cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-50 of 1164 results. Next

A004601 Expansion of Pi in base 2 (or, binary expansion of Pi).

Original entry on oeis.org

1, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1
Offset: 2

Views

Author

Keywords

Examples

			11.0010010000111111011010101000100010000...
		

References

  • J. P. Delahaye, Le Fascinant Nombre Pi, "100000 digits of pi in base two", pp. 209-210; Pour la Science, Paris 1997.

Crossrefs

Pi in base b: this sequence (b=2), A004602 (b=3), A004603 (b=4), A004604 (b=5), A004605 (b=6), A004606 (b=7), A006941 (b=8), A004608 (b=9), A000796 (b=10), A068436 (b=11), A068437 (b=12), A068438 (b=13), A068439 (b=14), A068440 (b=15), A062964 (b=16), A060707 (b=60).

Programs

  • Maple
    convert(evalf(Pi), binary, 120);  # Alois P. Heinz, Dec 16 2018
  • Mathematica
    RealDigits[Pi, 2, 75][[1]]
    Table[ResourceFunction["NthDigit"][Pi, n, 2], {n, 1, 100}] (* Joan Ludevid, Jun 24 2022;easy to compute a(10000000)=0 with this function; requires Mathematica 12.0+ *)
  • PARI
    binary(Pi) \\ Altug Alkan, Apr 08 2018

A019692 Decimal expansion of 2*Pi.

Original entry on oeis.org

6, 2, 8, 3, 1, 8, 5, 3, 0, 7, 1, 7, 9, 5, 8, 6, 4, 7, 6, 9, 2, 5, 2, 8, 6, 7, 6, 6, 5, 5, 9, 0, 0, 5, 7, 6, 8, 3, 9, 4, 3, 3, 8, 7, 9, 8, 7, 5, 0, 2, 1, 1, 6, 4, 1, 9, 4, 9, 8, 8, 9, 1, 8, 4, 6, 1, 5, 6, 3, 2, 8, 1, 2, 5, 7, 2, 4, 1, 7, 9, 9, 7, 2, 5, 6, 0, 6, 9, 6, 5, 0, 6, 8, 4, 2, 3, 4, 1, 3
Offset: 1

Views

Author

Keywords

Comments

Pi/5 or 2*Pi/10 is the expected surface area containing completely a Brownian curve (trajectory) on a plane. - Lekraj Beedassy, Jul 28 2005
Bob Palais considers this a more fundamental constant than Pi, see the Palais reference and link. - Jonathan Vos Post, Sep 10 2010
The Persian mathematician Jamshid al-Kashi seems to have been the first to use the circumference divided by the radius as the circle constant. In Treatise on the Circumference published 1424 he calculated the circumference of a unit circle to 9 sexagesimal places. - Peter Harremoës, John W. Nicholson, Aug 02 2012
"Proponents of a new mathematical constant tau (τ), equal to two times π, have argued that a constant based on the ratio of a circle's circumference to its radius rather than to its diameter would be more natural and would simplify many formulas" (from Wikipedia). - Jonathan Sondow, Aug 15 2012
The constant 2*Pi appears in the formula for the period T of a simple gravity pendulum. For small angles this period is given by Christiaan Huygens’s law, i.e., T = 2*Pi*sqrt(L/g), see for more information A223067. - Johannes W. Meijer, Mar 14 2013
There are seven consecutive nines at positions 762 to 768. - Roland Kneer, Jul 05 2013
Volume of a cylinder in which a sphere of radius 1 can be inscribed. - Omar E. Pol, Sep 25 2013
2*Pi is also the surface area of a sphere whose diameter equals the square root of 2. More generally, x*Pi is also the surface area of a sphere whose diameter equals the square root of x. - Omar E. Pol, Dec 18 2013
From Bernard Schott, Jan 31 2020: (Start)
Also, (2*Pi)*a^2 is the area of the deltoid (an hypocycloid with three cusps) whose Cartesian parametrization is:
x = a * (2*cos(t) + cos(2*t)),
y = a * (2*sin(t) - sin(2*t)).
The length of this deltoid is 16*a. See the curve at the Mathcurve link. (End)
Pi/5 = 0.1 * 2*Pi is the mean area of the plane triangles formed by 3 points independently and uniformly chosen at random on the surface of a unit-radius sphere. - Amiram Eldar, Aug 06 2020

Examples

			6.283185307179586476925286766559005768394338798750211641949889184615632...
		

References

  • Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, Section 1.4, p. 17.
  • David Wells, The Penguin Dictionary of Curious and Interesting Numbers. Penguin Books, NY, 1986, Revised edition 1987. See p. 69.

Crossrefs

Cf. A058291 (continued fraction).
Cf. A093828 (astroid), A180434 (loop of strophoid), A197723 (cardioid).

Programs

  • Julia
    using Nemo
    RR = RealField(334)
    tau = const_pi(RR) + const_pi(RR)
    tau |> println # Peter Luschny, Mar 14 2018
    
  • Magma
    R:= RealField(100); 2*Pi(R); // G. C. Greubel, Mar 08 2018
    
  • Mathematica
    RealDigits[N[2 Pi, 6! ]] (* Vladimir Joseph Stephan Orlovsky, Dec 02 2009 *)
  • PARI
    default(realprecision, 20080); x=2*Pi; for (n=1, 20000, d=floor(x); x=(x-d)*10; write("b019692.txt", n, " ", d)); \\ Harry J. Smith, May 31 2009
    
  • Python
    # Use some guard digits when computing.
    # BBP formula P(1, 16, 8, (0, 8, 4, 4, 0, 0, -1, 0)).
    from decimal import Decimal as dec, getcontext
    def BBPtau(n: int) -> dec:
        getcontext().prec = n
        s = dec(0); f = dec(1); g = dec(16)
        for k in range(n):
            ek = dec(8 * k)
            s += f * ( dec(8) / (ek + 2) + dec(4) / (ek + 3)
                     + dec(4) / (ek + 4) - dec(1) / (ek + 7))
            f /= g
        return s
    print(BBPtau(200))  # Peter Luschny, Nov 03 2023

Formula

e^(Zeta'(0)/Zeta(0)) = 2*Pi. - Peter Luschny, Jun 17 2018
From Peter Bala, Oct 30 2019: (Start)
2*Pi = Sum_{n >= 0} (-1)^n*( 1/(n + 1/6) + 1/(n + 5/6) ).
2*Pi = Sum_{n >= 0} (-1)^n*( 1/(n + 1/10) - 1/(n + 3/10) - 1/(n + 7/10) + 1/(n + 9/10) ). Cf. A091925 and A244979. (End)
From Amiram Eldar, Aug 06 2020: (Start)
Equals Gamma(1/6)*Gamma(5/6).
Equals Integral_{x=0..oo} log(1 + 1/x^6) dx.
Equals Integral_{x=0..oo} log(1 + 4/x^2) dx.
Equals Integral_{x=-oo..oo} exp(x/6)/(exp(x) + 1) dx.
Equals Sum_{k>=0} 1/((k + 1/4)*(k + 3/4)). (End)
Equals 4*Integral_{x=0..1} 1/sqrt(1 - x^2) dx (see Finch). - Stefano Spezia, Oct 19 2024

A060294 Decimal expansion of Buffon's constant 2/Pi.

Original entry on oeis.org

6, 3, 6, 6, 1, 9, 7, 7, 2, 3, 6, 7, 5, 8, 1, 3, 4, 3, 0, 7, 5, 5, 3, 5, 0, 5, 3, 4, 9, 0, 0, 5, 7, 4, 4, 8, 1, 3, 7, 8, 3, 8, 5, 8, 2, 9, 6, 1, 8, 2, 5, 7, 9, 4, 9, 9, 0, 6, 6, 9, 3, 7, 6, 2, 3, 5, 5, 8, 7, 1, 9, 0, 5, 3, 6, 9, 0, 6, 1, 4, 0, 3, 6, 0, 4, 5, 5, 2, 1, 1, 0, 6, 5, 0, 1, 2, 3, 4, 3, 8, 2, 4, 2, 9, 1
Offset: 0

Views

Author

Jason Earls, Mar 28 2001

Keywords

Comments

The probability P(l,d) that a needle of length l will land on a line, given a floor with equally spaced parallel lines at a distance d (>=l) apart, is (2/Pi)*(l/d). - Benoit Cloitre, Oct 14 2002
Lim_{n->infinity} z(n)/log(n) = 2/Pi, where z(n) is the expected number of real zeros of a random polynomial of degree n with real coefficients chosen from a standard Gaussian distribution (cf. Finch reference). - Benoit Cloitre, Nov 02 2003
Also the ratio of the average chord length when two points are chosen at random on a circle of radius r to the maximum possible chord length (i.e., diameter) = A088538*r / (2*r) = 2/Pi. Is there a (direct or obvious) relationship between this fact and that 2/Pi is the "magic geometric constant" for a circle (see MathWorld link)? - Rick L. Shepherd, Jun 22 2006
Blatner (1997) says that Euler found a "fascinating infinite product" for Pi involving the prime numbers, but the number he then describes does not match Pi. Switching the numerator and the denominator results in this number. - Alonso del Arte, May 16 2012
2/Pi is also the height (the ordinate y) of the geometric centroid of each arbelos (see the references and links given under A221918) with a large radius r=1 and any small ones r1 and r2 = 1 - r1, for 0 < r1 < 1. Use the integral formula given, e.g., in the MathWorld or Wikipedia centroid reference, for the two parts of the arbelos (dissected by the vertical line x = 2*r1), and then use the decomposition formula. The heights y1 and y2 of the centroids of the two parts satisfy: F1(r1)*y1(r1) = 2*r1^2*(1-r1) and F2(1-r1)*y2(1-r1) = 2*(1-r1)^2*r1. The r1 dependent area F = F1 + F2 is Pi*r1*(1-r1). (F1 and F2 are rather complicated but their explicit formulas are not needed here.) The r1 dependent horizontal coordinate x with origin at the left tip of the arbelos is x = r1 + 1/2. - Wolfdieter Lang, Feb 28 2013
Construct a quadrilateral of maximal area inside a circle. The quadrilateral is necessarily an inscribed square (with diagonals that are diameters). 2/Pi is the ratio of the square's area to the circle's area. - Rick L. Shepherd, Aug 02 2014
The expected number of real roots of a real polynomial of degree n varies as this constant times the (natural) logarithm of n, see Kac, when its coefficients are chosen from the standard uniform distribution. This may be related to Rick Shepherd's comment. - Charles R Greathouse IV, Oct 06 2014
2/Pi is also the minimum value, at x = 1/2, on (0,1) of 1/(Pi*sqrt(x*(1-x))), the nonzero piece of the probability density function for the standard arcsine distribution. - Rick L. Shepherd, Dec 05 2016
The average distance from the center of a unit-radius circle to the midpoints of chords drawn between two points that are uniformly and independently chosen at random on the circumference of the circle. - Amiram Eldar, Sep 08 2020
2/Pi <= sin(x)/x < 1 for 0 < |x| <= Pi/2 is Jordan's inequality, also known as (2/Pi) * x <= sin(x) <= x for 0 <= x <= Pi/2; this inequality was named after the French mathematician Camille Jordan (1838-1922). - Bernard Schott, Jan 07 2023
This constant 2/Pi was named after the needle experiment, described in 1777 by the French naturalist and mathematician Georges-Louis Leclerc, Comte de Buffon (1707-1788). Note that the parrot Buffon's macaw and the antelope Buffon's kob were named also after Buffon. - Bernard Schott, Jan 10 2023
2*n*log(n)/Pi is also the dominant term in the asymptotic expansion of Sum_{k=1..n-1} csc(Pi*k/n) at n tending to infinity. - Iaroslav V. Blagouchine, Apr 21 2025

Examples

			2/Pi = 0.6366197723675813430755350534900574481378385829618257949906...
		

References

  • David Blatner, The Joy of Pi. New York: Walker & Company (1997): 119, circle by upper right corner.
  • G. Buffon, Essai d'arithmétique morale. Supplément à l'Histoire Naturelle, Vol. 4, 1777.
  • Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, pp. 141, 539.
  • Steven R. Finch, Mathematical Constants II, Cambridge University Press, 2018, p. 196.
  • G. H. Hardy, Ramanujan: twelve lectures on subjects suggested by his life and work, AMS Chelsea Publ., Providence, RI, 2002, p. 7, eq. (1.2) and p. 105 eq. (7.4.2) with s=1/2.
  • Robert Kanigel, The Man Who Knew Infinity: A Life of the Genius Ramanujan, 1991.
  • Daniel A. Klain and Gian-Carlo Rota, Introduction to Geometric Probability, Cambridge, 1997, see Chap. 1.
  • Luis A. Santaló, Integral Geometry and Geometric Probability, Addison-Wesley, 1976.
  • David Wells, The Penguin Dictionary of Curious and Interesting Numbers. Penguin Books, NY, 1986, Revised edition 1987. See p. 53.
  • Robert M. Young, Excursions in Calculus, An Interplay of the Continuous and the Discrete. Dolciani Mathematical Expositions Number 13. MAA.

Crossrefs

Cf. A000796 (Pi), A088538, A154956, A082542 (numerators in an infinite product), A053300 (continued fraction without the initial 0).
Cf. A076668 (sqrt(2/Pi)).

Programs

  • Magma
    R:= RealField(100); 2/Pi(R); // G. C. Greubel, Mar 09 2018
  • Maple
    Digits:=100: evalf(2/Pi); # Wesley Ivan Hurt, Aug 02 2014
  • Mathematica
    RealDigits[ N[ 2/Pi, 111]][[1]]
  • PARI
    default(realprecision, 20080); x=20/Pi; for (n=0, 20000, d=floor(x); x=(x-d)*10; write("b060294.txt", n, " ", d)); \\ Harry J. Smith, Jul 03 2009
    

Formula

2/Pi = 1 - 5*(1/2)^3 + 9*((1*3)/(2*4))^3 - 13*((1*3*5)/(2*4*6))^3 ... - Jason Earls [formula corrected by Paul D. Hanna, Mar 23 2013]
The preceding formula is 2/Pi = Sum_{n>=0} (-1)^n * (4*n+1) * Product_{k=1..n} (2*k-1)^3/(2*k)^3. - Alexander R. Povolotsky, Mar 24 2013. [See the Hardy reference. - Wolfdieter Lang, Nov 13 2016]
2/Pi = Product_{n>=2} (p(n) + 2 - (p(n) mod 4))/p(n), where p(n) is the n-th prime. - Alonso del Arte, May 16 2012
2/Pi = Sum_{k>=0} ((2*k)!/(k!)^2)^3*((42*k+5)/(2^{12*k+3})) (due to Ramanujan). - L. Edson Jeffery, Mar 23 2013
Equals sinc(Pi/2). - Peter Luschny, Oct 04 2019
From A.H.M. Smeets, Apr 11 2020: (Start)
Equals Product_{i > 0} cos(Pi/2^(i+1)).
Equals Product_{i > 0} f_i(2)/2, where f_0(2) = 0, f_(i+1)(2) = sqrt(2+f_i(2)) for i >= 0; a formula by François Viète (16th century).
Note that cos(Pi/2^(i+1)) = f_i(2)/2, i >= 0. (End)
Equals lim_{n->infinity} (1/n) * Sum_{k=1..n} abs(sin(k * m)) for all nonzero integers m (conjectured). Works with cos also. - Dimitri Papadopoulos, Jul 17 2020
From Amiram Eldar, Sep 08 2020: (Start)
Equals Product_{k>=1} (1 - 1/(2*k)^2).
Equals lim_{k->oo} (2*k+1)*binomial(2*k,k)^2/2^(4*k).
Equals Sum_{k>=0} binomial(2*k,k)^2/((2*k+2)*2^(4*k)). (End)
Equals Sum_{k>=0} mu(4*k+1)/(4*k+1) (Nevanlinna, 1973). - Amiram Eldar, Dec 21 2020
Equals 1 - Sum_{n >= 1} (1/16^n) * binomial(2*n, n)^2 * 1/(2*n - 1). See Young, p. 264. - Peter Bala, Feb 17 2024
Equals binomial(0, 1/2) = binomial(0, -1/2). - Peter Luschny, Dec 05 2024
From Peter Bala, Dec 10 2024:(Start)
2/Pi = 1 - 1/(2 + 2/(1 + 6/(1 + 12/(1 + 20/(1 + ... + n*(n+1)/(1 + ...), a continued fraction representation due to Euler. See A346943.
Equals 1 - (1/2)*Sum_{n >= 0} A005566(n)*(-1/4)^n. (End)

A011545 a(n) is the integer whose decimal digits are the first n+1 decimal digits of Pi.

Original entry on oeis.org

3, 31, 314, 3141, 31415, 314159, 3141592, 31415926, 314159265, 3141592653, 31415926535, 314159265358, 3141592653589, 31415926535897, 314159265358979, 3141592653589793, 31415926535897932, 314159265358979323, 3141592653589793238, 31415926535897932384
Offset: 0

Views

Author

Keywords

Comments

Number of collisions occurring in a system consisting of an infinitely massive, rigid wall at the origin, a ball with mass m stationary at position x1 > 0, and a ball with mass (10^2n)m at position x2 > x1 and rolling toward the origin, assuming perfectly elastic collisions and no friction. - Richard Holmes, Jun 17 2021
Wolfgang Haken (1977) conjectured that no term of this sequence is a perfect square, and estimated the probability that this conjecture is false to be smaller than 10^-9. - Paolo Xausa, Jul 15 2023

References

  • Martin Gardner, Fractal Music, Hypercards and More: Mathematical Recreations from Scientific American Magazine, W. H. Freemand and Company, New York, NY, 1992, pp. 274-275.

Crossrefs

Programs

  • Mathematica
    s=RealDigits[Pi, 10, 30][[1]]; Table[FromDigits[Take[s, n]], {n, Length[s]}]
    (* Or: *)
    a[n_] := IntegerPart[Pi*10^n]; Table[a[n], {n, 0, 9}] (* Peter Luschny, Mar 15 2024 *)
  • PARI
    A011545(n)={localprec(n+3); Pi\10^-n} \\ M. F. Hasler, Mar 15 2024

Formula

a(n) = floor(Pi*10^n).

Extensions

Definition corrected by M. F. Hasler, Mar 15 2024

A197476 Decimal expansion of least x>0 having cos(x) = cos(2*x)^2.

Original entry on oeis.org

1, 1, 3, 7, 7, 4, 3, 9, 3, 2, 9, 0, 5, 4, 5, 5, 5, 5, 7, 7, 8, 9, 4, 4, 9, 8, 6, 0, 0, 5, 5, 0, 0, 8, 3, 4, 9, 5, 8, 4, 8, 0, 4, 2, 9, 0, 3, 4, 9, 5, 7, 5, 2, 7, 2, 0, 1, 5, 1, 8, 2, 5, 2, 6, 7, 3, 6, 0, 9, 8, 3, 4, 7, 3, 4, 7, 2, 7, 2, 1, 7, 7, 9, 8, 8, 0, 3, 2, 8, 0, 5, 1, 7, 6, 4, 4, 7, 2, 7
Offset: 1

Views

Author

Clark Kimberling, Oct 15 2011

Keywords

Comments

The Mathematica program includes a graph. Guide for least x>0 satisfying cos(b*x) = cos(c*x)^2, for selected b and c:
b.....c......x
1.....2.......A197476
1.....3.......A197477
1.....4.......A197478
2.....1.......A000796, Pi
2.....3.......A197479
2.....4.......A197480
3.....1.......A019669, Pi/2
3.....2.......A197482
3.....4.......A197483
4.....1.......A168229, arctan(sqrt(7))
4.....2.......A019669, Pi/2
4.....3.......A019679, Pi/12
4.....6.......A197485
4.....8.......A197486
6.....2.......A003881, Pi/4
6.....3.......A019670, Pi/3, tangency point
6.....4.......A197488
6.....8.......A197489
1.....4*Pi....A197334
1.....3*Pi....A197335
1.....2*Pi....A197490
1.....3*Pi/2..A197491
1.....Pi......A197492
1.....Pi/2....A197493
1.....Pi/3....A197494
1.....Pi/4....A197495
1.....2*Pi/3..A197506
2.....3*Pi....A197507
2.....3*Pi/2..A197508
2.....2*Pi....A197509
2.....Pi......A197510
2.....Pi/2....A197511
2.....Pi/3....A197512
2.....Pi/4....A197513
2.....Pi/6....A197514
Pi....1.......A197515
Pi....2.......A197516
Pi....1/2.....A197517
2*Pi..1.......A197518
2*Pi..2.......A197519
2*Pi..3.......A197520
Pi/2..Pi/3....A197521
Pi/2..Pi/6....3
Pi/3..1.......A197582
Pi/3..2.......A197583
Pi/3..1/3.....A197584
See A197133 for a guide for least x>0 satisfying sin(b*x) = sin(c*x)^2 for selected b and c.

Examples

			1.137743932905455557789449860055008349584...
		

Crossrefs

Cf. A197133.

Programs

  • Mathematica
    b = 1; c = 2; f[x_] := Cos[x]
    t = x /. FindRoot[f[b*x] == f[c*x]^2, {x, 1.1, 1.3}, WorkingPrecision -> 200]
    RealDigits[t] (* A197476 *)
    Plot[{f[b*x], f[c*x]^2}, {x, 0, 2}]
    (* or *)
    RealDigits[ ArcCos[ ((19 - 3*Sqrt[33])^(1/3) + (19 + 3*Sqrt[33])^(1/3) - 2)/6], 10, 99] // First (* Jean-François Alcover, Feb 19 2013 *)

Extensions

Edited by Georg Fischer, Jul 28 2021

A001203 Simple continued fraction expansion of Pi.

Original entry on oeis.org

3, 7, 15, 1, 292, 1, 1, 1, 2, 1, 3, 1, 14, 2, 1, 1, 2, 2, 2, 2, 1, 84, 2, 1, 1, 15, 3, 13, 1, 4, 2, 6, 6, 99, 1, 2, 2, 6, 3, 5, 1, 1, 6, 8, 1, 7, 1, 2, 3, 7, 1, 2, 1, 1, 12, 1, 1, 1, 3, 1, 1, 8, 1, 1, 2, 1, 6, 1, 1, 5, 2, 2, 3, 1, 2, 4, 4, 16, 1, 161, 45, 1, 22, 1, 2, 2, 1, 4, 1, 2, 24, 1, 2, 1, 3, 1, 2, 1
Offset: 0

Views

Author

Keywords

Comments

The first 5821569425 terms were computed by Eric W. Weisstein on Sep 18 2011.
The first 10672905501 terms were computed by Eric W. Weisstein on Jul 17 2013.
The first 15000000000 terms were computed by Eric W. Weisstein on Jul 27 2013.
The first 30113021586 terms were computed by Syed Fahad on Apr 27 2021.

Examples

			Pi = 3.1415926535897932384...
   = 3 + 1/(7 + 1/(15 + 1/(1 + 1/(292 + ...))))
   = [a_0; a_1, a_2, a_3, ...] = [3; 7, 15, 1, 292, ...].
		

References

  • P. Beckmann, "A History of Pi".
  • C. Brezinski, History of Continued Fractions and Padé Approximants, Springer-Verlag, 1991; pp. 151-152.
  • John H. Conway and Richard K. Guy, The Book of Numbers, New York: Springer-Verlag, 1996. See p. 186.
  • J. R. Goldman, The Queen of Mathematics, 1998, p. 50.
  • R. S. Lehman, A Study of Regular Continued Fractions. Report 1066, Ballistic Research Laboratories, Aberdeen Proving Ground, Maryland, Feb 1959.
  • G. Lochs, Die ersten 968 Kettenbruchnenner von Pi. Monatsh. Math. 67 1963 311-316.
  • C. D. Olds, Continued Fractions, Random House, NY, 1963; front cover of paperback edition.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • James J. Tattersall, Elementary Number Theory in Nine Chapters, Cambridge University Press, 1999, page 274.

Crossrefs

Cf. A000796 for decimal expansion. See A007541 or A033089, A033090 for records.

Programs

  • Maple
    cfrac (Pi,70,'quotients'); # Zerinvary Lajos, Feb 10 2007
  • Mathematica
    ContinuedFraction[Pi, 98]
  • PARI
    contfrac(Pi) \\ contfracpnqn(%) is also useful!
    
  • PARI
    { allocatemem(932245000); default(realprecision, 21000); x=contfrac(Pi); for (n=1, 20000, write("b001203.txt", n, " ", x[n])); } \\ Harry J. Smith, Apr 14 2009
    
  • Python
    import itertools as it; import sympy as sp
    list(it.islice(sp.continued_fraction_iterator(sp.pi),100))
    # Nicholas Stefan Georgescu, Feb 27 2023
  • Sage
    continued_fraction(RealField(333)(pi)) # Peter Luschny, Feb 16 2015
    

Extensions

Word "Simple" added to the title by David Covert, Dec 06 2016

A019670 Decimal expansion of Pi/3.

Original entry on oeis.org

1, 0, 4, 7, 1, 9, 7, 5, 5, 1, 1, 9, 6, 5, 9, 7, 7, 4, 6, 1, 5, 4, 2, 1, 4, 4, 6, 1, 0, 9, 3, 1, 6, 7, 6, 2, 8, 0, 6, 5, 7, 2, 3, 1, 3, 3, 1, 2, 5, 0, 3, 5, 2, 7, 3, 6, 5, 8, 3, 1, 4, 8, 6, 4, 1, 0, 2, 6, 0, 5, 4, 6, 8, 7, 6, 2, 0, 6, 9, 6, 6, 6, 2, 0, 9, 3, 4, 4, 9, 4, 1, 7, 8, 0, 7, 0, 5, 6, 8
Offset: 1

Views

Author

N. J. A. Sloane, Dec 11 1996

Keywords

Comments

With an offset of zero, also the decimal expansion of Pi/30 ~ 0.104719... which is the average arithmetic area of the 0-winding sectors enclosed by a closed Brownian planar path, of a given length t, according to Desbois, p. 1. - Jonathan Vos Post, Jan 23 2011
Polar angle (or apex angle) of the cone that subtends exactly one quarter of the full solid angle. See comments in A238238. - Stanislav Sykora, Jun 07 2014
60 degrees in radians. - M. F. Hasler, Jul 08 2016
Volume of a quarter sphere of radius 1. - Omar E. Pol, Aug 17 2019
Also smallest positive zero of Sum_{k>=1} cos(k*x)/k = -log(2*|sin(x/2)|). Proof of this identity: Sum_{k>=1} cos(k*x)/k = Re(Sum_{k>=1} exp(k*x*i)/k) = Re(-log(1-exp(x*i))) = -log(2*|sin(x/2)|), x != 2*m*Pi, where i = sqrt(-1). - Jianing Song, Nov 09 2019
The area of a circle circumscribing a unit-area regular dodecagon. - Amiram Eldar, Nov 05 2020

Examples

			Pi/3 = 1.04719755119659774615421446109316762806572313312503527365831486...
From _Peter Bala_, Nov 16 2016: (Start)
Case n = 1. Pi/3 = 18 * Sum_{k >= 0} (-1)^(k+1)( 1/((6*k - 5)*(6*k + 1)*(6*k + 7)) + 1/((6*k - 1)*(6*k + 5)*(6*k + 11)) ).
Using the methods of Borwein et al. we can find the following asymptotic expansion for the tails of this series: for N divisible by 6 there holds Sum_{k >= N/6} (-1)^(k+1)( 1/((6*k - 5)*(6*k + 1)*(6*k + 7)) + 1/((6*k - 1)*(6*k + 5)*(6*k + 11)) ) ~ 1/N^3 + 6/N^5 + 1671/N ^7 - 241604/N^9 + ..., where the sequence [1, 0, 6, 0, 1671, 0, -241604, 0, ...] is the sequence of coefficients in the expansion of ((1/18)*cosh(2*x)/cosh(3*x)) * sinh(3*x)^2 = x^2/2! + 6*x^4/4! + 1671*x^6/6! - 241604*x^8/8! + .... Cf. A024235, A278080 and A278195. (End)
		

References

  • Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, Section 8.3, p. 489.

Crossrefs

Integral_{x=0..oo} 1/(1+x^m) dx: A013661 (m=2), A248897 (m=3), A093954 (m=4), A352324 (m=5), this sequence (m=6), A352125 (m=8), A094888 (m=10).

Programs

Formula

A third of A000796, a sixth of A019692, the square root of A100044.
Sum_{k >= 0} (-1)^k/(6k+1) + (-1)^k/(6k+5). - Charles R Greathouse IV, Sep 08 2011
Product_{k >= 1}(1-(6k)^(-2))^(-1). - Fred Daniel Kline, May 30 2013
From Peter Bala, Feb 05 2015: (Start)
Pi/3 = Sum {k >= 0} binomial(2*k,k)*1/(2*k + 1)*(1/16)^k = 2F1(1/2,1/2;3/2;1/4). Similar series expansions hold for Pi^2 (A002388), Pi^3 (A091925) and Pi/(2*sqrt(2)) (A093954.)
The integer sequences A(n) := 4^n*(2*n + 1)! and B(n) := A(n)*( Sum {k = 0..n} binomial(2*k,k)*1/(2*k + 1)*(1/16)^k ) both satisfy the second-order recurrence equation u(n) = (20*n^2 + 4*n + 1)*u(n-1) - 8*(n - 1)*(2*n - 1)^3*u(n-2). From this observation we can obtain the continued fraction expansion Pi/3 = 1 + 1/(24 - 8*3^3/(89 - 8*2*5^3/(193 - 8*3*7^3/(337 - ... - 8*(n - 1)*(2*n - 1)^3/((20*n^2 + 4*n + 1) - ... ))))). Cf. A002388 and A093954. (End)
Equals Sum_{k >= 1} arctan(sqrt(3)*L(2k)/L(4k)) where L=A000032. See also A005248 and A056854. - Michel Marcus, Mar 29 2016
Equals Product_{n >= 1} A016910(n) / A136017(n). - Fred Daniel Kline, Jun 09 2016
Equals Integral_{x=-oo..oo} sech(x)/3 dx. - Ilya Gutkovskiy, Jun 09 2016
From Peter Bala, Nov 16 2016: (Start)
Euler's series transformation applied to the series representation Pi/3 = Sum_{k >= 0} (-1)^k/(6*k + 1) + (-1)^k/(6*k + 5) given above by Greathouse produces the faster converging series Pi/3 = (1/2) * Sum_{n >= 0} 3^n*n!*( 1/(Product_{k = 0..n} (6*k + 1)) + 1/(Product_{k = 0..n} (6*k + 5)) ).
The series given above by Greathouse is the case n = 0 of the more general result Pi/3 = 9^n*(2*n)! * Sum_{k >= 0} (-1)^(k+n)*( 1/(Product_{j = -n..n} (6*k + 1 + 6*j)) + 1/(Product_{j = -n..n} (6*k + 5 + 6*j)) ) for n = 0,1,2,.... Cf. A003881. See the example section for notes on the case n = 1.(End)
Equals Product_{p>=5, p prime} p/sqrt(p^2-1). - Dimitris Valianatos, May 13 2017
Equals A019699/4 or A019693/2. - Omar E. Pol, Aug 17 2019
Equals Integral_{x >= 0} (sin(x)/x)^4 = 1/2 + Sum_{n >= 0} (sin(n)/n)^4, by the Abel-Plana formula. - Peter Bala, Nov 05 2019
Equals Integral_{x=0..oo} 1/(1 + x^6) dx. - Bernard Schott, Mar 12 2022
Pi/3 = -Sum_{n >= 1} i/(n*P(n, 1/sqrt(-3))*P(n-1, 1/sqrt(-3))), where i = sqrt(-1) and P(n, x) denotes the n-th Legendre polynomial. The first twenty terms of the series gives the approximation Pi/3 = 1.04719755(06...) correct to 8 decimal places. - Peter Bala, Mar 16 2024
Equals Integral_{x >= 0} (2*x^2 + 1)/((x^2 + 1)*(4*x^2 + 1)) dx. - Peter Bala, Feb 12 2025

A053510 Decimal expansion of log(Pi).

Original entry on oeis.org

1, 1, 4, 4, 7, 2, 9, 8, 8, 5, 8, 4, 9, 4, 0, 0, 1, 7, 4, 1, 4, 3, 4, 2, 7, 3, 5, 1, 3, 5, 3, 0, 5, 8, 7, 1, 1, 6, 4, 7, 2, 9, 4, 8, 1, 2, 9, 1, 5, 3, 1, 1, 5, 7, 1, 5, 1, 3, 6, 2, 3, 0, 7, 1, 4, 7, 2, 1, 3, 7, 7, 6, 9, 8, 8, 4, 8, 2, 6, 0, 7, 9, 7, 8, 3, 6, 2, 3, 2, 7, 0, 2, 7, 5, 4, 8, 9, 7, 0, 7, 7, 0, 2, 0, 0, 9
Offset: 1

Views

Author

Hsu, Po-Wei (Benny) (arsene_lupin(AT)intekom.co.za), Jan 14 2000

Keywords

Comments

Also the least positive x such that sin(exp(x))==0.
Also real part of log(log(-1)). - Stanislav Sykora, May 11 2015
Cheng, Dietel, Herblot, Huang, Krieger, Marques, Mason, Mereb, & Wilson show, expanding a remark by S. Lang, that Schanuel's conjecture implies that this constant and Pi are algebraically independent over a set E which includes the algebraic numbers and (in a technical sense) allows any finite number of exponentiations, see the paper for details and a still more general result. - Charles R Greathouse IV, Dec 15 2019

Examples

			1.1447298858494001741...
		

References

  • Wolfram Research, 1991 Mathematica Conference, Elementary Tutorial Notes, Section 1, Introduction to Mathematica, Paul Abbott, page 25.

Crossrefs

Programs

Formula

Equals log(log(-1)) - (Pi/2)*I. - Stanislav Sykora, May 11 2015
Equals 1 + Sum_{n>=1} zeta(2*n)/(n*(2*n+1)*2^(2*n)), where zeta is the Riemann zeta function. - Vaclav Kotesovec, Mar 04 2016
Equals 3/2 - Sum_{k>=1} (zeta(2*k)-1)/(k+1). - Vaclav Kotesovec, Jun 19 2021

Extensions

More terms from James Sellers, Jan 20 2000

A014777 Position of the start of the first occurrence of n after the decimal point in Pi = 3.14159265358979323846264338327950288...

Original entry on oeis.org

32, 1, 6, 9, 2, 4, 7, 13, 11, 5, 49, 94, 148, 110, 1, 3, 40, 95, 424, 37, 53, 93, 135, 16, 292, 89, 6, 28, 33, 186, 64, 137, 15, 24, 86, 9, 285, 46, 17, 43, 70, 2, 92, 23, 59, 60, 19, 119, 87, 57, 31, 48, 172, 8, 191, 130, 210, 404, 10, 4, 127, 219, 20, 312, 22, 7, 117, 98, 605
Offset: 0

Views

Author

Paul Simon (paulsimn(AT)microtec.net) and Simon Plouffe

Keywords

Comments

This is A037008(1), A037000(1), A037001(1), A037002(1), A037003(1), A037004(1), A037005(1), A036974(1), A037006(1), A037007(1) etc.

Examples

			In the decimal expansion of Pi, the string "0" is found at position 32 counting from the first digit after the decimal point. The string "1" is found at position 1, the string "2" at position 6, the string "3" at position 9, etc.
		

Crossrefs

Programs

  • Magma
    k := 700; R := RealField(k); [ Position(IntegerToString(Round(10^k*(-3 + Pi(R)))), IntegerToString(n)) : n in [0..68] ]; /* Klaus Brockhaus, Feb 15 2007 */
    
  • Mathematica
    Table[-1 + SequencePosition[#, IntegerDigits@ n][[1, 1]], {n, 0, 68}] &@ First@ RealDigits@ N[Pi, 10^4] (* Michael De Vlieger, Aug 10 2016, Version 10.1 *)
  • PARI
    M14777=Map(); A014777(n)={iferr(mapget(M14777, n), E, my(i=if(n>9, A014777(n\10), 1), d=if(n, digits(n), [0]), j); while(i++, j=#d; until(!j, d[j]==A000796(i+j--) || next(2)); break); mapput(M14777, n, i--); i)} \\ M. F. Hasler, Jun 21 2022
    
  • Python
    from mpmath import mp
    def A014777(n):
        if not (i := A014777.pos.get(n, 0)):
            d = str(n); s = 2 # starting position for search
            while (i := A014777.pi.find(d, s)) < 1:
                s = max(len(A014777.pi) - len(d), 2)
                with mp.workdps(s + 99 if s < 500 else s*6//5): # new precision
                    A014777.pi = str(mp.pi - 5/mp.mpf(10)**mp.dps) # don't round
            i -= 1; A014777.pos[n] = i
        return i
    A014777.pi = ''; A014777.pos = {} # M. F. Hasler, Jun 21 2022

Extensions

More terms from Klaus Brockhaus, Feb 15 2007

A022844 a(n) = floor(n*Pi).

Original entry on oeis.org

0, 3, 6, 9, 12, 15, 18, 21, 25, 28, 31, 34, 37, 40, 43, 47, 50, 53, 56, 59, 62, 65, 69, 72, 75, 78, 81, 84, 87, 91, 94, 97, 100, 103, 106, 109, 113, 116, 119, 122, 125, 128, 131, 135, 138, 141, 144, 147, 150, 153, 157, 160, 163, 166, 169, 172, 175, 179, 182, 185, 188, 191, 194
Offset: 0

Views

Author

Keywords

Comments

Beatty sequence for Pi.
Differs from A127451 first at a(57). - L. Edson Jeffery, Dec 01 2013
These are the nonnegative integers m satisfying sin(m)*sin(m+1) <= 0. In general, the Beatty sequence of an irrational number r > 1 consists of the numbers m satisfying sin(m*x)*sin((m+1)*x) <= 0, where x = Pi/r. Thus the numbers m satisfying sin(m*x)*sin((m+1)*x) > 0 form the Beatty sequence of r/(1-r). - Clark Kimberling, Aug 21 2014
This can also be stated in terms of the tangent function. These are the nonnegative integers m such that tan(m/2)*tan(m/2+1/2) <= 0. In general, the Beatty sequence of an irrational number r > 1 consists of the numbers m satisfying tan(m*x/2)*tan((m+1)*x/2) <= 0, where x = Pi/r. Thus the numbers m satisfying tan(m*x/2)*tan((m+1)*x/2) > 0 form the Beatty sequence of r/(1-r). - Clark Kimberling, Aug 22 2014

Examples

			a(7)=21 because 7*Pi=21.9911... and a(8)=25 because 8*Pi=25.1327.... a(100000)=314159 because Pi=3.141592...
		

Crossrefs

First differences give A063438.

Programs

  • Magma
    R:=RieldField(10); [Floor(n*Pi(R)): n in [0..80]]; // G. C. Greubel, Sep 28 2018
  • Maple
    a:=n->floor(n*Pi): seq(a(n),n=0..70); # Muniru A Asiru, Sep 28 2018
  • Mathematica
    Floor[Pi Range[0,200]] (* Harvey P. Dale, Aug 27 2024 *)
  • PARI
    vector(80, n, n--; floor(n*Pi)) \\ G. C. Greubel, Sep 28 2018
    

Formula

a(n)/n converges to Pi because |a(n)/n - Pi| = |a(n) - n*Pi|/n < 1/n. - Hieronymus Fischer, Jan 22 2006

Extensions

Previous Mathematica program replaced by Harvey P. Dale, Aug 27 2024
Previous Showing 41-50 of 1164 results. Next