digamma function and the bivariate gamma function is the upper incomplete gamma function. - Velin Yanev, Apr 13 2024

Extensions

More terms from Larry Reeves (larryr(AT)acm.org), Mar 27 2001

A134264 Coefficients T(j, k) of a partition transform for Lagrange compositional inversion of a function or generating series in terms of the coefficients of the power series for its reciprocal. Enumeration of noncrossing partitions and primitive parking functions. T(n,k) for n >= 1 and 1 <= k <= A000041(n-1), an irregular triangle read by rows.

Original entry on oeis.org

1, 1, 1, 1, 1, 3, 1, 1, 4, 2, 6, 1, 1, 5, 5, 10, 10, 10, 1, 1, 6, 6, 3, 15, 30, 5, 20, 30, 15, 1, 1, 7, 7, 7, 21, 42, 21, 21, 35, 105, 35, 35, 70, 21, 1, 1, 8, 8, 8, 4, 28, 56, 56, 28, 28, 56, 168, 84, 168, 14, 70, 280, 140, 56, 140, 28, 1, 1, 9, 9, 9, 9, 36, 72
Offset: 1

Views

Author

Tom Copeland, Jan 14 2008

Keywords

Comments

Coefficients are listed in Abramowitz and Stegun order (A036036).
Given an invertible function f(t) analytic about t=0 (or a formal power series) with f(0)=0 and Df(0) not equal to 0, form h(t) = t / f(t) and let h_n denote the coefficient of t^n in h(t).
Lagrange inversion gives the compositional inverse about t=0 as g(t) = Sum_{j>=1} ( t^j * (1/j) * Sum_{permutations s with s(1) + s(2) + ... + s(j) = j - 1} h_s(1) * h_s(2) * ... * h_s(j) ) = t * T(1,1) * h_0 + Sum_{j>=2} ( t^j * Sum_{k=1..(# of partitions for j-1)} T(j,k) * H(j-1,k ; h_0,h_1,...) ), where H(j-1,k ; h_0,h_1,...) is the k-th partition for h_1 through h_(j-1) corresponding to n=j-1 on page 831 of Abramowitz and Stegun (ordered as in A&S) with (h_0)^(j-m)=(h_0)^(n+1-m) appended to each partition subsumed under n and m of A&S.
Denoting h_n by (n') for brevity, to 8th order in t,
g(t) = t * (0')
+ t^2 * [ (0') (1') ]
+ t^3 * [ (0')^2 (2') + (0') (1')^2 ]
+ t^4 * [ (0')^3 (3') + 3 (0')^2 (1') (2') + (0') (1')^3 ]
+ t^5 * [ (0')^4 (4') + 4 (0')^3 (1') (3') + 2 (0')^3 (2')^2 + 6 (0')^2 (1')^2 (2') + (0') (1')^4 ]
+ t^6 * [ (0')^5 (5') + 5 (0')^4 (1') (4') + 5 (0')^4 (2') (3') + 10 (0')^3 (1')^2 (3') + 10 (0')^3 (1') (2')^2 + 10 (0')^2 (1')^3 (2') + (0') (1')^5 ]
+ t^7 * [ (0')^6 (6') + 6 (0')^5 (1') (5') + 6 (0')^5 (2') (4') + 3 (0')^5 (3')^2 + 15 (0')^4 (1')^2 (4') + 30 (0')^4 (1') (2') (3') + 5 (0')^4 (2')^3 + 20 (0')^3 (1')^3 (3') + 30 (0')^3 (1')^2 (2')^2 + 15 (0')^2 (1')^4 (2') + (0') (1')^6]
+ t^8 * [ (0')^7 (7') + 7 (0')^6 (1') (6') + 7 (0')^6 (2') (5') + 7 (0')^6 (3') (4') + 21 (0')^5 (1')^2* (5') + 42 (0')^5 (1') (2') (4') + 21 (0')^5 (1') (3')^2 + 21 (0')^5 (2')^2 (3') + 35 (0')^4 (1')^3 (4') + 105 (0)^4 (1')^2 (2') (3') + 35 (0')^4 (1') (2')^3 + 35 (0')^3 (1')^4 (3') + 70 (0')^3 (1')^3 (2')^2 + 21 (0')^2 (1')^5 (2') + (0') (1')^7 ]
+ ..., where from the formula section, for example, T(8,1',2',...,7') = 7! / ((8 - (1'+ 2' + ... + 7'))! * 1'! * 2'! * ... * 7'!) are the coefficients of the integer partitions (1')^1' (2')^2' ... (7')^7' in the t^8 term.
A125181 is an extended, reordered version of the above sequence, omitting the leading 1, with alternate interpretations.
If the coefficients of partitions with the same exponent for h_0 are summed within rows, A001263 is obtained, omitting the leading 1.
From identification of the elements of the inversion with those on page 25 of the Ardila et al. link, the coefficients of the irregular table enumerate non-crossing partitions on [n]. - Tom Copeland, Oct 13 2014
From Tom Copeland, Oct 28-29 2014: (Start)
Operating with d/d(1') = d/d(h_1) on the n-th partition polynomial Prt(n;h_0,h_1,..,h_n) in square brackets above associated with t^(n+1) generates n * Prt(n-1;h_0,h_1,..,h_(n-1)); therefore, the polynomials are an Appell sequence of polynomials in the indeterminate h_1 when h_0=1 (a special type of Sheffer sequence).
Consequently, umbrally, [Prt(.;1,x,h_2,..) + y]^n = Prt(n;1,x+y,h_2,..); that is, Sum_{k=0..n} binomial(n,k) * Prt(k;1,x,h_2,..) * y^(n-k) = Prt(n;1,x+y,h_2,..).
Or, e^(x*z) * exp[Prt(.;1,0,h_2,..) * z] = exp[Prt(.;1,x,h_2,..) * z]. Then with x = h_1 = -(1/2) * d^2[f(t)]/dt^2 evaluated at t=0, the formal Laplace transform from z to 1/t of this expression generates g(t), the comp. inverse of f(t), when h_0 = 1 = df(t)/dt eval. at t=0.
I.e., t / (1 - t*(x + Prt(.;1,0,h_2,..))) = t / (1 - t*Prt(.;1,x,h_2,..)) = g(t), interpreted umbrally, when h_0 = 1.
(End)
Connections to and between arrays associated to the Catalan (A000108 and A007317), Riordan (A005043), Fibonacci (A000045), and Fine (A000957) numbers and to lattice paths, e.g., the Motzkin, Dyck, and Łukasiewicz, can be made explicit by considering the inverse in x of the o.g.f. of A104597(x,-t), i.e., f(x) = P(Cinv(x),t-1) = Cinv(x) / (1 + (t-1)*Cinv(x)) = x*(1-x) / (1 + (t-1)*x*(1-x)) = (x-x^2) / (1 + (t-1)*(x-x^2)), where Cinv(x) = x*(1-x) is the inverse of C(x) = (1 - sqrt(1-4*x)) / 2, a shifted o.g.f. for the Catalan numbers, and P(x,t) = x / (1+t*x) with inverse Pinv(x,t) = -P(-x,t) = x / (1-t*x). Then h(x,t) = x / f(x,t) = x * (1+(t-1)Cinv(x)) / Cinv(x) = 1 + t*x + x^2 + x^3 + ..., i.e., h_1=t and all other coefficients are 1, so the inverse of f(x,t) in x, which is explicitly in closed form finv(x,t) = C(Pinv(x,t-1)), is given by A091867, whose coefficients are sums of the refined Narayana numbers above obtained by setting h_1=(1')=t in the partition polynomials and all other coefficients to one. The group generators C(x) and P(x,t) and their inverses allow associations to be easily made between these classic number arrays. - Tom Copeland, Nov 03 2014
From Tom Copeland, Nov 10 2014: (Start)
Inverting in x with t a parameter, let F(x;t,n) = x - t*x^(n+1). Then h(x) = x / F(x;t,n) = 1 / (1-t*x^n) = 1 + t*x^n + t^2*x^(2n) + t^3*x^(3n) + ..., so h_k vanishes unless k = m*n with m an integer in which case h_k = t^m.
Finv(x;t,n) = Sum_{j>=0} {binomial((n+1)*j,j) / (n*j + 1)} * t^j * x^(n*j + 1), which gives the Catalan numbers for n=1, and the Fuss-Catalan sequences for n>1 (see A001764, n=2). [Added braces to disambiguate the formula. - N. J. A. Sloane, Oct 20 2015]
This relation reveals properties of the partitions and sums of the coefficients of the array. For n=1, h_k = t^k for all k, implying that the row sums are the Catalan numbers. For n = 2, h_k for k odd vanishes, implying that there are no blocks with only even-indexed h_k on the even-numbered rows and that only the blocks containing only even-sized bins contribute to the odd-row sums giving the Fuss-Catalan numbers for n=2. And so on, for n > 2.
These relations are reflected in any combinatorial structures enumerated by this array and the partitions, such as the noncrossing partitions depicted for a five-element set (a pentagon) in Wikipedia.
(End)
From Tom Copeland, Nov 12 2014: (Start)
An Appell sequence possesses an umbral inverse sequence (cf. A249548). The partition polynomials here, Prt(n;1,h_1,...), are an Appell sequence in the indeterminate h_1=u, so have an e.g.f. exp[Prt(.;1,u,h_2...)*t] = e^(u*t) * exp[Prt(.;1,0,h2,...)*t] with umbral inverses with an e.g.f e^(-u*t) / exp[Prt(.;1,0,h2,...)*t]. This makes contact with the formalism of A133314 (cf. also A049019 and A019538) and the signed, refined face partition polynomials of the permutahedra (or their duals), which determine the reciprocal of exp[Prt(.,0,u,h2...)*t] (cf. A249548) or exp[Prt(.;1,u,h2,...)*t], forming connections among the combinatorics of permutahedra and the noncrossing partitions, Dyck paths and trees (cf. A125181), and many other important structures isomorphic to the partitions of this entry, as well as to formal cumulants through A127671 and algebraic structures of Lie algebras. (Cf. relationship of permutahedra with the Eulerians A008292.)
(End)
From Tom Copeland, Nov 24 2014: (Start)
The n-th row multiplied by n gives the number of terms in the homogeneous symmetric monomials generated by [x(1) + x(2) + ... + x(n+1)]^n under the umbral mapping x(m)^j = h_j, for any m. E.g., [a + b + c]^2 = [a^2 + b^2 + c^2] + 2 * [a*b + a*c + b*c] is mapped to [3 * h_2] + 2 * [3 * h_1^2], and 3 * A134264(3) = 3 *(1,1)= (3,3) the number of summands in the two homogeneous polynomials in the square brackets. For n=3, [a + b + c + d]^3 = [a^3 + b^3 + ...] + 3 [a*b^2 + a*c^2 + ...] + 6 [a*b*c + a*c*d + ...] maps to [4 * h_3] + 3 [12 * h_1 * h_2] + 6 [4 * (h_1)^3], and the number of terms in the brackets is given by 4 * A134264(4) = 4 * (1,3,1) = (4,12,4).
The further reduced expression is 4 h_3 + 36 h_1 h_2 + 24 (h_1)^3 = A248120(4) with h_0 = 1. The general relation is n * A134264(n) = A248120(n) / A036038(n-1) where the arithmetic is performed on the coefficients of matching partitions in each row n.
Abramowitz and Stegun give combinatorial interpretations of A036038 and relations to other number arrays.
This can also be related to repeated umbral composition of Appell sequences and topology with the Bernoulli numbers playing a special role. See the Todd class link.
(End)
These partition polynomials are dubbed the Voiculescu polynomials on page 11 of the He and Jejjala link. - Tom Copeland, Jan 16 2015
See page 5 of the Josuat-Verges et al. reference for a refinement of these partition polynomials into a noncommutative version composed of nondecreasing parking functions. - Tom Copeland, Oct 05 2016
(Per Copeland's Oct 13 2014 comment.) The number of non-crossing set partitions whose block sizes are the parts of the n-th integer partition, where the ordering of integer partitions is first by total, then by length, then lexicographically by the reversed sequence of parts. - Gus Wiseman, Feb 15 2019
With h_0 = 1 and the other h_n replaced by suitably signed partition polynomials of A263633, the refined face partition polynomials for the associahedra of normalized A133437 with a shift in indices are obtained (cf. In the Realm of Shadows). - Tom Copeland, Sep 09 2019
Number of primitive parking functions associated to each partition of n. See Lemma 3.8 on p. 28 of Rattan. - Tom Copeland, Sep 10 2019
With h_n = n + 1, the d_k (A006013) of Table 2, p. 18, of Jong et al. are obtained, counting the n-point correlation functions in a quantum field theory. - Tom Copeland, Dec 25 2019
By inspection of the diagrams on Robert Dickau's website, one can see the relationship between the monomials of this entry and the connectivity of the line segments of the noncrossing partitions. - Tom Copeland, Dec 25 2019
Speicher has examples of the first four inversion partition polynomials on pp. 22 and 23 with his k_n equivalent to h_n = (n') here with h_0 = 1. Identifying z = t, C(z) = t/f(t) = h(t), and M(z) = f^(-1)(t)/t, then statement (3), on p. 43, of Theorem 3.26, C(z M(z)) = M(z), is equivalent to substituting f^(-1)(t) for t in t/f(t), and statement (4), M(z/C(z)) = C(z), to substituting f(t) for t in f^(-1)(t)/t. - Tom Copeland, Dec 08 2021
Given a Laurent series of the form f(z) = 1/z + h_1 + h_2 z + h_3 z^2 + ..., the compositional inverse is f^(-1)(z) = 1/z + Prt(1;1,h_1)/z^2 + Prt(2;1,h_1,h_2)/z^3 + ... = 1/z + h_1/z^2 + (h_1^2 + h_2)/z^3 + (h_1^3 + 3 h_1 h_2 + h_3)/z^4 + (h_1^4 + 6 h_1^2 h_2 + 4 h_1 h_3 + 2 h_2^2 + h_4)/z^5 + ... for which the polynomials in the numerators are the partition polynomials of this entry. For example, this formula applied to the q-expansion of Klein's j-invariant / function with coefficients A000521, related to monstrous moonshine, gives the compositional inverse with the coefficients A091406 (see He and Jejjala). - Tom Copeland, Dec 18 2021
The partition polynomials of A350499 'invert' the polynomials of this entry giving the indeterminates h_n. A multinomial formula for the coefficients of the partition polynomials of this entry, equivalent to the multinomial formula presented in the first four sentences of the formula section below, is presented in the MathOverflow question referenced in A350499. - Tom Copeland, Feb 19 2022

Examples

			1) With f(t) = t / (t-1), then h(t) = -(1-t), giving h_0 = -1, h_1 = 1 and h_n = 0 for n>1. Then g(t) = -t - t^2 - t^3 - ... = t / (t-1).
2) With f(t) = t*(1-t), then h(t) = 1 / (1-t), giving h_n = 1 for all n. The compositional inverse of this f(t) is g(t) = t*A(t) where A(t) is the o.g.f. for the Catalan numbers; therefore the sum over k of T(j,k), i.e., the row sum, is the Catalan number A000108(j-1).
3) With f(t) = (e^(-a*t)-1) / (-a), h(t) = Sum_{n>=0} Bernoulli(n) * (-a*t)^n / n! and g(t) = log(1-a*t) / (-a) = Sum_{n>=1} a^(n-1) * t^n / n. Therefore with h_n = Bernoulli(n) * (-a)^n / n!, Sum_{permutations s with s(1)+s(2)+...+s(j)=j-1} h_s(1) * h_s(2) * ... * h_s(j) = j * Sum_{k=1..(# of partitions for j-1)} T(j,k) * H(j-1,k ; h_0,h_1,...) = a^(j-1). Note, in turn, Sum_{a=1..m} a^(j-1) = (Bernoulli(j,m+1) - Bernoulli(j)) / j for the Bernoulli polynomials and numbers, for j>1.
4) With f(t,x) = t / (x-1+1/(1-t)), then h(t,x) = x-1+1/(1-t), giving (h_0)=x and (h_n)=1 for n>1. Then g(t,x) = (1-(1-x)*t-sqrt(1-2*(1+x)*t+((x-1)*t)^2)) / 2, a shifted o.g.f. in t for the Narayana polynomials in x of A001263.
5) With h(t)= o.g.f. of A075834, but with A075834(1)=2 rather than 1, which is the o.g.f. for the number of connected positroids on [n] (cf. Ardila et al., p. 25), g(t) is the o.g.f. for A000522, which is the o.g.f. for the number of positroids on [n]. (Added Oct 13 2014 by author.)
6) With f(t,x) = x / ((1-t*x)*(1-(1+t)*x)), an o.g.f. for A074909, the reverse face polynomials of the simplices, h(t,x) = (1-t*x) * (1-(1+t)*x) with h_0=1, h_1=-(1+2*t), and h_2=t*(1+t), giving as the inverse in x about 0 the o.g.f. (1+(1+2*t)*x-sqrt(1+(1+2*t)*2*x+x^2)) / (2*t*(1+t)*x) for signed A033282, the reverse face polynomials of the Stasheff polytopes, or associahedra. Cf. A248727. (Added Jan 21 2015 by author.)
7) With f(x,t) = x / ((1+x)*(1+t*x)), an o.g.f. for the polynomials (-1)^n * (1 + t + ... + t^n), h(t,x) = (1+x) * (1+t*x) with h_0=1, h_1=(1+t), and h_2=t, giving as the inverse in x about 0 the o.g.f. (1-(1+t)*x-sqrt(1-2*(1+t)*x+((t-1)*x)^2)) / (2*x*t) for the Narayana polynomials A001263. Cf. A046802. (Added Jan 24 2015 by author.)
From _Gus Wiseman_, Feb 15 2019: (Start)
Triangle begins:
   1
   1
   1   1
   1   3   1
   1   4   2   6   1
   1   5   5  10  10  10   1
   1   6   6   3  15  30   5  20  30  15   1
   1   7   7   7  21  42  21  21  35 105  35  35  70  21   1
Row 5 counts the following non-crossing set partitions:
  {{1234}}  {{1}{234}}  {{12}{34}}  {{1}{2}{34}}  {{1}{2}{3}{4}}
            {{123}{4}}  {{14}{23}}  {{1}{23}{4}}
            {{124}{3}}              {{12}{3}{4}}
            {{134}{2}}              {{1}{24}{3}}
                                    {{13}{2}{4}}
                                    {{14}{2}{3}}
(End)
		

References

  • A. Nica and R. Speicher (editors), Lectures on the Combinatorics of Free Probability, London Mathematical Society Lecture Note Series: 335, Cambridge University Press, 2006 (see in particular, Eqn. 9.14 on p. 141, enumerating noncrossing partitions).

Crossrefs

(A001263,A119900) = (reduced array, associated g(x)). See A145271 for meaning and other examples of reduced and associated.
Other orderings are A125181 and A306438.
Cf. A119900 (e.g.f. for reduced W(x) with (h_0)=t and (h_n)=1 for n>0).
Cf. A248927 and A248120, "scaled" versions of this Lagrange inversion.
Cf. A091867 and A125181, for relations to lattice paths and trees.
Cf. A249548 for use of Appell properties to generate the polynomials.
Cf. A133314, A049019, A019538, A127671, and A008292 for relations to permutahedra, Eulerians.
Cf. A006013.

Programs

  • Mathematica
    Table[Binomial[Total[y],Length[y]-1]*(Length[y]-1)!/Product[Count[y,i]!,{i,Max@@y}],{n,7},{y,Sort[Sort/@IntegerPartitions[n]]}] (* Gus Wiseman, Feb 15 2019 *)
  • PARI
    C(v)={my(n=vecsum(v), S=Set(v)); n!/((n-#v+1)!*prod(i=1, #S, my(x=S[i]); (#select(y->y==x, v))!))}
    row(n)=[C(Vec(p)) | p<-partitions(n-1)]
    { for(n=1, 7, print(row(n))) } \\ Andrew Howroyd, Feb 01 2022

Formula

For j>1, there are P(j,m;a...) = j! / [ (j-m)! (a_1)! (a_2)! ... (a_(j-1))! ] permutations of h_0 through h_(j-1) in which h_0 is repeated (j-m) times; h_1, repeated a_1 times; and so on with a_1 + a_2 + ... + a_(j-1) = m.
If, in addition, a_1 + 2 * a_2 + ... + (j-1) * a_(j-1) = j-1, then each distinct combination of these arrangements is correlated with a partition of j-1.
T(j,k) is [ P(j,m;a...) / j ] for the k-th partition of j-1 as described in the comments.
For example from g(t) above, T(5,4) = (5! / ((5-3)! * 2!)) / 5 = 6 for the 4th partition under n=5-1=4 with m=3 parts in A&S.
From Tom Copeland, Sep 30 2011: (Start)
Let W(x) = 1/(df(x)/dx)= 1/{d[x/h(x)]/dx}
= [(h_0)-1+:1/(1-h.*x):]^2 / {(h_0)-:[h.x/(1-h.x)]^2:}
= [(h_0)+(h_1)x+(h_2)x^2+...]^2 / [(h_0)-(h_2)x^2-2(h_3)x^3-3(h_4)x^4-...], where :" ": denotes umbral evaluation of the expression within the colons and h. is an umbral coefficient.
Then for the partition polynomials of A134264,
Poly[n;h_0,...,h_(n-1)]=(1/n!)(W(x)*d/dx)^n x, evaluated at x=0, and the compositional inverse of f(t) is g(t) = exp(t*W(x)*d/dx) x, evaluated at x=0. Also, dg(t)/dt = W(g(t)), and g(t) gives A001263 with (h_0)=u and (h_n)=1 for n>0 and A000108 with u=1.
(End)
From Tom Copeland, Oct 20 2011: (Start)
With exp(x* PS(.,t)) = exp(t*g(x)) = exp(x*W(y)d/dy) exp(t*y) eval. at y=0, the raising (creation) and lowering (annihilation) operators defined by R PS(n,t) = PS(n+1,t) and L PS(n,t) = n*PS(n-1,t) are
R = t*W(d/dt) = t*((h_0) + (h_1)d/dt + (h_2)(d/dt)^2 + ...)^2 / ((h_0) - (h_2)(d/dt)^2 - 2(h_3)(d/dt)^3 - 3(h_4)(d/dt)^4 + ...), and
L = (d/dt)/h(d/dt) = (d/dt) 1/((h_0) + (h_1)*d/dt + (h_2)*(d/dt)^2 + ...)
Then P(n,t) = (t^n/n!) dPS(n,z)/dz eval. at z=0 are the row polynomials of A134264. (Cf. A139605, A145271, and link therein to Mathemagical Forests for relation to planted trees on p. 13.)
(End)
Using the formalism of A263634, the raising operator for the partition polynomials of this array with h_0 = 1 begins as R = h_1 + h_2 D + h_3 D^2/2! + (h_4 - h_2^2) D^3/3! + (h_5 - 5 h_2 h_3) D^4/4! + (h_6 + 5 h_2^3 - 7 h_3^2 - 9 h_2 h_4) D^5/5! + (h_7 - 14 h_2 h_5 + 56 h_2^2 h_3) D^6/6! + ... with D = d/d(h_1). - Tom Copeland, Sep 09 2016
Let h(x) = x/f^{-1}(x) = 1/[1-(c_2*x+c_3*x^2+...)], with c_n all greater than zero. Then h_n are all greater than zero and h_0 = 1. Determine P_n(t) from exp[t*f^{-1}(x)] = exp[x*P.(t)] with f^{-1}(x) = x/h(x) expressed in terms of the h_n (cf. A133314 and A263633). Then P_n(b.) = 0 gives a recursion relation for the inversion polynomials of this entry a_n = b_n/n! in terms of the lower order inversion polynomials and P_j(b.)P_k(b.) = P_j(t)P_k(t)|{t^n = b_n} = d{j,k} >= 0 is the coefficient of x^j/j!*y^k/k! in the Taylor series expansion of the formal group law FGL(x,y) = f[f^{-1}(x)+f^{-1}(y)]. - Tom Copeland, Feb 09 2018
A raising operator for the partition polynomials with h_0 = 1 regarded as a Sheffer Appell sequence in h_1 is described in A249548. - Tom Copeland, Jul 03 2018

Extensions

Added explicit t^6, t^7, and t^8 polynomials and extended initial table to include the coefficients of t^8. - Tom Copeland, Sep 14 2016
Title modified by Tom Copeland, May 28 2018
More terms from Gus Wiseman, Feb 15 2019
Title modified by Tom Copeland, Sep 10 2019

A010844 a(n) = 2*n*a(n-1) + 1 with a(0) = 1.

Original entry on oeis.org

1, 3, 13, 79, 633, 6331, 75973, 1063623, 17017969, 306323443, 6126468861, 134782314943, 3234775558633, 84104164524459, 2354916606684853, 70647498200545591, 2260719942417458913, 76864478042193603043, 2767121209518969709549, 105150605961720848962863
Offset: 0

Views

Author

Keywords

Comments

Related to Incomplete Gamma Function at 1/2. - Michael Somos, Mar 26 1999
For positive n, a(n) is equal to 2^n times the permanent of the n X n matrix with 3/2's along the main diagonal, and 1's everywhere else. - John M. Campbell, Jul 09 2011
Number of ways to sort a spreadsheet with n columns. (A subset of columns is chosen to sort on. These columns are ordered from major to minor, and each designated as to whether to sort by ascending or descending order. For example a spreadsheet with columns A,B,C,D could be sorted by column D ascending, then by column B descending, or any of 632 other ways.) - Marc LeBrun, Dec 07 2013
a(n) is a specific instance of sequences having the form b(0) = x, b(n) = a*n*b(n-1) + k for n >= 1. (Here x = 1, a = 2, and k = 1). Sequences of this form have a closed form of b(n) = n!*a^n*x + k*Sum_{j=1..n} n!*a^(n-j)/j!. - Gary Detlefs, Mar 26 2018

Examples

			a(3) = 2*3*a(2) + 1 = 6*13 + 1 = 79.
G.f. = 1 + 3*x + 13*x^2 + 79*x^3 + 633*x^4 + 6331*x^5 + 75973*x^6 + 1063623*x^7 + ...
		

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, Tenth Printing, 1972, p. 262.

Crossrefs

Programs

  • Maple
    G:=(x,a,k,n)-> n!*a^n*x + k*sum(n!*a^(n-j)/j!,j=1..n); seq(G(1,2,1,n), n = 0..20) # Gary Detlefs, Mar 26 2018
    a := n -> 2^n*add((n!/k!)*(1/2)^k, k=0..n):
    seq(a(n), n=0..19); # Peter Luschny, Jan 06 2020
    seq(simplify(2^n*KummerU(-n, -n, 1/2)), n = 0..19); # Peter Luschny, May 10 2022
  • Mathematica
    Table[ Gamma[ n, 1/2 ]*Exp[ 1/2 ]*2^(n-1), {n, 1, 24} ]
       and/or... s=1;lst={};Do[s+=s++n;AppendTo[lst, s], {n, 1, 5!, 2}];lst (* Vladimir Joseph Stephan Orlovsky, Oct 23 2008 *)
    a[ n_] := If[ n<0, 0, Floor[ n! E^(1/2) 2^n ]] (* Michael Somos, Sep 04 2013 *)
    nxt[{n_,a_}]:={n+1,2*a(n+1)+1}; NestList[nxt,{0,1},20][[All,2]] (* Harvey P. Dale, Jan 06 2022 *)
    a[n_] := n! 2^n Hypergeometric1F1[-n, -n, 1/2];
    Table[a[n], {n, 0, 19}] (* Peter Luschny, Jul 28 2024 *)
  • PARI
    {a(n) = if( n<0, 0, n! * sum(k=0, n, 2^(n-k) / k!))} /* Michael Somos, Sep 04 2013 */

Formula

a(n) = floor(n! * e^(1/2) * 2^n) = n! * Sum_{k=0..n} 2^(n-k) / k! (i.e. binomial transform of (2n)!! = n!*2^n) = n! * (e^(1/2) * 2^n - Sum_{k >= n+1} 2^(n-k) / k!). - Michael Somos, Mar 26 1999
a(n) = A056541(n) + A000165(n). - Henry Bottomley, Jun 20 2000
E.g.f.: exp(x)/(1 - 2*x). - Vladeta Jovovic, Aug 11 2002
Sum_{n >= 1} 1/a(n) = 0.4246665348160769533082551230... - Cino Hilliard, Aug 19 2003
a(n) = Sum_{k=0..n} P(n, k)*2^k, where P(n,k) = n!/(n-k)!. - Ross La Haye, Aug 29 2005
G.f.: 1/(1 - x - 2*x/(1 - 2*x/(1 - x - 4*x/(1 - 4*x/(1 - x - 6*x/(1 - 6*x/(1 - x - 8*x/(1 - 8*x/(1 - x - 10*x/(1 - ... (continued fraction).
G.f.: 1/Q(0), where Q(k) = 1 - x*(4*k+3) - 4*x^2*(k+1)^2/Q(k+1); (continued fraction). - Sergei N. Gladkovskii, Sep 30 2013
a(n) = Sum_{k=0..n} C(n,k)*k!*2^k. - Marc LeBrun, Dec 07 2013
0 = a(n)*(2*a(n+1) - 5*a(n+2) + a(n+3)) + a(n+1)*(a(n+1) + a(n+2) - a(n+3)) + a(n+2)*a(n+2) if n > -2. - Michael Somos, Jan 02 2014
a(n) + (-2*n-1)*a(n-1) + 2*(n-1)*a(n-2) = 0. - R. J. Mathar, Jan 31 2014
a(n) = hypergeometric_U(1, n+2, 1/2)/2. - Peter Luschny, Nov 26 2014
From Peter Bala, Jan 30 2015: (Start)
a(n) = Integral_{x >= 0} (2*x + 1)^n*exp(-x) dx. (Cf. A000354.)
The e.g.f. y = exp(x)/(1 - 2*x) satisfies the differential equation (1 - 2*x)*y' = (3 - 2*x)*y. R. J. Mathar's recurrence above follows easily from this.
The sequence b(n) := 2^n*n! also satisfies R. J. Mathar's recurrence with b(0) = 1 and b(1) = 2. This leads to the continued fraction representation a(n) = 2^n*n!*( 1 + 1/(2 - 2/(5 - 4/(7 - ... - (2*n - 2)/(2*n + 1) )))) for n >= 2. Taking the limit gives the continued fraction representation exp(1/2) = 1 + 1/(2 - 2/(5 - 4/(7 - ... - (2*n - 2)/((2*n + 1) - ... )))). (End)
a(n) = 2^n*KummerU(-n, -n, 1/2). - Peter Luschny, May 10 2022
a(n) = n!*2^n*hypergeom([-n], [-n], 1/2). - Peter Luschny, Jul 28 2024

Extensions

Better description and formulas from Michael Somos

A061354 Numerator of Sum_{k=0..n} 1/k!.

Original entry on oeis.org

1, 2, 5, 8, 65, 163, 1957, 685, 109601, 98641, 9864101, 13563139, 260412269, 8463398743, 47395032961, 888656868019, 56874039553217, 7437374403113, 17403456103284421, 82666416490601, 6613313319248080001, 69439789852104840011
Offset: 0

Views

Author

Amarnath Murthy, Apr 28 2001

Keywords

Comments

p divides a(p-1) for prime p = {2, 5, 13, 37, 463, ...} which apparently coincides with A064384(n) = {2, 5, 13, 37, 463, ...} Primes p such that p divides 0!-1!+2!-3!+...+(-1)^{p-1}(p-1)!. - Alexander Adamchuk, Jun 14 2007
GCD(a(n), a(n+2)) = A124779(n) is either 1 or a prime 2, 5, 13, 37, 463, ... = A064384. - Jonathan Sondow, Jun 12 2007
For proofs of Adamchuk's and my Comments, see the link "The Taylor series for e ...". - Jonathan Sondow, Jun 18 2007

Examples

			1, 2, 5/2, 8/3, 65/24, 163/60, 1957/720, 685/252, ...
		

Crossrefs

Cf. A061355 (denominators), A093101, A064384, A064384, A124779, A129924.

Programs

  • Mathematica
    exp[n_]:=Apply[Plus,1/Range[0,n]!];Numerator[Table[exp[n],{n,0,21}]]  (* Geoffrey Critzer, May 05 2013 *)
    A061354[n_] := Numerator[Sum[1/k!, {k, 0, n}]]; Array[A061354, 22, 0] (* JungHwan Min, Nov 08 2016 *)
    Accumulate[1/Range[0,30]!]//Numerator (* Harvey P. Dale, Apr 13 2018 *)
  • PARI
    { default(realprecision, 500); e=exp(1); for (n=0, 200, a=numerator(floor(n!*e)/n!); if (n==0, a=1); write("b061354.txt", n, " ", a) ) } \\ Harry J. Smith, Jul 21 2009

Formula

a(n) = A000522(n)/A093101(n).
Numerators of floor(n!*exp(1))/n!, n>=1. Numerators of coefficients in expansion of exp(x)/(1-x). - Vladeta Jovovic, Aug 11 2002
a(n) = (1+n+n(n-1)+...+n!)/GCD(n!,1+n+n(n-1)+...+n!). - Jonathan Sondow, Aug 18 2006

A000023 Expansion of e.g.f. exp(-2*x)/(1-x).

Original entry on oeis.org

1, -1, 2, -2, 8, 8, 112, 656, 5504, 49024, 491264, 5401856, 64826368, 842734592, 11798300672, 176974477312, 2831591702528, 48137058811904, 866467058876416, 16462874118127616, 329257482363600896, 6914407129633521664, 152116956851941670912
Offset: 0

Views

Author

Keywords

Comments

A010843, A000023, A000166, A000142, A000522, A010842, A053486, A053487 are successive binomial transforms with the e.g.f. exp(k*x)/(1-x) and recurrence b(n) = n*b(n-1)+k^n and are related to incomplete gamma functions at k. In this case k=-2, a(n) = n*a(n-1)+(-2)^n = Gamma(n+1,k)*exp(k) = Sum_{i=0..n} (-1)^(n-i)*binomial(n,i)*i^(n-i)*(i+k)^i. - Vladeta Jovovic, Aug 19 2002
a(n) is the permanent of the n X n matrix with -1's on the diagonal and 1's elsewhere. - Philippe Deléham, Dec 15 2003

Examples

			G.f. = 1 - x + 2*x^2 - 2*x^3 + 8*x^4 + 8*x^5 + 112*x^6 + 656*x^7 + ... - _Michael Somos_, Nov 20 2018
		

References

  • J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, p. 210.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Haskell
    a000023 n = foldl g 1 [1..n]
      where g n m = n*m + (-2)^m
    -- James Spahlinger, Oct 08 2012
    
  • Maple
    a := n -> n!*add(((-2)^k/k!), k=0..n): seq(a(n), n=0..27); # Zerinvary Lajos, Jun 22 2007
    seq(simplify(KummerU(-n, -n, -2)), n = 0..22); # Peter Luschny, May 10 2022
  • Mathematica
    FoldList[#1*#2 + (-2)^#2 &, 1, Range[22]] (* Robert G. Wilson v, Jul 07 2012 *)
    With[{r = Round[n!/E^2 - (-2)^(n + 1)/(n + 1)]}, r - (-1)^n Mod[(-1)^n r, 2^(n + Ceiling[-(2/n) - Log[2, n]])]] (* Stan Wagon May 02 2016 *)
    a[n_] := (-1)^n x D[1/x Exp[x], {x, n}] x^n Exp[-x]
    Table[a[n] /. x -> 2, {n, 0, 22}](* Gerry Martens , May 05 2016 *)
  • PARI
    a(n)=if(n<0,0,n!*polcoeff(exp(-2*x+x*O(x^n))/(1-x),n))
    
  • PARI
    my(x='x+O('x^66)); Vec( serlaplace( exp(-2*x)/(1-x)) ) \\ Joerg Arndt, Oct 06 2013
    
  • Python
    from sympy import exp, uppergamma
    def A000023(n):
        return exp(-2) * uppergamma(n + 1, -2)  # David Radcliffe, Aug 20 2025
  • Sage
    @CachedFunction
    def A000023(n):
        if n == 0: return 1
        return n * A000023(n-1) + (-2)**n
    [A000023(i) for i in range(23)]   # Peter Luschny, Oct 17 2012
    

Formula

a(n) = Sum_{k=0..n} A008290(n,k)*(-1)^k. - Philippe Deléham, Dec 15 2003
a(n) = Sum_{k=0..n} (-2)^(n-k)*n!/(n-k)! = Sum_{k=0..n} binomial(n, k)*k!*(-2)^(n-k). - Paul Barry, Aug 26 2004
a(n) = exp(-2)*Gamma(n+1,-2) (incomplete Gamma function). - Mark van Hoeij, Nov 11 2009
a(n) = b such that (-1)^n*Integral_{x=0..2} x^n*exp(x) dx = c + b*exp(2). - Francesco Daddi, Aug 01 2011
G.f.: hypergeom([1,k],[],x/(1+2*x))/(1+2*x) with k=1,2,3 is the generating function for A000023, A087981, and A052124. - Mark van Hoeij, Nov 08 2011
D-finite with recurrence: - a(n) + (n-2)*a(n-1) + 2*(n-1)*a(n-2) = 0. - R. J. Mathar, Nov 14 2011
E.g.f.: 1/E(0) where E(k) = 1 - x/(1-2/(2-(k+1)/E(k+1))); (continued fraction). - Sergei N. Gladkovskii, Nov 21 2011
G.f.: 1/Q(0), where Q(k) = 1 + 2*x - x*(k+1)/(1 - x*(k+1)/Q(k+1)); (continued fraction). - Sergei N. Gladkovskii, Apr 19 2013
G.f.: 1/Q(0), where Q(k) = 1 - x*(2*k-1) - x^2*(k+1)^2/Q(k+1); (continued fraction). - Sergei N. Gladkovskii, Sep 30 2013
a(n) = Sum_{k=0..n} (-1)^(n+k)*binomial(n, k)*!k, where !k is the subfactorial A000166. a(n) = (-2)^n*hypergeom([1, -n], [], 1/2). - Vladimir Reshetnikov, Oct 18 2015
For n >= 3, a(n) = r - (-1)^n mod((-1)^n r, 2^(n - floor((2/n) + log_2(n)))) where r = {n! * e^(-2) - (-2)^(n+1)/(n+1)}. - Stan Wagon, May 02 2016
0 = +a(n)*(+4*a(n+1) -2*a(n+3)) + a(n+1)*(+4*a(n+1) +3*a(n+2) -a(n+3)) +a(n+2)*(+a(n+2)) if n>=0. - Michael Somos, Nov 20 2018
a(n) = KummerU(-n, -n, -2). - Peter Luschny, May 10 2022

A010842 Expansion of e.g.f.: exp(2*x)/(1-x).

Original entry on oeis.org

1, 3, 10, 38, 168, 872, 5296, 37200, 297856, 2681216, 26813184, 294947072, 3539368960, 46011804672, 644165281792, 9662479259648, 154599668219904, 2628194359869440, 47307498477912064, 898842471080853504, 17976849421618118656, 377513837853982588928
Offset: 0

Views

Author

Keywords

Comments

Incomplete Gamma Function at 2, more precisely: a(n) = exp(2)*Gamma(1+n,2).
Let P(A) be the power set of an n-element set A. Then a(n) = the total number of ways to add 0 or more elements of A to each element x of P(A) where the elements to add are not elements of x and order of addition is important. - Ross La Haye, Nov 19 2007
a(n) is the number of ways to split the set {1,2,...,n} into two disjoint subsets S,T with S union T = {1,2,...,n} and linearly order S and then choose a subset of T. - Geoffrey Critzer, Mar 10 2009

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, Tenth Printing, 1972, p. 262.
  • R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 2, 1999; see Example 5.1.2.

Crossrefs

Programs

  • Magma
    m:=45; R:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!(Exp(2*x)/(1-x))); [Factorial(n-1)*b[n]: n in [1..m]]; // G. C. Greubel, Oct 16 2018
  • Maple
    G(x):=exp(2*x)/(1-x): f[0]:=G(x): for n from 1 to 19 do f[n]:=diff(f[n-1],x) od: x:=0: seq(f[n],n=0..19); # Zerinvary Lajos, Apr 03 2009
    seq(simplify(exp(1)^2*GAMMA(n+1, 2)), n=0..19); # Peter Luschny, Apr 28 2016
    seq(simplify(KummerU(-n, -n, 2)), n=0..21); # Peter Luschny, May 10 2022
  • Mathematica
    With[{r = Round[n! E^2 - 2^(n + 1)/(n + 1)]}, r - Mod[r, 2^(n - Floor[2/n + Log2[n]])]] (* for n>=4; Stan Wagon, Apr 28 2016 *)
    a[n_] := n! Sum[2^i/i!, {i, 0, n}]
    Table[a[n], {n, 0, 21}] (* Gerry Martens , May 06 2016 *)
    With[{nn=30},CoefficientList[Series[Exp[2x]/(1-x),{x,0,nn}],x] Range[ 0,nn]!] (* Harvey P. Dale, May 27 2019 *)
  • PARI
    x='x+O('x^44); Vec(serlaplace(exp(2*x)/(1-x))) \\ Joerg Arndt, Apr 29 2016
    

Formula

a(n) = row sums of A090802. - Ross La Haye, Aug 18 2006
a(n) = n*a(n-1) + 2^n = (n+2)*a(n-1) - (2*n-2)*a(n-2) = n!*Sum_{j=0..n} floor(2^j/j!). - Henry Bottomley, Jul 12 2001
a(n) is the permanent of the n X n matrix with 3's on the diagonal and 1's elsewhere. a(n) = Sum_{k=0..n} A008290(n, k)*3^k. - Philippe Deléham, Dec 12 2003
Binomial transform of A000522. - Ross La Haye, Sep 15 2004
a(n) = Sum_{k=0..n} k!*binomial(n, k)*2^(n-k). - Paul Barry, Apr 22 2005
a(n) = A066534(n) + 2^n. - Ross La Haye, Nov 16 2005
G.f.: hypergeom([1,k],[],x/(1-2*x))/(1-2*x) with k=1,2,3 is the generating function for A010842, A081923, and A082031. - Mark van Hoeij, Nov 08 2011
E.g.f.: 1/E(0), where E(k) = 1 - x/(1-2/(2+(k+1)/E(k+1))); (continued fraction). - Sergei N. Gladkovskii, Nov 21 2011
G.f.: 1/Q(0), where Q(k)= 1 - 2*x - x*(k+1)/(1-x*(k+1)/Q(k+1)); (continued fraction). - Sergei N. Gladkovskii, Apr 18 2013
a(n) ~ n! * exp(2). - Vaclav Kotesovec, Jun 01 2013
From Peter Bala, Sep 25 2013: (Start)
a(n) = n!*e^2 - Sum_{k >= 0} 2^(n + k + 1)/((n + 1)*...*(n + k + 1)).
= n!*e^2 - e^2*( Integral_{t = 0..2} t^n*exp(-t) dt )
= e^2*( Integral_{t >= 2} t^n*exp(-t) dt )
= e^2*( Integral_{t >= 0} t^n*exp(-t)*Heaviside(t-2) dt ),
an integral representation of a(n) as the n-th moment of a nonnegative function on the positive half-axis.
Bottomley's second-order recurrence above a(n) = (n + 2)*a(n-1) - 2*(n - 1)*a(n-2) has n! as a second solution. This yields the finite continued fraction expansion a(n)/n! = 1/(1 - 2/(3 - 2/(4 - 4/(5 - ... - 2*(n - 1)/(n + 2))))) valid for n >= 2. Letting n tend to infinity gives the infinite continued fraction expansion e^2 = 1/(1 - 2/(3 - 2/(4 - 4/(5 - ... - 2*(n - 1)/(n + 2 - ...))))). (End)
a(n) = 2^(n+1)*U(1, n+2, 2), where U is the Bessel U function. - Peter Luschny, Nov 26 2014
For n >= 4, a(n) = r - (r mod 2^(n - floor((2/n) + log_2(n)))) where r = n! * e^2 - 2^(n+1)/(n+1). - Stan Wagon, Apr 28 2016
G.f.: A(x) = 1/(1 - 2*x - x/(1 - x/(1 - 2*x - 2*x/(1 - 2*x/(1 - 2*x - 3*x/(1 - 3*x/(1 - 2*x - 4*x/(1 - 4*x/(1 - 2*x - ... ))))))))). - Peter Bala, May 26 2017
a(n) = Sum_{k=0..n} (-1)^(n-k)*A137346(n, k). - Mélika Tebni, May 10 2022 [This is equivalent to a(n) = KummerU(-n, -n, 2). - Peter Luschny, May 10 2022]
a(n) = F(n), where the function F(x) := 2^(x+1) * Integral_{t >= 0} e^(-2*t)*(1 + t)^x dt smoothly interpolates this sequence to all real values of x. - Peter Bala, Sep 05 2023

A001517 Bessel polynomials y_n(x) (see A001498) evaluated at 2.

Original entry on oeis.org

1, 3, 19, 193, 2721, 49171, 1084483, 28245729, 848456353, 28875761731, 1098127402131, 46150226651233, 2124008553358849, 106246577894593683, 5739439214861417731, 332993721039856822081, 20651350143685984386753
Offset: 0

Views

Author

Keywords

Comments

Numerators of successive convergents to e using continued fraction 1 + 2/(1 + 1/(6 + 1/(10 + 1/(14 + 1/(18 + 1/(22 + 1/26 + ...)))))).
Number of ways to use the elements of {1,...,k}, n <= k <= 2n, once each to form a collection of n lists, each having length 1 or 2. - Bob Proctor, Apr 18 2005, Jun 26 2006

References

  • L. Euler, 1737.
  • I. S. Gradshteyn and I. M. Ryzhik, Tables of Integrals, Series and Products, 6th ed., Section 0.126, p. 2.
  • J. Riordan, Combinatorial Identities, Wiley, 1968, p. 77.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Essentially the same as A080893.
a(n) = A099022(n)/n!.
Partial sums: A105747.
Replace "lists" with "sets" in comment: A001515.

Programs

  • Maple
    A:= gfun:-rectoproc({a(n) = (4*n-2)*a(n-1) + a(n-2),a(0)=1,a(1)=3},a(n),remember):
    map(A, [$0..20]); # Robert Israel, Jul 22 2015
    f:=proc(n) option remember; if n = 0 then 1 elif n=1 then 3 else f(n-2)+(4*n-2)*f(n-1); fi; end;
    [seq(f(n), n=0..20)]; # N. J. A. Sloane, May 09 2016
    seq(simplify(KummerU(-n, -2*n, 1)), n = 0..16); # Peter Luschny, May 10 2022
  • Mathematica
    Table[(2k)! Hypergeometric1F1[-k, -2k, 1]/k!, {k, 0, 10}] (* Vladimir Reshetnikov, Feb 16 2011 *)
  • PARI
    a(n)=sum(k=0,n,(n+k)!/k!/(n-k)!)
    
  • Sage
    A001517 = lambda n: hypergeometric([-n, n+1], [], -1)
    [simplify(A001517(n)) for n in (0..16)] # Peter Luschny, Oct 17 2014

Formula

a(n) = Sum_{k=0..n} (n+k)!/(k!*(n-k)!) = (e/Pi)^(1/2) K_{n+1/2}(1/2).
D-finite with recurrence a(n) = (4*n-2)*a(n-1) + a(n-2), n >= 2.
a(n) = (1/n!)*Sum_{k=0..n} (-1)^(n+k)*binomial(n,k)*A000522(n+k). - Vladeta Jovovic, Sep 30 2006
E.g.f. (for offset 1): exp(x*c(x)), where c(x)=(1-sqrt(1-4*x))/(2*x) (cf. A000108). - Vladimir Kruchinin, Aug 10 2010
G.f.: 1/Q(0), where Q(k) = 1 - x - 2*x*(k+1)/Q(k+1); (continued fraction). - Sergei N. Gladkovskii, May 17 2013
a(n) = (1/n!)*Integral_{x>=0} (x*(1 + x))^n*exp(-x) dx. Expansion of exp(x) in powers of y = x*(1 - x): exp(x) = 1 + y + 3*y^2/2! + 19*y^3/3! + 193*y^4/4! + 2721*y^5/5! + .... - Peter Bala, Dec 15 2013
a(n) = exp(1/2) / sqrt(Pi) * BesselK(n+1/2, 1/2). - Vaclav Kotesovec, Mar 15 2014
a(n) ~ 2^(2*n+1/2) * n^n / exp(n-1/2). - Vaclav Kotesovec, Mar 15 2014
a(n) = hypergeom([-n, n+1], [], -1). - Peter Luschny, Oct 17 2014
From G. C. Greubel, Aug 16 2017: (Start)
a(n) = (1/2)_{n} * 4^n * hypergeometric1f1(-n; -2*n; 1).
G.f.: (1/(1-t))*hypergeometric2f0(1, 1/2; -; 4*t/(1-t)^2). (End)
a(n) = Sum_{k=0..n} binomial(n,k)*binomial(n+k,k)*k!. - Ilya Gutkovskiy, Nov 24 2017
a(n) = KummerU(-n, -2*n, 1). - Peter Luschny, May 10 2022

Extensions

More terms from Vladeta Jovovic, Apr 03 2000
Additional comments from Michael Somos, Jul 15 2002

A094816 Triangle read by rows: T(n,k) are the coefficients of Charlier polynomials: A046716 transposed, for 0 <= k <= n.

Original entry on oeis.org

1, 1, 1, 1, 3, 1, 1, 8, 6, 1, 1, 24, 29, 10, 1, 1, 89, 145, 75, 15, 1, 1, 415, 814, 545, 160, 21, 1, 1, 2372, 5243, 4179, 1575, 301, 28, 1, 1, 16072, 38618, 34860, 15659, 3836, 518, 36, 1, 1, 125673, 321690, 318926, 163191, 47775, 8274, 834, 45, 1, 1, 1112083, 2995011
Offset: 0

Views

Author

Philippe Deléham, Jun 12 2004

Keywords

Comments

The a-sequence for this Sheffer matrix is A027641(n)/A027642(n) (Bernoulli numbers) and the z-sequence is A130189(n)/ A130190(n). See the W. Lang link.
Take the lower triangular matrix in A049020 and invert it, then read by rows! - N. J. A. Sloane, Feb 07 2009
Exponential Riordan array [exp(x), log(1/(1-x))]. Equal to A007318*A132393. - Paul Barry, Apr 23 2009
A signed version of the triangle appears in [Gessel]. - Peter Bala, Aug 31 2012
T(n,k) is the number of permutations over all subsets of {1,2,...,n} (Cf. A000522) that have exactly k cycles. T(3,2) = 6: We permute the elements of the subsets {1,2}, {1,3}, {2,3}. Each has one permutation with 2 cycles. We permute the elements of {1,2,3} and there are three permutations that have 2 cycles. 3*1 + 1*3 = 6. - Geoffrey Critzer, Feb 24 2013
From Wolfdieter Lang, Jul 28 2017: (Start)
In Chihara's book the row polynomials (with rising powers) are the Charlier polynomials (-1)^n*C^(a)_n(-x), with a = -1, n >= 0. See p. 170, eq. (1.4).
In Ismail's book the present Charlier polynomials are denoted by C_n(-x;a=1) on p. 177, eq. (6.1.25). (End)
The triangle T(n,k) is a representative of the parametric family of triangles T(m,n,k), whose columns are the coefficients of the standard expansion of the function f(x) = (-log(1-x))^(k)*exp(-m*x)/k! for the case m=-1. See A381082. - Igor Victorovich Statsenko, Feb 14 2025

Examples

			From _Paul Barry_, Apr 23 2009: (Start)
Triangle begins
  1;
  1,     1;
  1,     3,     1;
  1,     8,     6,     1;
  1,    24,    29,    10,     1;
  1,    89,   145,    75,    15,    1;
  1,   415,   814,   545,   160,   21,   1;
  1,  2372,  5243,  4179,  1575,  301,  28,  1;
  1, 16072, 38618, 34860, 15659, 3836, 518, 36, 1;
Production matrix is
  1, 1;
  0, 2, 1;
  0, 1, 3,  1;
  0, 1, 3,  4,  1;
  0, 1, 4,  6,  5,  1;
  0, 1, 5, 10, 10,  6,  1;
  0, 1, 6, 15, 20, 15,  7,  1;
  0, 1, 7, 21, 35, 35, 21,  8, 1;
  0, 1, 8, 28, 56, 70, 56, 28, 9, 1; (End)
		

References

  • T. S. Chihara, An Introduction to Orthogonal Polynomials, Gordon and Breach, New York, London, Paris, 1978, Ch. VI, 1., pp. 170-172.
  • Classical and Quantum Orthogonal Polynomials in One Variable, Cambridge University Press, 2005, EMA, Vol. 98, p. 177.

Crossrefs

Columns k=0..4 give A000012, A002104, A381021, A381022, A381023.
Diagonals: A000012, A000217.
Row sums A000522, alternating row sums A024000.
KummerU(-n,1-n-x,z): this sequence (z=1), |A137346| (z=2), A327997 (z=3).

Programs

  • Maple
    A094816 := (n,k) -> (-1)^(n-k)*add(binomial(-j-1,-n-1)*Stirling1(j,k), j=0..n):
    seq(seq(A094816(n, k), k=0..n), n=0..9); # Peter Luschny, Apr 10 2016
  • Mathematica
    nn=10;f[list_]:=Select[list,#>0&];Map[f,Range[0,nn]!CoefficientList[Series[ Exp[x]/(1-x)^y,{x,0,nn}],{x,y}]]//Grid  (* Geoffrey Critzer, Feb 24 2013 *)
    Flatten[Table[(-1)^(n-k) Sum[Binomial[-j-1,-n-1] StirlingS1[j,k],{j,0,n}], {n,0,9},{k,0,n}]] (* Peter Luschny, Apr 10 2016 *)
    p[n_] := HypergeometricU[-n, 1 - n - x, 1];
    Table[CoefficientList[p[n], x], {n,0,9}] // Flatten (* Peter Luschny, Oct 27 2019 *)
  • PARI
    {T(n, k)= local(A); if( k<0 || k>n, 0, A = x * O(x^n); polcoeff( n! * polcoeff( exp(x + A) / (1 - x + A)^y, n), k))} /* Michael Somos, Nov 19 2006 */
    
  • Sage
    def a_row(n):
        s = sum(binomial(n,k)*rising_factorial(x,k) for k in (0..n))
        return expand(s).list()
    [a_row(n) for n in (0..9)] # Peter Luschny, Jun 28 2019

Formula

E.g.f.: exp(t)/(1-t)^x = Sum_{n>=0} C(x,n)*t^n/n!.
Sum_{k = 0..n} T(n, k)*x^k = C(x, n), Charlier polynomials; C(x, n)= A024000(n), A000012(n), A000522(n), A001339(n), A082030(n), A095000(n), A095177(n), A096307(n), A096341(n), A095722(n), A095740(n) for x = -1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 respectively. - Philippe Deléham, Feb 27 2013
T(n+1, k) = (n+1)*T(n, k) + T(n, k-1) - n*T(n-1, k) with T(0, 0) = 1, T(0, k) = 0 if k>0, T(n, k) = 0 if k<0.
PS*A008275*PS as infinite lower triangular matrices, where PS is a triangle with PS(n, k) = (-1)^k*A007318(n, k). PS = 1/PS. - Gerald McGarvey, Aug 20 2009
T(n,k) = (-1)^(n-k)*Sum_{j=0..n} C(-j-1, -n-1)*S1(j, k) where S1 are the signed Stirling numbers of the first kind. - Peter Luschny, Apr 10 2016
Absolute values T(n,k) of triangle (-1)^(n+k) T(n,k) where row n gives coefficients of x^k, 0 <= k <= n, in expansion of Sum_{k=0..n} binomial(n,k) (-1)^(n-k) x^{(k)}, where x^{(k)} := Product_{i=0..k-1} (x-i), k >= 1, and x^{(0)} := 1, the falling factorial powers. - Daniel Forgues, Oct 13 2019
From Peter Bala, Oct 23 2019: (Start)
The n-th row polynomial is
R(n, x) = Sum_{k = 0..n} (-1)^k*binomial(n, k)*k! * binomial(-x, k).
These polynomials occur in series acceleration formulas for the constant
1/e = n! * Sum_{k >= 0} (-1)^k/(k!*R(n,k)*R(n,k+1)), n >= 0. (cf. A068985, A094816 and A137346). (End)
R(n, x) = KummerU[-n, 1 - n - x, 1]. - Peter Luschny, Oct 27 2019
Sum_{j=0..m} (-1)^(m-j) * Bell(n+j) * T(m,j) = m! * Sum_{k=0..n} binomial(k,m) * Stirling2(n,k). - Vaclav Kotesovec, Aug 06 2021
From Natalia L. Skirrow, Jun 11 2025: (Start)
G.f.: 2F0(1,y;x/(1-x)) / (1-x).
Polynomial for the n-th row is R(n,y) = 2F0(-n,y;-1).
Falling g.f. for n-th row: Sum_{k=0..n} a(n,k)*(y)_k = [x^0] 2F0(1,-n;-1/x) * (1+log(1/(1-x)))^y = [x^n] e^x * Gamma(n+1,x) * (1+log(1/(1-x)))^y, where (y)_k = y!/(y-k)! denotes the falling factorial. (End)

A046802 T(n, k) = Sum_{j=k..n} binomial(n, j)*E1(j, j-k), where E1 are the Eulerian numbers A173018. Triangle read by rows, T(n, k) for 0 <= k <= n.

Original entry on oeis.org

1, 1, 1, 1, 3, 1, 1, 7, 7, 1, 1, 15, 33, 15, 1, 1, 31, 131, 131, 31, 1, 1, 63, 473, 883, 473, 63, 1, 1, 127, 1611, 5111, 5111, 1611, 127, 1, 1, 255, 5281, 26799, 44929, 26799, 5281, 255, 1, 1, 511, 16867, 131275, 344551, 344551, 131275, 16867, 511, 1, 1, 1023, 52905
Offset: 0

Views

Author

Keywords

Comments

T(n,k) is the number of positroid cells of the totally nonnegative Grassmannian G+(k,n) (cf. Postnikov/Williams). It is the triangle of the h-vectors of the stellahedra. - Tom Copeland, Oct 10 2014
See A248727 for a simple transformation of the row polynomials of this entry that produces the umbral compositional inverses of the polynomials of A074909, related to the face polynomials of the simplices. - Tom Copeland, Jan 21 2015
From Tom Copeland, Jan 24 2015: (Start)
The reciprocal of this entry's e.g.f. is [t e^(-xt) - e^(-x)] / (t-1) = 1 - (1+t) x + (1+t+t^2) x^2/2! - (1+t+t^2+t^3) x^3/3! + ... = e^(q.(0;t)x), giving the base sequence (q.(0;t))^n = q_n(0;t) = (-1)^n [1-t^(n+1)] / (1-t) for the umbral compositional inverses (q.(0;t)+z)^n = q_n(z;t) of the Appell polynomials associated with this entry, p_n(z;t) below, i.e., q_n(p.(z;t)) = z^n = p_n(q.(z;t)), in umbral notation. The relations in A133314 then apply between the two sets of base polynomials. (Inserted missing index in a formula - Mar 03 2016.)
The associated o.g.f. for the umbral inverses is Og(x) = x / (1-x q.(0:t)) = x / [(1+x)(1+tx)] = x / [1+(1+t)x+tx^2]. Applying A134264 to h(x) = x / Og(x) = 1 + (1+t) x + t x^2 leads to an o.g.f. for the Narayana polynomials A001263 as the comp. inverse Oginv(x) = [1-(1+t)x-sqrt[1-2(1+t)x+((t-1)x)^2]] / (2xt). Note that Og(x) gives the signed h-polynomials of the simplices and that Oginv(x) gives the h-polynomials of the simplicial duals of the Stasheff polynomials, or type A associahedra. Contrast this with A248727 = A046802 * A007318, which has o.g.f.s related to the corresponding f-polynomials. (End)
The Appell polynomials p_n(x;t) in the formulas below specialize to the Swiss-knife polynomials of A119879 for t = -1, so the Springer numbers A001586 are given by 2^n p_n(1/2;-1). - Tom Copeland, Oct 14 2015
The row polynomials are the h-polynomials associated to the stellahedra, whose f-polynomials are the row polynomials of A248727. Cf. page 60 of the Buchstaber and Panov link. - Tom Copeland, Nov 08 2016
The row polynomials are the h-polynomials of the stellohedra, which enumerate partial permutations according to descents. Cf. Section 10.4 of the Postnikov-Reiner-Williams reference. - Lauren Williams, Jul 05 2022
From p. 60 of the Buchstaber and Panov link, S = P * C / T where S, P, C, and T are the bivariate e.g.f.s of the h vectors of the stellahedra, permutahedra, hypercubes, and (n-1)-simplices, respectively. - Tom Copeland, Jan 09 2017
The number of Le-diagrams of type (k, n) this means the diagram uses the bounding box size k x (n-k), equivalently the number of Grassmann necklaces of type (k, n) and also the number of decorated permutations with k anti-exceedances. - Thomas Scheuerle, Dec 29 2024

Examples

			The triangle T(n, k) begins:
n\k 0   1     2      3      4      5      6     7
0:  1
1:  1   1
2:  1   3     1
3:  1   7     7      1
4:  1  15    33     15      1
5:  1  31   131    131     31      1
6:  1  63   473    883    473     63      1
7:  1 127  1611   5111   5111   1611    127     1
... Reformatted. - _Wolfdieter Lang_, Feb 14 2015
		

References

  • L. Comtet, Advanced Combinatorics, Reidel, Holland, 1974, page 245 [From Roger L. Bagula, Nov 21 2009]
  • D. Singh, The numbers L(m,n) and their relations with prepared Bernoulli and Eulerian numbers, Math. Student, 20 (1952), 66-70.

Crossrefs

Programs

  • Maple
    T := (n, k) -> add(binomial(n, r)*combinat:-eulerian1(r, r-k), r = k .. n):
    for n from 0 to 8 do seq(T(n, k), k=0..n) od; # Peter Luschny, Jun 27 2018
  • Mathematica
    t[, 1] = 1; t[n, n_] = 1; t[n_, 2] = 2^(n-1)-1;
    t[n_, k_] = Sum[((i-k+1)^i*(k-i)^(n-i-1) - (i-k+2)^i*(k-i-1)^(n-i-1))*Binomial[n-1, i], {i, 0, k-1}];
    T[n_, k_] := t[n+1, k+1]; Table[T[n, k], {n, 0, 12}, {k, 0, n}] // Flatten
    (* Jean-François Alcover, Jan 22 2015, after Tom Copeland *)
    T[ n_, k_] := Coefficient[n! SeriesCoefficient[(1-x) Exp[t] / (1 - x Exp[(1-x) t]), {t, 0, n}] // Simplify, x, k];
    Table[T[n, k], {n, 0, 10}, {k, 0, n}] (* Michael Somos, Jan 22 2015 *)

Formula

E.g.f.: (y-1)*exp(x*y)/(y-exp((y-1)*x)). - Vladeta Jovovic, Sep 20 2003
p(t,x) = (1 - x)*exp(t)/(1 - x*exp(t*(1 - x))). - Roger L. Bagula, Nov 21 2009
With offset=0, T(n,0)=1 otherwise T(n,k) = sum_{i=0..k-1} C(n,i)((i-k)^i*(k-i+1)^(n-i) - (i-k+1)^i*(k-i)^(n-i)) (cf. Williams). - Tom Copeland, Oct 10 2014
With offset 0, T = A007318 * A123125. Second column is A000225; 3rd, appears to be A066810. - Tom Copeland, Jan 23 2015
A raising operator (with D = d/dx) associated with this entry's row polynomials is R = x + t + (1-t) / [1-t e^{(1-t)D}] = x + t + 1 + t D + (t+t^2) D^2/2! + (t+4t^2+t^3) D^3/3! + ... , containing the e.g.f. for the Eulerian polynomials of A123125. Then R^n 1 = (p.(0;t)+x)^n = p_n(x;t) are the Appell polynomials with this entry's row polynomials p_n(0;t) as the base sequence. Examples of this formalism are given in A028246 and A248727. - Tom Copeland, Jan 24 2015
With offset 0, T = A007318*(padded A090582)*(inverse of A097805) = A007318*(padded A090582)*(padded A130595) = A007318*A123125 = A007318*(padded A090582)*A007318*A097808*A130595, where padded matrices are of the form of padded A007318, which is A097805. Inverses of padded matrices are just the padded versions of inverses of the unpadded matrices. This relates the face vectors, or f-vectors, and h-vectors of the permutahedra / permutohedra to those of the stellahedra / stellohedra. - Tom Copeland, Nov 13 2016
Umbrally, the row polynomials (offset 0) are r_n(x) = (1 + q.(x))^n, where (q.(x))^k = q_k(x) are the row polynomials of A123125. - Tom Copeland, Nov 16 2016
From the previous umbral statement, OP(x,d/dy) y^n = (y + q.(x))^n, where OP(x,y) = exp[y * q.(x)] = (1-x)/(1-x*exp((1-x)y)), the e.g.f. of A123125, so OP(x,d/dy) y^n evaluated at y = 1 is r_n(x), the n-th row polynomial of this entry, with offset 0. - Tom Copeland, Jun 25 2018
Consolidating some formulas in this entry and A248727, in umbral notation for concision, with all offsets 0: Let A_n(x;y) = (y + E.(x))^n, an Appell sequence in y where E.(x)^k = E_k(x) are the Eulerian polynomials of A123125. Then the row polynomials of this entry (A046802, the h-polynomials of the stellahedra) are given by h_n(x) = A_n(x;1); the row polynomials of A248727 (the face polynomials of the stellahedra), by f_n(x) = A_n(1 + x;1); the Swiss-knife polynomials of A119879, by Sw_n(x) = A_n(-1;1 + x); and the row polynomials of the Worpitsky triangle (A130850), by w_n(x) = A(1 + x;0). Other specializations of A_n(x;y) give A090582 (the f-polynomials of the permutohedra, cf. also A019538) and A028246 (another version of the Worpitsky triangle). - Tom Copeland, Jan 24 2020
From Peter Luschny, Apr 30 2021: (Start)
Sum_{k=0..n} (-1)^k*T(n, k) = A122045(n).
Sum_{k=0..n} 2^(n-k)*T(n,k) = A007047(n).
Sum_{k=0..n} T(n, n-k) = A000522(n).
Sum_{k=0..n} T(n-k, k) = Sum_{k=0..n} (n - k)^k = A026898(n-1) for n >= 1.
Sum_{k=0..n} k*T(n, k) = A036919(n) = floor(n*n!*e/2).
(End)

Extensions

More terms from Vladeta Jovovic, Sep 20 2003
First formula corrected by Wolfdieter Lang, Feb 14 2015
Offset set to 0 and edited by Peter Luschny, Apr 30 2021

A053486 E.g.f.: exp(3x)/(1-x).

Original entry on oeis.org

1, 4, 17, 78, 393, 2208, 13977, 100026, 806769, 7280604, 72865089, 801693126, 9620848953, 125072630712, 1751021612937, 26265338542962, 420245459734113, 7144172944620084, 128595113390582001, 2443307155583319486, 48866143115153174121
Offset: 0

Views

Author

N. J. A. Sloane, Jan 15 2000

Keywords

Crossrefs

Programs

  • Maple
    G(x):=exp(3*x)/(1-x): g[0]:=G(x): for n from 1 to 20 do g[n]:=diff(g[n-1],x) od: x:=0: seq(g[n],n=0..20); # Zerinvary Lajos, Apr 03 2009
    A053486 := n -> exp(3)*GAMMA(1+n,3):
    seq(simplify(A053486(n)), n=0..20); # Peter Luschny, Dec 18 2017
    seq(simplify(KummerU(-n, -n, 3)), n = 0..20); # Peter Luschny, May 10 2022
  • Mathematica
    RecurrenceTable[{a[0]==1, a[n]== n*a[n-1] + 3^n}, a, {n, 200}] (* Vincenzo Librandi, Nov 15 2012 *)
    With[{nn=20},CoefficientList[Series[Exp[3x]/(1-x),{x,0,nn}],x] Range[ 0,nn]!] (* Harvey P. Dale, Aug 03 2017 *)
  • PARI
    x='x+O('x^66); Vec(serlaplace(exp(3*x)/(1-x))) \\ Joerg Arndt, Apr 20 2013

Formula

a(n) is the permanent of the n X n matrix with 4's on the diagonal and 1's elsewhere. a(n) = Sum(k=0..n, A008290(n, k)*4^k). - Philippe Deléham, Dec 12 2003
a(n) = Sum[(n! / k!) * 3^k {k=0...n}]. - Ross La Haye, Sep 21 2004
a(n) = sum{k=0..n, k!*C(n, k)3^(n-k)}. - Paul Barry, Apr 22 2005
G.f.: hypergeom([1,1],[],x/(1-3*x))/(1-3*x). - Mark van Hoeij, Nov 08 2011
D-finite with recurrence -a(n) +(n+3)*a(n-1) +3*(1-n)*a(n-2)=0. - R. J. Mathar, Nov 14 2011. This recurrence follows from the Wilf-Zeilberger (WZ) proof technique applied to the sum: Sum[k!* C(n,k)*3^(n-k), {k=0...n}]. - T. Amdeberhan, Jul 23 2012
E.g.f.: 1/E(0) where E(k)=1-x/(1-3/(3+(k+1)/E(k+1))); (continued fraction). - Sergei N. Gladkovskii, Nov 21 2011
G.f.: 1/Q(0), where Q(k)= 1 - 3*x - x*(k+1)/(1-x*(k+1)/Q(k+1)); (continued fraction). - Sergei N. Gladkovskii, Apr 20 2013
a(n) ~ n! * exp(3). - Vaclav Kotesovec, Jun 01 2013
From Peter Bala, Sep 25 2013: (Start)
a(n) = n*a(n-1) + 3^n with a(0) = 1.
a(n) = n!*e^3 - sum {k >= 0} 3^(n + k + 1)/((n + 1)*...*(n + k + 1))
= n!*e^3 - e^3*( int {t = 0..3} t^n*exp(-t) dt )
= e^3*( int {t = 3..inf} t^n*exp(-t) dt )
= e^3*( int {t = 0..inf} t^n*exp(-t)*Heaviside(t-3) dt ),
an integral representation of a(n) as the n-th moment of a nonnegative function on the positive half-axis.
Mathar's second-order recurrence above a(n) = (n + 3)*a(n-1) - 3*(n - 1)*a(n-2) has n! as a second solution. This yields the finite continued fraction expansion a(n)/n! = 1/(1 - 3/(4 - 3/(5 - 6/(6 - ...- 3*(n - 1)/(n + 3))))) valid for n >= 2. Letting n tend to infinity gives the infinite continued fraction expansion e^3 = 1/(1 - 3/(4 - 3/(5 - 6/(6 - ...- 3*(n - 1)/(n + 3 - ...))))). (End)
G.f.: 1/Q(0), where Q(k) = 1 - 2*x*(k+2) - x^2*(k+1)^2/Q(k+1); (continued fraction). - Sergei N. Gladkovskii, Sep 30 2013
a(n) = exp(3)*Gamma(1+n,3). - Peter Luschny, Dec 18 2017
a(n) = KummerU(-n, -n, 3). - Peter Luschny, May 10 2022
Previous Showing 31-40 of 288 results. Next