A225479 Triangle read by rows, the ordered Stirling cycle numbers, T(n, k) = k!* s(n, k); n >= 0 k >= 0.
1, 0, 1, 0, 1, 2, 0, 2, 6, 6, 0, 6, 22, 36, 24, 0, 24, 100, 210, 240, 120, 0, 120, 548, 1350, 2040, 1800, 720, 0, 720, 3528, 9744, 17640, 21000, 15120, 5040, 0, 5040, 26136, 78792, 162456, 235200, 231840, 141120, 40320, 0, 40320, 219168, 708744, 1614816
Offset: 0
Examples
[n\k][0, 1, 2, 3, 4, 5, 6] [0] 1, [1] 0, 1, [2] 0, 1, 2, [3] 0, 2, 6, 6, [4] 0, 6, 22, 36, 24, [5] 0, 24, 100, 210, 240, 120, [6] 0, 120, 548, 1350, 2040, 1800, 720. ... T(4,2) = 22: The table below shows the compositions of 4 into two parts. n = 4 Composition Weight 4!*Weight 3 + 1 1/3 8 1 + 3 1/3 8 2 + 2 1/2*1/2 6 = = total 22
References
- R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics. Addison-Wesley, Reading, MA, 1990, table 245.
Links
- Vincenzo Librandi, Rows n = 0..50, flattened
- Digital Library of Mathematical Functions, Set Partitions: Stirling Numbers
- S. Eger, Restricted Weighted Integer Compositions and Extended Binomial Coefficients J. Integer. Seq., Vol. 16 (2013), Article 13.1.3
Crossrefs
Programs
-
Maple
A225479 := proc(n, k) option remember; if k > n or k < 0 then return(0) fi; if n = 0 and k = 0 then return(1) fi; k*A225479(n-1, k-1) + (n-1)*A225479(n-1, k) end; for n from 0 to 9 do seq(A225479(n, k), k = 0..n) od;
-
Mathematica
t[n_, k_] := k!*StirlingS1[n, k] // Abs; Table[t[n, k], {n, 0, 9}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jul 02 2013 *)
-
PARI
T(n,k)={k!*abs(stirling(n,k,1))} \\ Andrew Howroyd, Jul 27 2020
-
Sage
def A225479(n, k): return factorial(k)*stirling_number1(n, k) for n in (0..6): [A225479(n,k) for k in (0..n)]
Formula
For a recursion see the Maple program.
From Peter Bala, Sep 20 2013: (Start)
E.g.f.: 1/(1 + x*log(1 - t)) = 1 + x*t + (x + 2*x^2)*t^2/2! + (2*x + 6*x^2 + 6*x^3)*t^3/3! + ....
T(n,k) = n!*( the sum of the total weight of the compositions of n into k parts where each part i has weight 1/i ) (see Eger, Theorem 1). An example is given below. (End)
Comments