cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 101-110 of 422 results. Next

A035206 Number of multisets associated with least integer of each prime signature.

Original entry on oeis.org

1, 1, 2, 1, 3, 6, 1, 4, 12, 6, 12, 1, 5, 20, 20, 30, 30, 20, 1, 6, 30, 30, 15, 60, 120, 20, 60, 90, 30, 1, 7, 42, 42, 42, 105, 210, 105, 105, 140, 420, 140, 105, 210, 42, 1, 8, 56, 56, 56, 28, 168, 336, 336, 168, 168, 280, 840, 420, 840, 70, 280, 1120, 560, 168, 420, 56, 1, 9, 72
Offset: 0

Views

Author

Keywords

Comments

a(n,k) multiplied by A036038(n,k) yields A049009(n,k).
a(n,k) enumerates distributions of n identical objects (balls) into m of altogether n distinguishable boxes. The k-th partition of n, taken in the Abramowitz-Stegun (A-St) order, specifies the occupation of the m =m(n,k)= A036043(n,k) boxes. m = m(n,k) is the number of parts of the k-th partition of n. For the A-St ordering see pp.831-2 of the reference given in A117506. - Wolfdieter Lang, Nov 13 2007
The sequence of row lengths is p(n)= A000041(n) (partition numbers).
For the A-St order of partitions see the Abramowitz-Stegun reference given in A117506.
The corresponding triangle with summed row entries which belong to partitions of the same number of parts k is A103371. [Wolfdieter Lang, Jul 11 2012]

Examples

			n\k 1  2  3  4   5   6   7   8   9  10  11  12  13 14 15
0   1
1   1
2   2  1
3   3  6  1
4   4 12  6 12   1
5   5 20 20 30  30  20   1
6   6 30 30 15  60 120  20  60  90  30   1
7   7 42 42 42 105 210 105 105 140 420 140 105 210 42  1
...
Row No. 8:  8  56 56 56 28 168 336 336 168 168 280  840 420 840 70 280 1120 560 168 420 56 1
Row No. 9: 9 72 72 72 72 252 504 504 252 252 504 84 504 1512 1512 1512 1512 504 630 2520 1260 3780 630 504 2520 1680 252 756 72 1
[rewritten and extended table by _Wolfdieter Lang_, Jul 11 2012]
a(5,5) relates to the partition (1,2^2) of n=5. Here m=3 and 5 indistinguishable (identical) balls are put into boxes b1,...,b5 with m=3 boxes occupied; one with one ball and two with two balls.
Therefore a(5,5) = binomial(5,3)*3!/(1!*2!) = 10*3 = 30. _Wolfdieter Lang_, Nov 13 2007
		

Crossrefs

Cf. A001700 (row sums).
Cf. A103371(n-1, m-1) (triangle obtained after summing in every row the numbers with like part numbers m).

Programs

  • PARI
    C(sig)={my(S=Set(sig)); binomial(vecsum(sig), #sig)*(#sig)!/prod(k=1, #S, (#select(t->t==S[k], sig))!)}
    Row(n)={apply(C, [Vecrev(p) | p<-partitions(n)])}
    { for(n=0, 7, print(Row(n))) } \\ Andrew Howroyd, Oct 18 2020

Formula

a(n,k) = A048996(n,k)*binomial(n,m(n,k)),n>=1, k=1,...,p(n) and m(n,k):=A036043(n,k) gives the number of parts of the k-th partition of n.

Extensions

More terms from Joshua Zucker, Jul 27 2006
a(0)=1 prepended by Andrew Howroyd, Oct 18 2020

A076025 Expansion of g.f.: (1-3*x*C)/(1-4*x*C) where C = (1 - sqrt(1-4*x))/(2*x) = g.f. for Catalan numbers A000108.

Original entry on oeis.org

1, 1, 5, 26, 137, 726, 3858, 20532, 109361, 582782, 3106550, 16562668, 88314634, 470942044, 2511443268, 13393472616, 71428622337, 380940866574, 2031641406798, 10835261623356, 57787472903502, 308197667445204, 1643712737618748, 8766437439778776, 46754218658948922
Offset: 0

Views

Author

N. J. A. Sloane, Oct 29 2002

Keywords

Comments

From Paul Barry, Sep 23 2009: (Start)
The Hankel transform of this sequence is 3n+1 or 1,4,7,10,... (A016777).
The Hankel transform of the aeration of this sequence is A016777 doubled, that is, 1,1,4,4,7,7,...
In general, the Hankel transform of [x^n](1-r*xc(x))/(1-(r+1)*xc(x)) is rn+1, and that of the corresponding aerated sequence is the doubled sequence of rn+1. (End)

References

  • L. W. Shapiro and C. J. Wang, Generating identities via 2 X 2 matrices, Congressus Numerantium, 205 (2010), 33-46.

Crossrefs

Programs

  • Magma
    R:=PowerSeriesRing(Rationals(), 30); Coefficients(R!( (1- 3*Sqrt(1-4*x))/(2-4*Sqrt(1-4*x)) )); // G. C. Greubel, May 04 2019
    
  • Mathematica
    CoefficientList[Series[(1-3*Sqrt[1-4*x])/(2-4*Sqrt[1-4*x]),{x,0,30}],x] (* Vaclav Kotesovec, Dec 09 2013 *)
    Flatten[{1,Table[FullSimplify[(2*n)! * Hypergeometric2F1Regularized[1, n+1/2, n+2, 3/4] / (16*n!) + 2^(4*n-1)/3^(n+1)], {n,1,30}]}] (* Vaclav Kotesovec, Dec 09 2013 *)
  • PARI
    my(x='x+O('x^30)); Vec((1-3*sqrt(1-4*x))/(2-4*sqrt(1-4*x))) \\ G. C. Greubel, May 04 2019
    
  • Sage
    ((1-3*sqrt(1-4*x))/(2-4*sqrt(1-4*x))).series(x, 30).coefficients(x, sparse=False) # G. C. Greubel, May 04 2019

Formula

a(n+1) = Sum_{k=0..n} 3^k*binomial(2n+1, n-k)*2*(k+1)/(n+k+2). - Paul Barry, Jun 22 2004
a(n+1) = Sum_{k=0..n} A039598(n,k)*3^k. - Philippe Deléham, Mar 21 2007
a(n) = Sum_{k=0..n} A039599(n,k)*A015518(k), for n >= 1. - Philippe Deléham, Nov 22 2007
Let A be the Toeplitz matrix of order n defined by: A[i,i-1]=-1, A[i,j]=Catalan(j-i), (i<=j), and A[i,j]=0, otherwise. Then, for n>=1, a(n+1)=(-1)^n*charpoly(A,-4). - Milan Janjic, Jul 08 2010
From Gary W. Adamson, Jul 25 2011: (Start)
a(n) = upper left term in M^(n-1), M = an infinite square production matrix as follows:
5, 1, 0, 0, 0, ...
1, 1, 1, 0, 0, ...
1, 1, 1, 1, 0, ...
1, 1, 1, 1, 1, ...
... (End)
D-finite with recurrence: 3*n*a(n) +2*(9-14*n)*a(n-1) +32*(2*n-3)*a(n-2)=0. - R. J. Mathar, Nov 14 2011
a(n) ~ 2^(4*n-1)/3^(n+1). - Vaclav Kotesovec, Dec 09 2013
The sequence is the INVERT transform of A049027: (1, 4, 17, 74, 326, ...) and the third INVERT transform of the Catalan sequence (1, 2, 5, ...). - Gary W. Adamson, Jun 23 2015
O.g.f.: A(x) = (1 - 1/2*Sum_{n >= 1} binomial(2*n,n)*x^n)/(1 - Sum_{n >= 1} binomial(2*n,n)*x^n). - Peter Bala, Sep 01 2016

A126930 Inverse binomial transform of A005043.

Original entry on oeis.org

1, -1, 2, -3, 6, -10, 20, -35, 70, -126, 252, -462, 924, -1716, 3432, -6435, 12870, -24310, 48620, -92378, 184756, -352716, 705432, -1352078, 2704156, -5200300, 10400600, -20058300, 40116600, -77558760, 155117520, -300540195, 601080390, -1166803110
Offset: 0

Views

Author

Philippe Deléham, Mar 17 2007

Keywords

Comments

Successive binomial transforms are A005043, A000108, A007317, A064613, A104455. Hankel transform is A000012.
Moment sequence of the trace of the square of a random matrix in USp(2)=SU(2). If X=tr(A^2) is a random variable (a distributed with Haar measure) then a(n) = E[X^n]. - Andrew V. Sutherland, Feb 29 2008
From Tom Copeland, Nov 08 2014: (Start)
This array is one of a family of Catalan arrays related by compositions of the special fractional linear (Mobius) transformation P(x,t) = x/(1-t*x); its inverse Pinv(x,t) = P(x,-t); an o.g.f. of the Catalan numbers A000108, C(x) = [1-sqrt(1-4x)]/2; and its inverse Cinv(x) = x*(1-x). The Motzkin sums, or Riordan numbers, A005043 are generated by Mot(x)=C[P(x,1)]. One could, of course, choose the Riordan numbers as the parent sequence.
O.g.f.: G(x) = C[P[P(x,1),1]1] = C[P(x,2)] = (1-sqrt(1-4*x/(1+2*x)))/2 = x - x^2 + 2 x^3 - ... = Mot[P(x,1)].
Ginv(x) = Pinv[Cinv(x),2] = P[Cinv(x),-2] = x(1-x)/[1-2x(1-x)] = (x-x^2)/[1-2(x-x^2)] = x*A146559(x).
Cf. A091867 and A210736 for an unsigned version with a leading 1. (End)

Crossrefs

Programs

  • Maple
    egf := BesselI(0,2*x) - BesselI(1,2*x):
    seq(n!*coeff(series(egf,x,34),x,n),n=0..33); # Peter Luschny, Dec 17 2014
  • Mathematica
    CoefficientList[Series[(1 + 2 x - Sqrt[1 - 4 x^2])/(2 x (1 + 2 x)), {x, 0, 40}], x] (* Vincenzo Librandi, Sep 23 2013 *)
    Table[2^n Hypergeometric2F1[3/2, -n, 2, 2], {n, 0, 20}] (* Vladimir Reshetnikov, Nov 02 2015 *)
  • PARI
    x='x+O('x^50); Vec((1+2*x-sqrt(1-4*x^2))/(2*x*(1+2*x))) \\ Altug Alkan, Nov 03 2015

Formula

a(n) = (-1)^n*C(n, floor(n/2)) = (-1)^n*A001405(n).
a(2*n) = A000984(n), a(2*n+1) = -A001700(n).
a(n) = (1/Pi)*Integral_{t=0..Pi}(2cos(2t))^n*2sin^2(t) dt. - Andrew V. Sutherland, Feb 29 2008, Mar 09 2008
a(n) = (-2)^n + Sum_{k=0..n-1} a(k)*a(n-1-k), a(0)=1. - Philippe Deléham, Dec 12 2009
G.f.: (1+2*x-sqrt(1-4*x^2))/(2*x*(1+2*x)). - Philippe Deléham, Mar 01 2013
O.g.f.: (1 + x*c(x^2))/(1 + 2*x), with the o.g.f. c(x) for the Catalan numbers A000108. From the o.g.f. of the Riordan type Catalan triangle A053121. This is the rewritten g.f. given in the previous formula. This is G(-x) with the o.g.f. G(x) of A001405. - Wolfdieter Lang, Sep 22 2013
D-finite with recurrence (n+1)*a(n) +2*a(n-1) +4*(-n+1)*a(n-2)=0. - R. J. Mathar, Dec 04 2013
Recurrence (an alternative): (n+1)*a(n) = 8*(n-2)*a(n-3) + 4*(n-2)*a(n-2) + 2*(-n-1)*a(n-1), n>=3. - Fung Lam, Mar 22 2014
Asymptotics: a(n) ~ (-1)^n*2^(n+1/2)/sqrt(n*Pi). - Fung Lam, Mar 22 2014
E.g.f.: BesselI(0,2*x) - BesselI(1,2*x). - Peter Luschny, Dec 17 2014
a(n) = 2^n*hypergeom([3/2,-n], [2], 2). - Vladimir Reshetnikov, Nov 02 2015
G.f. A(x) satisfies: A(x) = 1/(1 + 2*x) + x*A(x)^2. - Ilya Gutkovskiy, Jul 10 2020

A130293 Number of necklaces of n beads with up to n colors, with cyclic permutation {1,..,n} of the colors taken to be equivalent.

Original entry on oeis.org

1, 2, 5, 20, 129, 1316, 16813, 262284, 4783029, 100002024, 2357947701, 61917406672, 1792160394049, 56693913450992, 1946195068379933, 72057594071484456, 2862423051509815809, 121439531097819321972, 5480386857784802185957, 262144000000051200072048, 13248496640331026150086281
Offset: 1

Views

Author

Wouter Meeussen, Aug 06 2007, Aug 14 2007

Keywords

Comments

From Olivier Gérard, Aug 01 2016: (Start)
Equivalent to the definition: number of classes of endofunctions of [n] under rotation and translation mod n.
Classes can be of size between n and n^2 depending on divisibility properties of n.
n n 2n 3n ... n^2
--------------------------
1 1
2 2
3 3 2
4 4 2 14
5 5 0 124
6 6 6 22 1282
7 7 0 16806
For prime n, the only possible class sizes are n and n^2, the classes of size n are the n arithmetical progression modulo n so #(c-n)=n, #(c-n^2)=(n^n - n*n)/n^2 = n^(n-2)-1 and a(n) = n^(n-2)+n-1.
(End)

Examples

			The 5 necklaces for n=3 are: 000, 001, 002, 012 and 021.
		

Crossrefs

Cf. A081720.
Cf. A000312: All endofunctions.
Cf. A000169: Classes under translation mod n.
Cf. A001700: Classes under sort.
Cf. A056665: Classes under rotation.
Cf. A168658: Classes under complement to n+1.
Cf. A130293: Classes under translation and rotation.
Cf. A081721: Classes under rotation and reversal.
Cf. A275549: Classes under reversal.
Cf. A275550: Classes under reversal and complement.
Cf. A275551: Classes under translation and reversal.
Cf. A275552: Classes under translation and complement.
Cf. A275553: Classes under translation, complement and reversal.
Cf. A275554: Classes under translation, rotation and complement.
Cf. A275555: Classes under translation, rotation and reversal.
Cf. A275556: Classes under translation, rotation, complement and reversal.
Cf. A275557: Classes under rotation and complement.
Cf. A275558: Classes under rotation, complement and reversal.

Programs

  • Mathematica
    tor8={};ru8=Thread[ i_ ->Table[ Mod[i+k,8],{k,8}]];Do[idi=IntegerDigits[k,8,8];try= Function[w, First[temp=Union[Join @@(Table[RotateRight[w,k],{k,8}]/.#&)/@ ru8]]][idi];If[idi===try, tor8=Flatten[ {tor8,{{Length[temp],idi}}},1] ],{k,0,8^8-1}];
    a[n_]:=Sum[d EulerPhi[d]n^(n/d),{d,Divisors[n]}]/n^2; Array[a,21] (* Stefano Spezia, May 21 2024 *)
  • PARI
    a(n) = sumdiv(n, d, d*eulerphi(d)*n^(n/d))/n^2; \\ Michel Marcus, Aug 05 2016

Formula

a(n) = (1/n^2)*Sum_{d|n} d*phi(d)*n^(n/d). - Vladeta Jovovic, Aug 14 2007, Aug 24 2007

A275558 Number of classes of endofunctions of [n] under rotation, complement to n+1 and reversal.

Original entry on oeis.org

1, 1, 2, 6, 31, 195, 2182, 30100, 529674, 10778125, 250155012, 6484839306, 185757443582, 5824538174455, 198428907905336, 7298232189810696, 288230385949610020, 12165298000307625609, 546477890436083284338, 26031837576091248872110, 1310720000028416000168044
Offset: 0

Views

Author

Olivier Gérard, Aug 05 2016

Keywords

Comments

Classes can be of size 1,2,4, n, 2n or 4n.
.
n 1 2 4 n 2n 4n
---------------------------------
1 1
2 0 2
3 1 1 4
4 0 4 4 0 17 6
5 1 2 0 0 72 120
6 0 6 6 30 410 1730
7 1 3 0 0 1368 28728
.
For n odd, the constant function (n+1)/2 is the only stable by rotation, complement and reversal. So #c1=1.
For n even, there is no stable function, so #c1=0, but constant functions are grouped two by two making n/2 classes of size 2. Functions alternating a value and its complement are also grouped two by two, making another n/2 classes. This gives #c2=n.

Crossrefs

Cf. A000312 All endofunctions
Cf. A000169 Classes under translation mod n
Cf. A001700 Classes under sort
Cf. A056665 Classes under rotation
Cf. A168658 Classes under complement to n+1
Cf. A130293 Classes under translation and rotation
Cf. A081721 Classes under rotation and reversal
Cf. A275549 Classes under reversal
Cf. A275550 Classes under reversal and complement
Cf. A275551 Classes under translation and reversal
Cf. A275552 Classes under translation and complement
Cf. A275553 Classes under translation, complement and reversal
Cf. A275554 Classes under translation, rotation and complement
Cf. A275555 Classes under translation, rotation and reversal
Cf. A275556 Classes under translation, rotation, complement and reversal
Cf. A275557 Classes under rotation and complement

Programs

  • PARI
    \\ see A056391 for Polya enumeration functions
    a(n) = NonequivalentSorts(DihedralPerms(n), ReversiblePerms(n)); \\ Andrew Howroyd, Sep 30 2017

Extensions

Terms a(8) and beyond from Andrew Howroyd, Sep 30 2017

A305161 Number A(n,k) of compositions of n into exactly n nonnegative parts <= k; square array A(n,k), n>=0, k>=0, read by antidiagonals.

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 3, 1, 0, 1, 1, 3, 7, 1, 0, 1, 1, 3, 10, 19, 1, 0, 1, 1, 3, 10, 31, 51, 1, 0, 1, 1, 3, 10, 35, 101, 141, 1, 0, 1, 1, 3, 10, 35, 121, 336, 393, 1, 0, 1, 1, 3, 10, 35, 126, 426, 1128, 1107, 1, 0, 1, 1, 3, 10, 35, 126, 456, 1520, 3823, 3139, 1, 0
Offset: 0

Views

Author

Alois P. Heinz, Aug 17 2018

Keywords

Examples

			A(3,1) = 1: 111.
A(3,2) = 7: 012, 021, 102, 111, 120, 201, 210.
A(3,3) = 10: 003, 012, 021, 030, 102, 111, 120, 201, 210, 300.
A(4,2) = 19: 0022, 0112, 0121, 0202, 0211, 0220, 1012, 1021, 1102, 1111, 1120, 1201, 1210, 2002, 2011, 2020, 2101, 2110, 2200.
A(4,3) = 31: 0013, 0022, 0031, 0103, 0112, 0121, 0130, 0202, 0211, 0220, 0301, 0310, 1003, 1012, 1021, 1030, 1102, 1111, 1120, 1201, 1210, 1300, 2002, 2011, 2020, 2101, 2110, 2200, 3001, 3010, 3100.
Square array A(n,k) begins:
  1, 1,    1,    1,    1,    1,    1,    1,    1, ...
  0, 1,    1,    1,    1,    1,    1,    1,    1, ...
  0, 1,    3,    3,    3,    3,    3,    3,    3, ...
  0, 1,    7,   10,   10,   10,   10,   10,   10, ...
  0, 1,   19,   31,   35,   35,   35,   35,   35, ...
  0, 1,   51,  101,  121,  126,  126,  126,  126, ...
  0, 1,  141,  336,  426,  456,  462,  462,  462, ...
  0, 1,  393, 1128, 1520, 1667, 1709, 1716, 1716, ...
  0, 1, 1107, 3823, 5475, 6147, 6371, 6427, 6435, ...
		

Crossrefs

Rows n=0-1 give: A000012, A057427.
Main diagonal gives A088218 or A001700(n-1) for n>0.
A(n+1,n) gives A048775.
Cf. A180281.

Programs

  • Maple
    A:= (n, k)-> coeff(series(((x^(k+1)-1)/(x-1))^n, x, n+1), x, n):
    seq(seq(A(n, d-n), n=0..d), d=0..12);
    # second Maple program:
    b:= proc(n, i, k) option remember; `if`(n=0, 1,
          `if`(i=0, 0, add(b(n-j, i-1, k), j=0..min(n, k))))
        end:
    A:= (n, k)-> b(n$2, k):
    seq(seq(A(n, d-n), n=0..d), d=0..12);
  • Mathematica
    b[n_, i_, k_] := b[n, i, k] = If[n == 0, 1, If[i == 0, 0, Sum[b[n - j, i - 1, k], {j, 0, Min[n, k]}]]];
    A[n_, k_] := b[n, n, k];
    Table[A[n, d - n], {d, 0, 12}, {n, 0, d}] // Flatten (* Jean-François Alcover, May 05 2019, after Alois P. Heinz *)

Formula

A(n,k) = [x^n] ((x^(k+1)-1)/(x-1))^n.
A(n,k) - A(n,k-1) = A180281(n,k) for n,k > 0.
A(n,k) = A(n,n) for all k >= n.

A002696 Binomial coefficients C(2n,n-3).

Original entry on oeis.org

1, 8, 45, 220, 1001, 4368, 18564, 77520, 319770, 1307504, 5311735, 21474180, 86493225, 347373600, 1391975640, 5567902560, 22239974430, 88732378800, 353697121050, 1408831480056, 5608233007146, 22314239266528, 88749815264600, 352870329957600, 1402659561581460
Offset: 3

Views

Author

Keywords

Comments

Number of lattice paths from (0,0) to (n,n) with steps E=(1,0) and N=(0,1) which touch or cross the line x-y=3. - Herbert Kociemba, May 23 2004

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 828.
  • C. Lanczos, Applied Analysis. Prentice-Hall, Englewood Cliffs, NJ, 1956, p. 517.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Diagonal 7 of triangle A100257.
Column k=1 of A263776.
Cf. A001622.
Cf. binomial(2*n+m, n): A000984 (m = 0), A001700 (m = 1), A001791 (m = 2), A002054 (m = 3), A002694 (m = 4), A003516 (m = 5), A030053 - A030056, A004310 - A004318.

Programs

Formula

G.f.: (1-sqrt(1-4*z))^6/(64*z^3*sqrt(1-4*z)). - Emeric Deutsch, Jan 28 2004
a(n) = Sum_{k=0..n} C(n, k)*C(n, k+3). - Hermann Stamm-Wilbrandt, Aug 17 2015
From Robert Israel, Aug 19 2015: (Start)
(n-2)*(n+4)*a(n+1) = (2*n+2)*(2*n+1)*a(n).
E.g.f.: I_3(2*x) * exp(2*x) where I_3 is a modified Bessel function. (End)
From Amiram Eldar, Aug 27 2022: (Start)
Sum_{n>=3} 1/a(n) = 3/4 + 2*Pi/(9*sqrt(3)).
Sum_{n>=3} (-1)^(n+1)/a(n) = 444*log(phi)/(5*sqrt(5)) - 1093/60, where phi is the golden ratio (A001622). (End)
G.f.: hypergeom([7/2,4],[7],4*x). - Karol A. Penson, Apr 24 2024
From Peter Bala, Oct 13 2024: (Start)
a(n) = Integral_{x = 0..4} x^n * w(x) dx, where the weight function w(x) = 1/(2*Pi) * (x^3 - 6*x^2 + 9*x - 2)/sqrt(x*(4 - x)).
G.f: x^3 * B(x) * C(x)^6, where B(x) = 1/sqrt(1 - 4*x) is the g.f. of the central binomial coefficients A000984 and C(x) = (1 - sqrt(1 - 4*x))/(2*x) is the g.f. of the Catalan numbers A000108. (End)

Extensions

More terms from Emeric Deutsch, Feb 18 2004

A048775 Number of (partially defined) monotone maps from intervals of 1..n to 1..n.

Original entry on oeis.org

1, 7, 31, 121, 456, 1709, 6427, 24301, 92368, 352705, 1352066, 5200287, 20058286, 77558745, 300540179, 1166803093, 4537567632, 17672631881, 68923264390, 269128937199, 1052049481838, 4116715363777, 16123801841526, 63205303218851, 247959266474026, 973469712824029
Offset: 1

Views

Author

Stephen C. Power (s.power(AT)lancaster.ac.uk)

Keywords

Comments

More precisely, number of ways to pick a subinterval [i,i+1,...,j] of [1..n] and to map it to a nondecreasing sequence of the same length with symbols from [1..n]. If s is the length of the subinterval (1 <= s <= n), there are n+1-s ways to choose the subinterval and binomial(n+s-1,s) ways to choose the sequence, for a total of Sum_{s=1..n} (n+1-s)*binomial(n+s-1,s) = binomial(2*n+1, n+1)-(n+1) ways. - N. J. A. Sloane, Feb 02 2009
Arises in the classification of endomorphisms of certain finite-dimensional operator algebras.
Equals binomial transform of A163765 (using a different offset). - Gary W. Adamson, Aug 03 2009
From David Spivak, Dec 12 2012: (Start)
Number of morphisms of full subcategories of Simplex category.
A finite nonempty linear order of size m is isomorphic to [m]:={0,1,...,m}. The weakly monotone maps [k]->[m] form a category, often called the simplex category and denoted Delta. For m starting at -1, let D_m denote the full subcategory of Delta, spanned by objects {[0],[1],...,[m]}. The number of morphisms in D_m is a(n+1).
(End)
This sequence is the bisection of the 1st column of the triangle defined by T(n,k) = 1 if n=0 else T(n,k) = binomial(n-1,k2-1)-binomial(k2,k-1) where k2 = binomial(n,k) mod n. - Nikita Sadkov, Oct 08 2018

Examples

			a(2) = 7 because there are two maps with domain {1}, two with domain {2} and three maps with domain {1,2}.
When n=2, we are looking at the full subcategory of Delta spanned by [0],[1]. There is one monotone map [0]->[0], one monotone map [1]->[0], two monotone maps [0]->[1], and three monotone maps [1]->[1] (namely (0,0), (0,1), (1,1)). The total is 1+1+2+3=7. - _David Spivak_, Dec 12 2013
		

Crossrefs

Programs

  • GAP
    List([1..26],n->Binomial(2*n+1,n+1)-(n+1)); # Muniru A Asiru, Oct 09 2018
    
  • Magma
    [Binomial(2*n+1, n+1)-(n+1): n in [1..30]]; // Vincenzo Librandi, Oct 10 2018
  • Maple
    seq(coeff(series(factorial(n)*(exp(2*x)*(BesselI(0,2*x)+BesselI(1,2*x))-exp(x)*(1+x)),x,n+1), x, n), n = 1 .. 26); # Muniru A Asiru, Oct 09 2018
  • Mathematica
    Table[Binomial[2n+1,n+1]-(n+1),{n,30}] (* Harvey P. Dale, Feb 08 2013 *)
    From Stefano Spezia, Oct 09 2018: (Start)
    a[n_]:=(1/2)*Sum[Sum[(i+j) !/(i !*j !),{i,1,n}],{j,1,n}]; Array[a, 50] (* or *)
    CoefficientList[Series[((1/(2*x))*(1/Sqrt[1-4*x]-1) - 1/(1-x)^2)/x, {x, 0, 50}], x] (* or *)
    CoefficientList[Series[(Exp[2*x]*(BesselI[0,2*x] + BesselI[1,2*x]) - Exp[x]*(1 + x))/x, {x, 0, 50}], x]*Table[(k+1) !, {k, 0, 50}]
    (End)
  • PARI
    Vec((1/(2*x))*(1/sqrt(1-4*x)-1) - 1/(1-x)^2 + O(x^15)) \\ Stefano Spezia, Oct 09 2018
    

Formula

a(n) = binomial(2*n+1, n+1)-(n+1) = A001700(n)-n-1.
a(n) = (1/2)*Sum[Sum[(i+j)!/(i!*j!),{i,1,n}],{j,1,n}]. - Alexander Adamchuk, Jul 04 2006; corrected by N. J. A. Sloane, Jan 30 2009
G.f.: (1/(2*x))*(1/sqrt(1-4*x)-1) - 1/(1-x)^2. - N. J. A. Sloane, Feb 02 2009
a(n) = Sum_{k=0..n} (n-k+1)*C(n+k+1,n) = [x^n](1+x)^n*F(-n-2,-n-1;1;x/(1+x)). - Paul Barry, Oct 01 2010
Conjecture: (n+1)*a(n) + (-7*n-2)*a(n-1) + 3*(5*n-3)*a(n-2) + (-13*n+20)*a(n-3) + 2*(2*n-5)*a(n-4) = 0. - R. J. Mathar, Nov 30 2012
a(n) = (1/2) * Sum_{k=1..n} Sum_{i=1..n} C(k+i,i). - Wesley Ivan Hurt, Sep 19 2017
E.g.f.: exp(2*x)*(BesselI(0,2*x) + BesselI(1,2*x)) - exp(x)*(1 + x). - Ilya Gutkovskiy, Sep 19 2017

Extensions

More terms from N. J. A. Sloane, Dec 15 2008

A112029 a(n) = Sum_{k=0..n} binomial(n+k, k)^2.

Original entry on oeis.org

1, 5, 46, 517, 6376, 82994, 1119210, 15475205, 217994860, 3115374880, 45035696036, 657153097330, 9663914317396, 143050882063262, 2129448324373546, 31853280798384645, 478503774600509620, 7215090439396842572, 109154411037070011504, 1656268648035559711392
Offset: 0

Views

Author

N. J. A. Sloane, Nov 28 2005

Keywords

Crossrefs

Programs

  • Magma
    [(&+[Binomial(n+j, j)^2: j in [0..n]]): n in [0..20]]; // G. C. Greubel, Jul 06 2021
    
  • Maple
    f := 64*x^2/(16*x-1); S := sqrt(x)*sqrt(4-x);
    H := ((10*x-5/8)*hypergeom([1/4,1/4],[1],f)-(21*x-21/8)*hypergeom([1/4,5/4],[1],f))/(S*(1-16*x)^(5/4));
    ord := 30;
    ogf := series(int(series(H,x=0,ord),x)/S,x=0,ord);
    # Mark van Hoeij, Mar 27 2013
  • Mathematica
    Table[Sum[Binomial[n+k,k]^2, {k,0,n}], {n,0,20}] (* Vaclav Kotesovec, Nov 23 2012 *)
  • PARI
    a(n) = sum(k=0, n, binomial(n+k, k)^2); \\ Michel Marcus, Jul 07 2021
  • Sage
    [sum(binomial(n+j, j)^2 for j in (0..n)) for n in (0..20)] # G. C. Greubel, Jul 06 2021
    

Formula

a(n) ~ 2^(4*n+2)/(3*Pi*n). - Vaclav Kotesovec, Nov 23 2012
Recurrence: 2*(2*n+1)*(21*n-13)*n^2*a(n) = (1365*n^4 - 1517*n^3 + 240*n^2 + 216*n - 64)*a(n-1) - 4*(n-1)*(2*n-1)^2*(21*n+8)*a(n-2). - Vaclav Kotesovec, Nov 23 2012
G.f.: see Maple code. - Mark van Hoeij, Mar 27 2013
a(p-1) == 1 (mod p^3) for all primes p >= 5. See the comments in A173774. - Peter Bala, Jul 12 2024
a(n-1) = 1/(4*n) * binomial(2*n, n)^2 * ( 1 + 3*((n - 1)/(n + 1))^3 + 5*((n - 1)*(n - 2)/((n + 1)*(n + 2)))^3 + 7*((n - 1)*(n - 2)*(n - 3)/((n + 1)*(n + 2)*(n + 3)))^3 + ... ) for n >= 1. - Peter Bala, Jul 22 2024
a(m*p^r - 1) == a(m*p^(r-1) - 1) (mod p^(3*r)) for all primes p >= 5 and positive integers m and r. See Coster, Theorem 4. - Peter Bala, Nov 29 2024
a(n) = A110197(2n,n). - Alois P. Heinz, Mar 21 2025

A178792 Dot product of the rows of triangle A046899 with vector (1,2,4,8,...) (= A000079).

Original entry on oeis.org

1, 5, 31, 209, 1471, 10625, 78079, 580865, 4361215, 32978945, 250806271, 1916280833, 14698053631, 113104519169, 872801042431, 6751535300609, 52337071357951, 406468580343809, 3162019821780991, 24634626678980609, 192179216026959871
Offset: 0

Views

Author

Joseph Abate, Jun 15 2010

Keywords

Comments

Hankel transform is A133460.

Examples

			a(3) = (1,4,10,20)dot(1,2,4,8) = 209.
		

Crossrefs

Row sums of A091811.

Programs

  • Maple
    a := n -> binomial(2*n+2,n+1)*hypergeom([-n, n + 1], [n + 2], -1)/2:
    seq(simplify(a(n)), n=0..20); # Peter Luschny, Feb 21 2017
  • Mathematica
    CoefficientList[Series[(3-Sqrt[1-8*x])/(2*(1+x)*Sqrt[1-8*x]), {x, 0, 20}], x] (* Vaclav Kotesovec, Oct 20 2012 *)
    Table[Sum[2^k*Binomial[n + k, k], {k, 0, n}], {n, 0, 20}] (* Michael De Vlieger, Oct 28 2016 *)
    a[n_] := (-1)^(n + 1) - 2^(n + 1) (2n + 1) Binomial[2n, n] Hypergeometric2F1[1, 2n + 2, n + 2, 2]/(n + 1); Array[a, 22, 0] (* Robert G. Wilson v, Jul 21 2018 *)

Formula

a(n) = Sum_{k = 0..n} A046899(n,k)*2^k = Sum_{k = 0..n} 2^k * binomial(n+k,k).
G.f.: (1/3)*(4/sqrt(1 - 8*x) - 1/(1 - x*c(2*x))) with c(x) the g.f. of the Catalan numbers A000108.
a(n) = (1/3)*(4*2^n*A000984(n) - A064062(n)).
a(n) + a(n+1) = 6*2^n*A001700(n).
O.g.f.: (3 - sqrt(1 - 8*x))/(2*(1 + x)*sqrt(1 - 8*x)). - Peter Bala, Apr 10 2012
a(n) = 2^n *binomial(2+2*n,1+n)*2F1(1, 2+2*n; 2+n;-1). - Olivier Gérard, Aug 19 2012
D-finite with recurrence n*a(n) = (7*n - 4)*a(n-1) + 4*(2*n - 1)*a(n-2). - Vaclav Kotesovec, Oct 20 2012
a(n) ~ 2^(3n+2)/(3*sqrt(Pi*n)). - Vaclav Kotesovec, Oct 20 2012
a(n) = Sum_{k = 0..n} binomial(k+n,n) * binomial(2*n+1,n-k). - Vladimir Kruchinin, Oct 28 2016
a(n) = 1/2*(n + 1)*binomial(2*n+2,n+1)*Sum_{k = 0..n} binomial(n,k)/(n + k + 1). - Peter Bala, Feb 21 2017
a(n) = binomial(2*n+2,n+1)*hypergeom([-n, n+1], [n+2], -1)/2. - Peter Luschny, Feb 21 2017
a(n) = (-1)^(n+1) - 2^(n+1)*(2*n+1)*binomial(2*n,n)*hypergeom([1, 2*n+2], [n+2], 2)/(n+1). - John M. Campbell, Jul 14 2018
From Akiva Weinberger, Dec 06 2024: (Start)
a(n) = (2*n + 1)!/(n!^2) * Integral_{t=0..1} (t + t^2)^n dt.
a(n) = (Integral_{t=0..1} (t + t^2)^n dt) / (Integral_{t=0..1} (t - t^2)^n dt). (End)
a(n) = (-1)^n * Sum_{k=0..n} binomial(2*n+1,k) * (-2)^k. - André M. Timpanaro, Dec 15 2024
From Seiichi Manyama, Aug 04 2025: (Start)
a(n) = [x^n] (1+x)^(2*n+1)/(1-x)^(n+1).
a(n) = [x^n] 1/((1-x) * (1-2*x)^(n+1)). (End)
Previous Showing 101-110 of 422 results. Next