cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 87 results. Next

A009641 a(n) = Product_{i=0..6} floor((n+i)/7).

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 1, 2, 4, 8, 16, 32, 64, 128, 192, 288, 432, 648, 972, 1458, 2187, 2916, 3888, 5184, 6912, 9216, 12288, 16384, 20480, 25600, 32000, 40000, 50000, 62500, 78125, 93750, 112500, 135000, 162000, 194400, 233280, 279936, 326592, 381024
Offset: 0

Views

Author

Keywords

Comments

For n >= 7, a(n) is the maximal product of seven positive integers with sum n. - Wesley Ivan Hurt, Jun 29 2022

Crossrefs

Maximal product of k positive integers with sum n, for k = 2..10: A002620 (k=2), A006501 (k=3), A008233 (k=4), A008382 (k=5), A008881 (k=6), this sequence (k=7), A009694 (k=8), A009714 (k=9), A354600 (k=10).

Programs

Formula

a(n) = 2*a(n-1) - a(n-2) + 6*a(n-7) - 12*a(n-8) + 6*a(n-9) - 15*a(n-14) + 30*a(n-15) - 15*a(n-16) + 20*a(n-21) - 40*a(n-22) + 20*a(n-23) - 15*a(n-28) + 30*a(n-29) - 15*a(n-30) + 6*a(n-35) - 12*a(n-36) + 6*a(n-37) - a(n-42) + 2*a(n-43) - a(n-44). - Wesley Ivan Hurt, Jun 29 2022
a(7*n) = n^7 (A001015). - Bernard Schott, Nov 04 2022
Sum_{n>=7} 1/a(n) = 1 + zeta(7). - Amiram Eldar, Jan 10 2023

Extensions

a(40)-a(44) from Georg Fischer, Nov 07 2019

A017503 a(n) = (11*n + 9)^7.

Original entry on oeis.org

4782969, 1280000000, 27512614111, 230539333248, 1174711139837, 4398046511104, 13348388671875, 34792782221696, 80798284478113, 171382426877952, 337931541778439, 627485170000000, 1107984764452581, 1874584905187328, 3057125241215467, 4828861374436224
Offset: 0

Views

Author

Keywords

Crossrefs

Powers of the form (11*n+9)^m: A017497 (m=1), A017498 (m=2), A017499 (m=3), A017500 (m=4), A017501 (m=5), A017502 (m=6), this sequence (m=7), A017504 (m=8), A017505 (m=9), A017506 (m=10), A017607 (m=11), A017508 (m=12).
Subsequence of A001015.

Programs

  • GAP
    List([0..20], n-> (11*n+9)^7); # G. C. Greubel, Oct 28 2019
  • Magma
    [(11*n+9)^7: n in [0..20]]; // G. C. Greubel, Oct 28 2019
    
  • Maple
    A017503:=n->(11*n+9)^7; seq(A017503(n), n=0..50); # Wesley Ivan Hurt, Nov 20 2013
  • Mathematica
    Table[(11n+9)^7, {n,0,50}] (* Wesley Ivan Hurt, Nov 20 2013 *)
    LinearRecurrence[{8,-28,56,-70,56,-28,8,-1},{4782969,1280000000,27512614111,230539333248,1174711139837,4398046511104,13348388671875,34792782221696},20] (* Harvey P. Dale, Nov 12 2022 *)
  • PARI
    vector(21, n, (11*n-2)^7) \\ G. C. Greubel, Oct 28 2019
    
  • Sage
    [(11*n+9)^7 for n in (0..20)] # G. C. Greubel, Oct 28 2019
    

Formula

a(n) = A001015(A017497(n)). - Michel Marcus, Nov 21 2013
From G. C. Greubel, Oct 28 2019: (Start)
G.f.: (4782969 + 1241736248*x + 17406537243*x^2 + 46010574096*x^3 + 29404476791*x^4 + 4084486872*x^5 + 62747493*x^6 + 128*x^7)/(1-x)^8.
E.g.f.: (4782969 + 1275217031*x + 12478698540*x^2 + 25306117991*x^3 + 17188094770*x^4 + 4676276836*x^5 + 520838934*x^6 + 19487171*x^7)*exp(x). (End)

A300785 Triangle read by rows: T(n,k) = 140*k^3*(n-k)^3 - 14*k*(n-k) + 1; n >= 0, 0 <= k <= n.

Original entry on oeis.org

1, 1, 1, 1, 127, 1, 1, 1093, 1093, 1, 1, 3739, 8905, 3739, 1, 1, 8905, 30157, 30157, 8905, 1, 1, 17431, 71569, 101935, 71569, 17431, 1, 1, 30157, 139861, 241753, 241753, 139861, 30157, 1, 1, 47923, 241753, 472291, 573217, 472291, 241753, 47923, 1, 1, 71569, 383965, 816229, 1119721, 1119721, 816229, 383965, 71569, 1
Offset: 0

Views

Author

Kolosov Petro, Mar 12 2018

Keywords

Comments

From Kolosov Petro, Apr 12 2020: (Start)
Let A(m, r) = A302971(m, r) / A304042(m, r).
Let L(m, n, k) = Sum_{r=0..m} A(m, r) * k^r * (n - k)^r.
Then T(n, k) = L(3, n, k).
T(n, k) is symmetric: T(n, k) = T(n, n-k). (End)

Examples

			Triangle begins:
--------------------------------------------------------------------
k=   0      1       2       3       4       5       6      7     8
--------------------------------------------------------------------
n=0: 1;
n=1: 1,     1;
n=2: 1,   127,      1;
n=3: 1,  1093,   1093,      1;
n=4: 1,  3739,   8905,   3739,      1;
n=5: 1,  8905,  30157,  30157,   8905,      1;
n=6: 1, 17431,  71569, 101935,  71569,  17431,      1;
n=7: 1, 30157, 139861, 241753, 241753, 139861,  30157,     1;
n=8: 1, 47923, 241753, 472291, 573217, 472291, 241753, 47923,    1;
		

Crossrefs

Various cases of L(m, n, k): A287326 (m=1), A300656 (m=2), This sequence (m=3). See comments for L(m, n, k).
Row sums give A258806.

Programs

  • GAP
    T:=Flat(List([0..9], n->List([0..n], k->140*k^3*(n-k)^3 - 14*k*(n-k)+1))); # G. C. Greubel, Dec 14 2018
  • Magma
    /* As triangle */ [[140*k^3*(n-k)^3-14*k*(n-k)+1: k in [0..n]]: n in [0..10]]; // Bruno Berselli, Mar 21 2018
    
  • Maple
    T:=(n,k)->140*k^3*(n-k)^3-14*k*(n-k)+1: seq(seq(T(n,k),k=0..n),n=0..9); # Muniru A Asiru, Dec 14 2018
  • Mathematica
    T[n_, k_] := 140*k^3*(n - k)^3 - 14*k*(n - k) + 1; Column[
    Table[T[n, k], {n, 0, 10}, {k, 0, n}], Center] (* From Kolosov Petro, Apr 12 2020 *)
  • PARI
    t(n, k) = 140*k^3*(n-k)^3-14*k*(n-k)+1
    trianglerows(n) = for(x=0, n-1, for(y=0, x, print1(t(x, y), ", ")); print(""))
    /* Print initial 9 rows of triangle as follows */ trianglerows(9)
    
  • Sage
    [[140*k^3*(n-k)^3 - 14*k*(n-k)+1 for k in range(n+1)] for n in range(12)] # G. C. Greubel, Dec 14 2018
    

Formula

From Kolosov Petro, Apr 12 2020: (Start)
T(n, k) = 140*k^3*(n-k)^3 - 14*k*(n-k) + 1.
T(n, k) = 140*A094053(n, k)^3 + 0*A094053(n, k)^2 - 14*A094053(n, k)^1 + 1.
T(n+3, k) = 4*T(n+2, k) - 6*T(n+1, k) + 4*T(n, k) - T(n-1, k), for n >= k.
Sum_{k=1..n} T(n, k) = A001015(n).
Sum_{k=0..n} T(n, k) = A258806(n).
Sum_{k=0..n-1} T(n, k) = A001015(n).
Sum_{k=1..n-1} T(n, k) = A258808(n).
Sum_{k=1..n-1} T(n, k) = -A024005(n).
Sum_{k=1..r} T(n, k) = -A316387(3, r, 0)*n^0 + A316387(3, r, 1)*n^1 - A316387(3, r, 2)*n^2 + A316387(3, r, 3)*n^3. (End)
G.f.: (1 + 127*x^6*y^3 - 3*x*(1 + y) + 585*x^5*y^2*(1 + y) + 129*x^4*y*(1 + 17*y + y^2) + 3*x^2*(1 + 45*y + y^2) - x^3*(1 - 579*y - 579*y^2 + y^3))/((1 - x)^4*(1 - x*y)^4). - Stefano Spezia, Sep 14 2024

A016783 a(n) = (3*n+1)^7.

Original entry on oeis.org

1, 16384, 823543, 10000000, 62748517, 268435456, 893871739, 2494357888, 6103515625, 13492928512, 27512614111, 52523350144, 94931877133, 163840000000, 271818611107, 435817657216, 678223072849, 1028071702528
Offset: 0

Views

Author

Keywords

Comments

The inverse binomial transform is 1, 16383, 790776, 7578522, 27624240, 46539360, 36741600, 11022480, 0, 0,... (0 continued). - R. J. Mathar, May 07 2008

Crossrefs

Programs

Formula

G.f.: (1+16376x+692499x^2+3870352x^3+4890287x^4+1475736x^5+77101x^6 +128x^7)/ (1-x)^8. - R. J. Mathar, May 07 2008
E.g.f.: exp(x)*(2187*x^7+51030*x^6+387828*x^5+1151010*x^4 +1263087*x^3 +395388*x^2 +16383*x+1). - Robert Israel, Jun 15 2016
a(n) = A001015(A016777(n)). - Michel Marcus, Jun 16 2016
Sum_{n>=0} 1/a(n) = (147555*zeta(7) + 28*sqrt(3)*Pi^7)/295245. - Ilya Gutkovskiy, Jun 16 2016

A036085 Centered cube numbers: (n+1)^7 + n^7.

Original entry on oeis.org

1, 129, 2315, 18571, 94509, 358061, 1103479, 2920695, 6880121, 14782969, 29487171, 55318979, 98580325, 168162021, 276272879, 439294831, 678774129, 1022558705, 1506091771, 2173871739, 3081088541, 4295446429, 5899183335, 7991296871, 10689987049, 14135325801
Offset: 0

Views

Author

Keywords

Comments

Never prime, as a(n) = (2n+1)*(n^6 + 3n^5 + 9n^4 + 13n^3 + 11n^2 + 5n + 1). Semiprimes in the sequence begin for n = 1, 2, 8, 9, 21, 30, 33, 53, 65, 81, 83. - Jonathan Vos Post, Aug 26 2011

References

  • B. K. Teo and N. J. A. Sloane, Magic numbers in polygonal and polyhedral clusters, Inorgan. Chem. 24 (1985), 4545-4558.

Crossrefs

Programs

Formula

a(n) = A001015(n+1) + A001015(n).
G.f.: (1+x)*(x^6 + 120*x^5 + 1191*x^4 + 2416*x^3 + 1191*x^2 + 120*x + 1) / (x-1)^8. - R. J. Mathar, Aug 27 2011

A101104 a(1)=1, a(2)=12, a(3)=23, and a(n)=24 for n>=4.

Original entry on oeis.org

1, 12, 23, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24
Offset: 1

Views

Author

Cecilia Rossiter, Dec 15 2004

Keywords

Comments

Original name: The first summation of row 4 of Euler's triangle - a row that will recursively accumulate to the power of 4.

Crossrefs

For other sequences based upon MagicNKZ(n,k,z):
..... | n = 1 | n = 2 | n = 3 | n = 4 | n = 5 | n = 6 | n = 7
---------------------------------------------------------------------------
z = 0 | A000007 | A019590 | .......MagicNKZ(n,k,0) = A008292(n,k+1) .......
z = 1 | A000012 | A040000 | A101101 | thisSeq | A101100 | ....... | .......
z = 2 | A000027 | A005408 | A008458 | A101103 | A101095 | ....... | .......
z = 3 | A000217 | A000290 | A003215 | A005914 | A101096 | ....... | .......
z = 4 | A000292 | A000330 | A000578 | A005917 | A101098 | ....... | .......
z = 5 | A000332 | A002415 | A000537 | A000583 | A022521 | ....... | A255181
Cf. A101095 for an expanded table and more about MagicNKZ.

Programs

  • Mathematica
    MagicNKZ = Sum[(-1)^j*Binomial[n+1-z, j]*(k-j+1)^n, {j, 0, k+1}];Table[MagicNKZ, {n, 4, 4}, {z, 1, 1}, {k, 0, 34}]
    Join[{1, 12, 23},LinearRecurrence[{1},{24},56]] (* Ray Chandler, Sep 23 2015 *)

Formula

a(k) = MagicNKZ(4,k,1) where MagicNKZ(n,k,z) = Sum_{j=0..k+1} (-1)^j*binomial(n+1-z,j)*(k-j+1)^n (cf. A101095). That is, a(k) = Sum_{j=0..k+1} (-1)^j*binomial(4, j)*(k-j+1)^4.
a(1)=1, a(2)=12, a(3)=23, and a(n)=24 for n>=4. - Joerg Arndt, Nov 30 2014
G.f.: x*(1+11*x+11*x^2+x^3)/(1-x). - Colin Barker, Apr 16 2012

Extensions

New name from Joerg Arndt, Nov 30 2014
Original Formula edited and Crossrefs table added by Danny Rorabaugh, Apr 22 2015

A010803 15th powers: a(n) = n^15.

Original entry on oeis.org

0, 1, 32768, 14348907, 1073741824, 30517578125, 470184984576, 4747561509943, 35184372088832, 205891132094649, 1000000000000000, 4177248169415651, 15407021574586368, 51185893014090757, 155568095557812224
Offset: 0

Views

Author

Keywords

Crossrefs

Cf. A013673 (zeta(15)).
Cf. A000290 (squares), A000578 (cubes), A000583 (4th powers), A000584 (5th powers), A001015 (7th powers), A008455 (11th powers).

Programs

Formula

Totally multiplicative with a(p) = p^15 for prime p. Multiplicative with a(p^e) = p^(15e). - Jaroslav Krizek, Nov 01 2009
From Ilya Gutkovskiy, Feb 27 2017: (Start)
Dirichlet g.f.: zeta(s-15).
Sum_{n>=1} 1/a(n) = zeta(15) = A013673. (End)
Sum_{n>=1} (-1)^(n+1)/a(n) = 16383*zeta(15)/16384. - Amiram Eldar, Oct 08 2020

A155014 a(n) = floor(sqrt(n^7)).

Original entry on oeis.org

0, 1, 11, 46, 128, 279, 529, 907, 1448, 2187, 3162, 4414, 5985, 7921, 10267, 13071, 16384, 20256, 24743, 29897, 35777, 42439, 49943, 58350, 67723, 78125, 89620, 102275, 116159, 131338, 147885, 165869, 185363, 206442, 229179, 253651, 279936
Offset: 0

Views

Author

Keywords

Crossrefs

Cf. A001015 (n^7).

Programs

  • Magma
    [Floor(Sqrt(n^7)): n in [0..30]]; // G. C. Greubel, Dec 30 2017
  • Mathematica
    a={};Do[AppendTo[a,IntegerPart[(n^7)^(1/2)]],{n,0,5!}];a
    IntegerPart[(Sqrt[Range[0,40]])^7] (* Harvey P. Dale, Jan 19 2016 *)
    Table[Floor[Sqrt[n^7]], {n,0,30}] (* G. C. Greubel, Dec 30 2017 *)
  • PARI
    for(n=1,30, print1(floor(sqrt(n^7)), ", ")) \\ G. C. Greubel, Dec 30 2017
    

Extensions

Offset corrected by Alois P. Heinz, Sep 27 2014

A330486 Earliest start of a run of n numbers divisible by a seventh power larger than one.

Original entry on oeis.org

128, 76544, 2372890624, 390491792890623, 2083234733888734218749, 18962123650219836035505781245
Offset: 1

Views

Author

Jud McCranie, Dec 15 2019

Keywords

Comments

In De Koninck's book, a(4) was probable but not certain. It also gives probable terms for a(5) and a(6).
From David A. Corneth, Dec 18 2019: (Start)
a(6) <= 18962123650219836035505781245
a(7) <= 105574810222799317012520534891328125
a(8) <= 352061173826332779662070232460962002804453118
a(9) <= 74322635218313783849790472504951802188239215127109371
If any a(k) of these values are less than presented values, one of a(k) + m is divisible only by at least one p^7 for some p > 31, 0 <= m < k.
For a(6) this minimum prime is some prime p > 59. (End)

Examples

			2372890624 is divisible by 2^7, 2372890625 is divisible by 5^7, 2372890626 is divisible by 3^7.  This is the smallest number with this property, so a(3)=2372890624.
		

References

  • J.-M. De Koninck, Those Fascinating Numbers, Entry 242, p. 63, Amer. Math. Soc., 2009.

Crossrefs

Extensions

a(5) from Giovanni Resta, Dec 17 2019
a(6) from Giovanni Resta, Dec 19 2019

A016759 a(n) = (2*n + 1)^7.

Original entry on oeis.org

1, 2187, 78125, 823543, 4782969, 19487171, 62748517, 170859375, 410338673, 893871739, 1801088541, 3404825447, 6103515625, 10460353203, 17249876309, 27512614111, 42618442977, 64339296875, 94931877133, 137231006679, 194754273881, 271818611107, 373669453125, 506623120463
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    [(2*n+1)^7: n in [0..30]]; // Vincenzo Librandi, Sep 07 2011
    
  • Mathematica
    Table[(2*n+1)^7, {n,0,30}] (* G. C. Greubel, Sep 15 2018 *)
    LinearRecurrence[{8,-28,56,-70,56,-28,8,-1},{1,2187,78125,823543,4782969,19487171,62748517,170859375},20] (* Harvey P. Dale, Jul 09 2019 *)
  • PARI
    a(n) = (2*n+1)^7; \\ Michel Marcus, Mar 07 2016

Formula

a(n) = A001015(A005408(n)). - Michel Marcus, Mar 07 2016
G.f.: (1+x)*(x^6 + 2178*x^5 + 58479*x^4 + 201244*x^3 + 58479*x^2 + 2178*x + 1)/(x-1)^8. - R. J. Mathar, Jul 07 2017
From Amiram Eldar, Oct 10 2020: (Start)
Sum_{n>=0} 1/a(n) = 127*zeta(7)/128.
Sum_{n>=0} (-1)^n/a(n) = 61*Pi^7/184320 (A258814). (End)
Previous Showing 21-30 of 87 results. Next