cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 167 results. Next

A124696 Number of base-3 circular n-digit numbers with adjacent digits differing by 1 or less.

Original entry on oeis.org

1, 3, 7, 15, 35, 83, 199, 479, 1155, 2787, 6727, 16239, 39203, 94643, 228487, 551615, 1331715, 3215043, 7761799, 18738639, 45239075, 109216787, 263672647, 636562079, 1536796803, 3710155683, 8957108167, 21624372015, 52205852195
Offset: 0

Views

Author

R. H. Hardin, Dec 28 2006

Keywords

Comments

These are the number of smooth cyclic words of length n over the alphabet {1,2,3}. See theorem 3.3 in Knopfmacher and others. - Peter Luschny, Aug 13 2012
This is the main entry for 234 similar sequences. Cf. the link to the OEIS Wiki for a list, the programs and a derivation of the linear recurrences. - Georg Fischer, Apr 09 2021

Crossrefs

Cf. A002426, Row 3 of A276562.

Programs

  • Maple
    T := (n, k) -> `if`(n=0, 1, add((1 + 2*cos(j*Pi/(k + 1)))^n, j=1..k)):
    a := n -> simplify(T(n, 3)): seq(a(n), n=0..28); # Peter Luschny, Mar 28 2021

Formula

[Empirical] a(base,n) = a(base-1,n) + A002426(n+1) for base = 1..floor(n/2)+1.
a(n) = T(n,3) for n > 0, where T(n,k) = Sum_{j=1..k} (1 + 2*cos(j*Pi/(k + 1)))^n. - Peter Luschny, Aug 13 2012
From Colin Barker, Nov 26 2012: (Start)
a(n) = 1 + (1 - sqrt(2))^n + (1 + sqrt(2))^n for n > 0.
a(n) = 3*a(n-1) - a(n-2) - a(n-3) for n > 3.
G.f.: -(2*x^3 + x^2 - 1)/((x - 1)*(x^2 + 2*x - 1)). (End)
a(n) = A002203(n)+1, n>0. - R. J. Mathar, May 09 2023

A114525 Triangle of coefficients of the Lucas (w-)polynomials.

Original entry on oeis.org

2, 0, 1, 2, 0, 1, 0, 3, 0, 1, 2, 0, 4, 0, 1, 0, 5, 0, 5, 0, 1, 2, 0, 9, 0, 6, 0, 1, 0, 7, 0, 14, 0, 7, 0, 1, 2, 0, 16, 0, 20, 0, 8, 0, 1, 0, 9, 0, 30, 0, 27, 0, 9, 0, 1, 2, 0, 25, 0, 50, 0, 35, 0, 10, 0, 1, 0, 11, 0, 55, 0, 77, 0, 44, 0, 11, 0, 1, 2, 0, 36, 0, 105, 0, 112, 0, 54, 0, 12, 0, 1
Offset: 0

Views

Author

Eric W. Weisstein, Dec 06 2005

Keywords

Comments

Unsigned version of A108045.
The row reversed triangle is A162514. - Paolo Bonzini, Jun 23 2016

Examples

			2, x, 2 + x^2, 3*x + x^3, 2 + 4*x^2 + x^4, 5*x + 5*x^3 + x^5, ... give triangle
  n\k   0  1  2  3  4  5  6  7  8  9 10 ...
  0:    2
  1:    0  1
  2:    2  0  1
  3:    0  3  0  1
  4:    2  0  4  0  1
  5:    0  5  0  5  0  1
  6:    2  0  9  0  6  0  1
  7:    0  7  0 14  0  7  0  1
  8:    2  0 16  0 20  0  8  0  1
  9:    0  9  0 30  0 27  0  9  0  1
  10:   2  0 25  0 50  0 35  0 10  0  1
  n\k   0  1  2  3  4  5  6  7  8  9 10 ...
  .... reformatted by _Wolfdieter Lang_, Feb 10 2023
		

Crossrefs

Cf. A108045 (signed version).
Cf. Sequences L(n,x): A000032(x = 1), A002203 (x = 2), A006497 (x = 3), A014448 (x = 4), A087130 (x = 5), A085447 (x = 6), A086902 (x = 7), A086594 (x = 8), A087798 (x = 9), A086927 (x = 10), A001946 (x = 11), A086928 (x = 12), A088316 (x = 13), A090300 (x = 14), A090301 (x = 15), A090305 (x = 16), A090306 (x = 17), A090307 (x = 18), A090308 (x = 19), A090309 (x = 20), A090310 (x = 21), A090313 (x = 22), A090314 (x = 23), A090316 (x = 24), A087281 (x = 29), A087287 (x = 76), A089772 (x = 199).

Programs

  • Maple
    Lucas := proc(n,x)
        option remember;
        if  n=0 then
            2;
        elif n =1 then
            x ;
        else
            x*procname(n-1,x)+procname(n-2,x) ;
        end if;
    end proc:
    A114525 := proc(n,k)
        coeftayl(Lucas(n,x),x=0,k) ;
    end proc:
    seq(seq(A114525(n,k),k=0..n),n=0..12) ; # R. J. Mathar, Aug 16 2019
  • Mathematica
    row[n_] := CoefficientList[LucasL[n, x], x];
    Table[row[n], {n, 0, 12}] // Flatten (* Jean-François Alcover, Aug 11 2018 *)

Formula

From Peter Bala, Mar 18 2015: (Start)
The Lucas polynomials L(n,x) satisfy the recurrence L(n+1,x) = x*L(n,x) + L(n-1,x) with L(0,x) = 2 and L(1,x) = x.
O.g.f.: Sum_{n >= 0} L(n,x)*t^n = (2 - x*t)/(1 - t^2 - x*t) = 2 + x*t + (x^2 + 2)*t^2 + (3*x + x^3)*t^3 + ....
L(n,x) = trace( [ x, 1; 1, 0 ]^n ).
exp( Sum_{n >= 1} L(n,x)*t^n/n ) = Sum_{n >= 0} F(n+1,x)*t^n, where F(n,x) denotes the n-th Fibonacci polynomial. (see Appendix A3 in Johnson).
exp( Sum_{n >= 1} L(n,x)*L(2*n,x)*t^n/n ) = 1/( F(1,x)*F(2*x)*F(3,x) ) * Sum_{n >= 0} F(n+1,x)*F(n+2,x)*F(n+3,x)*t^n.
exp( Sum_{n >= 1} L(3*n,x)/L(n,x)*t^n/n ) = Sum_{n >= 0} L(2*n + 1,x)*t^n.
L(n,1) = Lucas(n) = A000032(n); L(n,4) = Lucas(3*n) = A014448(n); L(n,11) = Lucas(5*n) = A001946(n); L(n,29) = Lucas(7*n) = A087281(n); L(n,76) = Lucas(9*n) = A087287(n); L(n,199) = Lucas(11*n) = A089772(n). The general result is L(n,Lucas(2*k + 1)) = Lucas((2*k + 1)*n). (End)
From Jeremy Dover, Jun 10 2016: (Start)
Read as a triangle T(n,k), n >= 0, n >= k >= 0, T(n,k) = (Binomial((n+k)/2,k) + Binomial((n+k-2)/2,k))*(1+(-1)^(n-k))/2.
T(n,k) = A046854(n-1,k-1) + A046854(n-1,k) + A046854(n-2,k) for even n+k with n+k > 0, assuming A046854(n,k) = 0 for n < 0, k < 0, k > n.
T(n,k) is the number of binary strings of length n with exactly k pairs of consecutive 0's and no pair of consecutive 1's, where the first and last bits are considered consecutive. (End)
From Peter Bala, Sep 03 2022: (Start)
L(n,x) = 2*(i)^n*T(n,-i*x/2), where i = sqrt(-1) and T(n,x) is the n-th Chebyshev polynomial of the first kind.
d/dx(L(n,x)) = n*F(n,x), where F(n,x) denotes the n-th Fibonacci polynomial.
Let P_n(x,y) = (L(n,x) - L(n,y))/(x - y). Then {P_n(x,y): n >= 1} is a fourth-order linear divisibility sequence of polynomials in the ring Z[x,y]: if m divides n in Z then P_m(x,y) divides P_n(x,y) in Z[x,y].
P_n(1,1) = A045925(n); P_n(1,4) = A273622; P_n(2,2) = A093967(n).
L(2*n,x)^2 - L(2*n-1,x)*L(2*n+1,x) = x^2 + 4 for n >= 1.
Sum_{n >= 1} L(2*n,x)/( L(2*n-1,x) * L(2*n+1,x) ) = 1/x^2 and
Sum_{n >= 1} (-1)^(n+1)/( L(2*n,x) + x^2/L(2*n,x) ) = 1/(x^2 + 4), both valid for all nonzero real x. (End)
From Peter Bala, Nov 18 2022: (Start)
L(n,x) = Sum_{k = 0..floor(n/2)} (n/(n-k))*binomial(n-k,k)*x^(n-2*k) for n >= 1.
For odd m, L(n, L(m,x)) = L(n*m, x).
For integral x, the sequence {u(n)} := {L(n,x)} satisfies the Gauss congruences: u(m*p^r) == u(m*p^(r-1)) (mod p^r) for all positive integers m and r and all primes p.
Let p be an odd prime and let 0 <= k <= p - 1. Let alpha_k = the p-adic limit_{n -> oo} L(p^n,k). Then alpha_k is a well-defined p-adic-integer and the polynomial L(p,x) - x of degree p factorizes as L(p,x) - x = Product_{k = 0..p-1} (x - alpha_k). For example, L(5,x) - x = x^5 + 5*x^3 + 4*x = x*(x - A269591)*(x - A210850)*(x - A210851)*(x - A269592) in the ring of 5-adic integers. (End)
The formula for L(n,x) given in the first line of the preceding section, with L(0, x) = 2, is rewritten L(n, x) = Sum_{k = 0..floor(n/2)} A034807(n, k)*x^(n - 2*k). See the formula by Alexander Elkins in A034807. - Wolfdieter Lang, Feb 10 2023

A079291 Squares of Pell numbers.

Original entry on oeis.org

0, 1, 4, 25, 144, 841, 4900, 28561, 166464, 970225, 5654884, 32959081, 192099600, 1119638521, 6525731524, 38034750625, 221682772224, 1292061882721, 7530688524100, 43892069261881, 255821727047184, 1491038293021225
Offset: 0

Views

Author

Ralf Stephan, Feb 08 2003

Keywords

Comments

(-1)^(n+1)*a(n) is the r=-4 member of the r-" of sequences S_r(n), n>=1, defined in A092184 where more information can be found.
Binomial transform of A086346. - Johannes W. Meijer, Aug 01 2010
In general, squaring the terms of a Horadam sequence with signature (c,d) will result in a third-order recurrence with signature (c^2+d, c^2*d+d^2, -d^3). - Gary Detlefs, Nov 11 2021
(Conjectured) For any primitive Pythagorean triple of the form (X, Y, Z=Y+1), it appears that Y or Z will always be (and only be) a square Pell number if X = A001333(n), for n > 1. If n is even, Y is always a square Pell number, and if n is odd, then Z is always a square Pell number. For example: (3, 4, 5), (7, 24, 25), (17, 144, 145), (41, 840, 841), (99, 4900, 4901). - Jules Beauchamp, Feb 02 2022
a(n+1) is the number of tilings of an n-board (a board with dimensions n X 1) using (1/2,1/2)-fences, black half-squares (1/2 X 1 pieces, always placed so that the shorter sides are horizontal), and white half-squares. A (w,g)-fence is a tile composed of two w X 1 pieces separated by a gap of width g. a(n+1) also equals the number of tilings of an n-board using black (1/4,1/4)-fences, white (1/4,1/4)-fences, and (1/4,3/4)-fences. - Michael A. Allen, Dec 29 2022

Crossrefs

Programs

  • Magma
    I:=[0,1,4]; [n le 3 select I[n] else 5*Self(n-1)+ 5*Self(n-2) - Self(n-3): n in [1..31]]; // Vincenzo Librandi, May 17 2013
    
  • Maple
    with(combinat):seq(fibonacci(i,2)^2, i=0..31); # Zerinvary Lajos, Mar 20 2008
  • Mathematica
    CoefficientList[Series[x(1-x)/((1+x)*(1-6x+x^2)), {x, 0, 30}], x] (* Vincenzo Librandi, May 17 2013 *)
    LinearRecurrence[{5,5,-1},{0,1,4},40] (* Harvey P. Dale, Dec 20 2015 *)
    Fibonacci[Range[0, 30], 2]^2 (* G. C. Greubel, Sep 17 2021 *)
  • Sage
    [lucas_number1(n, 2, -1)^2 for n in (0..30)] # G. C. Greubel, Sep 17 2021

Formula

G.f.: x*(1-x)/((1+x)*(1-6*x+x^2)).
a(n) = (r^n + (1/r)^n - 2*(-1)^n)/8, with r = 3 + sqrt(8).
a(n+3) = 5*a(n+2) + 5*a(n+1) - a(n).
L.g.f.: (1/8)*log((1+2*x+x^2)/(1-6*x+x^2)) = Sum_{n>=0} (a(n)/n)*x^n, see p. 627 of the Fxtbook link; special case of the following: let v(0)=0, v(1)=1, and v(n) = u*v(n-1) + v(n-2), then (1/A)*log((1+2*x+x^2)/(1-(2-A)*x+x^2)) = Sum_{n>=0} v(n)^2/n*x^n where A = u^2 + 4. - Joerg Arndt, Apr 08 2011
a(n+1) = Sum_{k=0..n} ( (-1)^(n-k)*A001653(k) ); e.g., 144 = -1 + 5 - 29 + 169; 25 = 1 - 5 + 29. - Charlie Marion, Jul 16 2003
a(n) = A000129(n)^2.
a(n) = (T(n, 3) - (-1)^n)/4 with Chebyshev's polynomials of the first kind evaluated at x=3: T(n, 3) = A001541(n) = ((3 + 2*sqrt(2))^n + (3 - 2*sqrt(2))^n )/2. - Wolfdieter Lang, Oct 18 2004
a(n) is the rightmost term of M^n * [1 0 0] where M is the 3 X 3 matrix [4 4 1 / 2 1 0 / 1 0 0]. a(n+1) = leftmost term. E.g., a(6) = 4900, a(5) = 841 since M^5 * [1 0 0] = [4900 2030 841]. - Gary W. Adamson, Oct 31 2004
a(n) = ( (-1)^(n+1) + A001109(n+1) - 3*A001109(n) )/4. - R. J. Mathar, Nov 16 2007
a(n) = ( (((1 - sqrt(2))^n + (1 + sqrt(2))^n) /2 )^2 + (-1)^(n+1) )/2. - Antonio Pane (apane1(AT)spc.edu), Dec 15 2007
Lim_{k -> infinity} ( a(n+k)/a(k) ) = A001541(n) + 2*A001109(n)*sqrt(2). - Johannes W. Meijer, Aug 01 2010
For n>0, a(2*n) = 6*a(2*n-1) - a(2*n-2) - 2, a(2*n+1) = 6*a(2*n) - a(2*n-1) + 2. - Charlie Marion, Sep 24 2011
a(n) = (1/8)*(A002203(2*n) - 2*(-1)^n). - G. C. Greubel, Sep 17 2021
Conjectured formula for (X, Y, Z) for primitive Pythagorean triple of the form (X, Y, Z=Y+1) is (A001333(n)^2, A079291(n)^2, A079291(n)^2-1) or (A001333(n)^2, A079291(n)^2-1, A079291(n)^2). As a closed formula (X, Y, Z) = (((1-sqrt(2))^n + (1+sqrt(2))^n)/2, (((1-sqrt(2))^n + (1+sqrt(2))^n)^2 - 4)/8, (((1-sqrt(2))^n + (1+sqrt(2))^n)^2 + 4)/8). - Jules Beauchamp, Feb 02 2022
From Michael A. Allen, Dec 29 2022: (Start)
a(n+1) = 6*a(n) - a(n-1) + 2*(-1)^n.
a(n+1) = (1 + (-1)^n)/2 + 4*Sum_{k=1..n} ( k*a(n+1-k) ). (End)
Product_{n>=2} (1 + (-1)^n/a(n)) = (1 + sqrt(2))/2 (A174968) (Falcon, 2016, p. 189, eq. (3.1)). - Amiram Eldar, Dec 03 2024

A204270 a(n) = tau(n)*Pell(n), where tau(n) = A000005(n), the number of divisors of n.

Original entry on oeis.org

1, 4, 10, 36, 58, 280, 338, 1632, 2955, 9512, 11482, 83160, 66922, 323128, 780100, 2354160, 2273378, 16465260, 13250218, 95966568, 154455860, 372889432, 450117362, 4346717760, 3935214363, 12667263848, 30581480180, 110745336312, 89120964298
Offset: 1

Views

Author

Paul D. Hanna, Jan 14 2012

Keywords

Comments

Compare g.f. to the Lambert series identity: Sum_{n>=1} x^n/(1-x^n) = Sum_{n>=1} tau(n)*x^n.
Related identities:
(1) Sum_{n>=1} n^k*Pell(n)*x^n/(1 - A002203(n)*x^n + (-1)^n*x^(2*n)) = Sum_{n>=1} sigma_{k}(n)*Pell(n)*x^n for k>=0.
(2) Sum_{n>=1} phi(n)*Pell(n)*x^n/(1 - A002203(n)*x^n + (-1)^n*x^(2*n)) = Sum_{n>=1} n*Pell(n)*x^n.
(3) Sum_{n>=1} moebius(n)*Pell(n)*x^n/(1 - A002203(n)*x^n + (-1)^n*x^(2*n)) = x.
(4) Sum_{n>=1} lambda(n)*Pell(n)*x^n/(1 - A002203(n)*x^n + (-1)^n*x^(2*n)) = Sum_{n>=1} Pell(n^2)*x^(n^2).

Examples

			G.f.: A(x) = 1 + 4*x + 10*x^2 + 36*x^3 + 58*x^4 + 280*x^5 + 338*x^6 +...
where A(x) = x/(1-2*x-x^2) + 2*x^2/(1-6*x^2+x^4) + 5*x^3/(1-14*x^3-x^6) + 12*x^4/(1-34*x^4+x^8) + 29*x^5/(1-82*x^5-x^10) + 70*x^6/(1-198*x^6+x^12) +...+ Pell(n)*x^n/(1 - A002203(n)*x^n + (-1)^n*x^(2*n)) +...
		

Crossrefs

Programs

  • Mathematica
    Table[DivisorSigma[0, n] Fibonacci[n, 2], {n, 1, 50}] (* G. C. Greubel, Jan 05 2018 *)
  • PARI
    /* Subroutines used in PARI programs below: */
    {Pell(n)=polcoeff(x/(1-2*x-x^2+x*O(x^n)), n)}
    {A002203(n)=polcoeff(2*(1-x)/(1-2*x-x^2+x*O(x^n)), n)}
    
  • PARI
    {a(n)=sigma(n,0)*Pell(n)}
    
  • PARI
    {a(n)=polcoeff(sum(m=1,n,Pell(m)*x^m/(1-A002203(m)*x^m+(-1)^m*x^(2*m)+x*O(x^n))),n)}

Formula

G.f.: Sum_{n>=1} Pell(n)*x^n/(1 - A002203(n)*x^n + (-1)^n*x^(2*n)) = Sum_{n>=1} tau(n)*Pell(n)*x^n, where Pell(n) = A000129(n) and A002203 is the companion Pell numbers.

A008844 Squares of sequence A001653: y^2 such that x^2 - 2*y^2 = -1 for some x.

Original entry on oeis.org

1, 25, 841, 28561, 970225, 32959081, 1119638521, 38034750625, 1292061882721, 43892069261881, 1491038293021225, 50651409893459761, 1720656898084610641, 58451683124983302025, 1985636569351347658201, 67453191674820837076801, 2291422880374557112953025
Offset: 0

Views

Author

Keywords

Comments

Numbers simultaneously square and centered square. E.g., a(1)=25 because 25 is the fourth centered square number and the fifth square number. - Steven Schlicker, Apr 24 2007
Solutions to A007913(x)=A007913(2x-1). - Benoit Cloitre, Apr 07 2002
From Ant King, Nov 09 2011: (Start)
Indices of positive hexagonal numbers that are also perfect squares.
As n increases, this sequence is approximately geometric with common ratio r = lim_{n -> infinity} a(n)/a(n-1) = (1 + sqrt(2))^4 = 17 + 12 * sqrt(2).
(End)
Also indices of hexagonal numbers (A000384) which are also centered octagonal numbers (A016754). - Colin Barker, Jan 25 2015
Also positive integers x in the solutions to 4*x^2 - 8*y^2 - 2*x + 8*y - 2 = 0, the corresponding values of y being A253826. - Colin Barker, Jan 25 2015
Squares that are sum of two consecutive squares: y^2 = (k + 1)^2 + k^2 is equivalent to x^2 - 2*y^2 = -1 with x = 2*k + 1. - Jean-Christophe Hervé, Nov 11 2015
Squares in the main diagonal of the natural number array, A000027. - Clark Kimberling, Mar 12 2023

Examples

			From _Ravi Kumar Davala_, May 26 2013: (Start)
A001333(0)=1, A001333(4)=17, A001333(8)=577, A000129(0)=0, A000129(2)=2, A000129(4)=12, A000129(8)=408 so clearly
a(n+m)=A001333(4*m)*a(n)-(A000129(2*m))^2+A000129(4*m)*sqrt(2*a(n)^2-a(n)), with m=1,2 is true.
A002203(0)=2, A002203(4)=34, A002203(8)=1154 so clearly
a(n+m)=(1/2)*A002203(4*m)*a(n)-(A000129(2*m))^2+A000129(4*m)*sqrt(2*a(n)^2-a(n)) is true for m=1,2
a(n+1)*a(n-1) = (a(n)+4)^2 , with n=1 is 841*1=(25+4)^2, for n=2 , 28561*25=(841+4)^2.
(End)
1 = 1 + 0, 25 = 16 + 9, 841 = 29^2 = 21^2 + 20^2 = 441 + 400.
		

References

  • Albert H. Beiler, Recreations in the Theory of Numbers, Dover, NY, 1964, p. 256.

Crossrefs

Programs

  • GAP
    a := [1, 25, 841];; for i in [4..10^2] do a[i] := 35*a[i-1] - 35*a[i-2] + a[i-3]; od; a;  # Muniru A Asiru, Jan 17 2018
    
  • Magma
    I:=[1,25,841]; [n le 3 select I[n] else 35*Self(n-1)-35*Self(n-2)+Self(n-3): n in [1..20]]; // Vincenzo Librandi, Jan 20 2018
  • Maple
    CP := n -> 1+1/2*4*(n^2-n): N:=10: u:=3: v:=1: x:=4: y:=1: k_pcp:=[1]: for i from 1 to N do tempx:=x; tempy:=y; x:=tempx*u+8*tempy*v: y:=tempx*v+tempy*u: s:=(y+1)/2: k_pcp:=[op(k_pcp),CP(s)]: end do: k_pcp; # Steven Schlicker, Apr 24 2007
  • Mathematica
    LinearRecurrence[{35, -35, 1}, {1, 25, 841}, 15] (* Ant King, Nov 09 2011 *)
    CoefficientList[Series[(1 - 10 x + x^2) / ((1 - x) (1 - 34 x + x^2)), {x, 0, 33}], x] (* Vincenzo Librandi, Jan 20 2018 *)
  • PARI
    a(n)=if(n<0,0,sqr(subst(poltchebi(n+1)+poltchebi(n),x,3)/4))
    
  • PARI
    vector(40, n, n--; (([5, 2; 2, 1]^n)[1, 1])^2) \\ Altug Alkan, Nov 11 2015
    

Formula

From Benoit Cloitre, Jan 19 2003: (Start)
a(n) = A078522(n) + 1.
a(n) = ceiling(A*B^n) where A = (3 + 2*sqrt(2))/8 and B = 17 + 12*sqrt(2). (End)
G.f.: (1-10x+x^2)/((1-x)(1-34x+x^2)).
a(n) = ceiling(A046176(n)/sqrt(2)). - Helge Robitzsch (hrobi(AT)math.uni-goettingen.de), Jul 28 2000
a(n+1) = 17*a(n) - 4 + 12*sqrt(2*a(n)^2 - a(n)). - Richard Choulet, Sep 14 2007
Define x(n) + y(n)*sqrt(8) = (4+sqrt(8))*(3+sqrt(8))^n, s(n) = (y(n)+1)/2; then a(n) = (1/2)*(2+4*(s(n)^2 - s(n))). - Steven Schlicker, Apr 24 2007
From Ant King, Nov 09 2011: (Start)
a(n) = 35*a(n-1) - 35*a(n-2) + a(n-3).
a(n) = 34*a(n-1) - a(n-2) - 8.
a(n) = 1/8 * ((1 + sqrt(2))^(4*n-2) + (1 - sqrt(2))^(4*n-2) + 2).
a(n) = ceiling((1/8) * (1 + sqrt(2))^(4*n-2)). (End)
From Ravi Kumar Davala, May 26 2013: (Start)
a(n+2) = 577*a(n) - 144 + 408*sqrt(2*a(n)^2 - a(n)).
a(n+m) = A001333(4*m)*a(n) - (A000129(2*m))^2 + A000129(4*m)*sqrt(2*a(n)^2 - a(n)).
a(n+m) = (1/2)*A002203(4*m)*a(n) - (A000129(2*m))^2 + A000129(4*m)*sqrt(2*a(n)^2 - a(n)).
a(n+1)*a(n-1) = (a(n)+4)^2. (End)
a(n) = A001652(n)^2 + A046090(n)^2. - César Aguilera, Jan 15 2018
Limit_{n -> infinity} a(n)/a(n-1) = A156164. - César Aguilera, Jan 28 2018
sqrt(2*a(n))-1 = A002315(n). - Ezhilarasu Velayutham, Apr 05 2019
4*a(n) = 1 +3*A077420(n). - R. J. Mathar, Mar 05 2024
Product_{n>=0} (1 + 4/a(n)) = 2*sqrt(2) + 3 (Koshy, 2022, section 3, p. 19). - Amiram Eldar, Jan 23 2025

Extensions

Entry edited by N. J. A. Sloane, Sep 14 2007

A059020 Number of 2 X n checkerboards (with at least one red square) in which the set of red squares is edge connected.

Original entry on oeis.org

0, 3, 13, 40, 108, 275, 681, 1664, 4040, 9779, 23637, 57096, 137876, 332899, 803729, 1940416, 4684624, 11309731, 27304157, 65918120, 159140476, 384199155, 927538873, 2239276992, 5406092952, 13051462995, 31509019045, 76069501192, 183648021540, 443365544387
Offset: 0

Views

Author

John W. Layman, Dec 14 2000

Keywords

Comments

In other words, the number of connected (non-null) induced subgraphs in the n-ladder graph P_2 X P_n. - Eric W. Weisstein, May 02 2017
Also, the number of cycles in the grid graph P_3 X P_{n+1}. - Andrew Howroyd, Jun 12 2017

Crossrefs

Row 2 of A287151 and row 2 of A231829.
See also A059021, A059524.
Cf. A000129. - Jaume Oliver Lafont, Sep 28 2009
Other sequences counting connected induced subgraphs: A020873, A059525, A286139, A286182, A286183, A286184, A286185, A286186, A286187, A286188, A286189, A286191, A285765, A285934, A286304.

Programs

  • Magma
    I:=[0, 3, 13, 40];[n le 4 select I[n] else 4*Self(n-1) - 4*Self(n-2) + Self(n-4):n in [1..30]]; // Marius A. Burtea, Aug 25 2019
  • Mathematica
    Join[{0},LinearRecurrence[{4, -4, 0, 1}, {3, 13, 40, 108}, 20]] (* Eric W. Weisstein, May 02 2017 *) (* adapted by Vincenzo Librandi, May 09 2017 *)
    Table[(LucasL[n + 3, 2] - 8 n - 14)/4, {n, 0, 20}] (* Eric W. Weisstein, May 02 2017 *)

Formula

a(n) = 2*a(n-1) + a(n-2) + 4*n - 1.
From Jaume Oliver Lafont, Nov 23 2008: (Start)
a(n) = 3*a(n-1) - a(n-2) - a(n-3) + 4;
a(n) = 4*a(n-1) - 4*a(n-2) + a(n-4). (End)
G.f.: x*(3+x)/((1-2*x-x^2)*(1-x)^2). - Jaume Oliver Lafont, Sep 28 2009
Empirical observations (from Superseeker):
(1) if b(n) = a(n) + n then {b(n)} is A048777;
(2) if b(n) = a(n+3) - 3*a(n+2) - 3*a(n+1) + a(n) then {b(n)} is A052542;
(3) if b(n) = a(n+2) - 2*a(n+1) + a(n) then {b(n)} is A001333.
4*a(n) = A002203(n+3) - 8*n - 14. - Eric W. Weisstein, May 02 2017
a(n) = 3*A048776(n-1) + A048776(n-2). - R. J. Mathar, May 12 2019
E.g.f.: (1/2)*exp(x)*(-7-4*x+7*cosh(sqrt(2)*x)+5*sqrt(2)*sinh(sqrt(2)*x)). - Stefano Spezia, Aug 25 2019

A006266 A continued cotangent.

Original entry on oeis.org

2, 14, 2786, 21624372014, 10111847525912679844192131854786, 1033930953043290626825587838528711318150300040875029341893199068078185510802565166824630504014
Offset: 0

Views

Author

Keywords

Comments

The next (6th) term is 280 digits long. - M. F. Hasler, Oct 06 2014

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Magma
    [Evaluate(DicksonFirst(3^n, -1), 2): n in [0..7]]; // G. C. Greubel, Mar 25 2022
    
  • Maple
    a := proc(n) option remember; if n = 1 then 14 else a(n-1)^3 + 3*a(n-1) end if; end: seq(a(n), n = 1..5); # Peter Bala Nov 15 2022
  • Mathematica
    Table[Round[(1+Sqrt[2])^(3^n)],{n,0,10}] (* Artur Jasinski, Sep 24 2008 *)
    LucasL[3^Range[0, 7], 2] (* G. C. Greubel, Mar 25 2022 *)
  • PARI
    a(n,s=2)=for(i=2,n,s*=(s^2+3));s \\ M. F. Hasler, Oct 06 2014
    
  • Sage
    [lucas_number2(3^n,2,-1) for n in (0..7)] # G. C. Greubel, Mar 25 2022

Formula

From Artur Jasinski, Sep 24 2008: (Start)
a(n+1) = a(n)^3 + 3*a(n) with a(0) = 2.
a(n) = round((1+sqrt(2))^(3^n)). [Corrected by M. F. Hasler, Oct 06 2014] (End)
From Peter Bala, Nov 15 2022: (Start)
a(n) = A002203(3^n).
a(n) = L(3^n,2), where L(n,x) denotes the n-th Lucas polynomial of A114525.
a(n) == 2 (mod 3).
a(n+1) == a(n) (mod 3^(n+1)) for n >= 1 (a particular case of the Gauss congruences for the companion Pell numbers).
The smallest positive residue of a(n) mod(3^n) = A271222(n).
In the ring of 3-adic integers the limit_{n -> oo} a(n) exists and is equal to A271224. Cf. A006267. (End)

Extensions

Edited by M. F. Hasler, Oct 06 2014
Offset corrected by G. C. Greubel, Mar 25 2022

A084158 a(n) = A000129(n) * A000129(n+1)/2.

Original entry on oeis.org

0, 1, 5, 30, 174, 1015, 5915, 34476, 200940, 1171165, 6826049, 39785130, 231884730, 1351523251, 7877254775, 45912005400, 267594777624, 1559656660345, 9090345184445, 52982414446326, 308804141493510, 1799842434514735, 10490250465594899, 61141660359054660, 356359711688733060
Offset: 0

Views

Author

Paul Barry, May 18 2003

Keywords

Comments

May be called Pell triangles.

Crossrefs

Programs

  • Magma
    [Floor(((Sqrt(2)+1)^(2*n+1)-(Sqrt(2)-1)^(2*n+1)-2*(-1)^n)/16): n in [0..35]]; // Vincenzo Librandi, Jul 05 2011
    
  • Maple
    with(combinat): a:=n->fibonacci(n,2)*fibonacci(n-1,2)/2: seq(a(n), n=1..22); # Zerinvary Lajos, Apr 04 2008
  • Mathematica
    LinearRecurrence[{5,5,-1},{0,1,5},30] (* Harvey P. Dale, Sep 07 2011 *)
  • PARI
    Pell(n)=([2, 1; 1, 0]^n)[2, 1];
    a(n)=Pell(n)*Pell(n+1)/2 \\ Charles R Greathouse IV, Mar 21 2016
    
  • PARI
    a(n)=([0,1,0; 0,0,1; -1,5,5]^n*[0;1;5])[1,1] \\ Charles R Greathouse IV, Mar 21 2016
    
  • SageMath
    [(lucas_number2(2*n+1,2,-1) -2*(-1)^n)/16 for n in (0..30)] # G. C. Greubel, Aug 18 2022

Formula

a(n) = ((sqrt(2)+1)^(2*n+1) - (sqrt(2)-1)^(2*n+1) - 2*(-1)^n)/16.
a(n) = 5*a(n-1) + 5*a(n-2) - a(n-3). - Mohamed Bouhamida, Sep 02 2006; corrected by Antonio Alberto Olivares, Mar 29 2008
a(n) = (-1/8)*(-1)^n + (( sqrt(2)+1)/16)*(3+2*sqrt(2))^n + ((-sqrt(2)+1)/16)*(3-2*sqrt(2))^n. - Antonio Alberto Olivares, Mar 30 2008
sqrt(a(n) - a(n-1)) = A000129(n). - Antonio Alberto Olivares, Mar 30 2008
O.g.f.: x/((1+x)(1-6*x+x^2)). - R. J. Mathar, May 18 2008
a(n) = A041011(n)*A041011(n+1). - R. K. Guy, May 18 2008
From Mohamed Bouhamida, Aug 30 2008: (Start)
a(n) = 6*a(n-1) - a(n-2) - (-1)^n.
a(n) = 7*(a(n-1) - a(n-2)) + a(n-3) - 2*(-1)^n. (End)
In general, for n>k+1, a(n+k) = A003499(k+1)*a(n-1) - a(n-k-2) - (-1)^n A000129(k+1)^2. - Charlie Marion, Jan 04 2012
For n>0, a(2n-1)*a(2n+1) = oblong(a(2n)); a(2n)*a(2n+2) = oblong(a(2n+1)-1). - Charlie Marion, Jan 09 2012
a(n) = A046729(n)/4. - Wolfdieter Lang, Mar 07 2012
a(n) = sum of squares of first n Pell numbers A000129 (A079291). - N. J. A. Sloane, Jun 18 2012
a(n) = (A002315(n) - (-1)^n)/8. - Adam Mohamed, Sep 05 2024
Sum_{n>=1} (-1)^(n+1)/a(n) = 2*(sqrt(2)-1) (A163960). - Amiram Eldar, Dec 02 2024
G.f.: x * exp( Sum_{k>=1} Pell(3*k)/Pell(k) * x^k/k ). - Seiichi Manyama, May 07 2025

A077444 Numbers k such that (k^2 + 4)/2 is a square.

Original entry on oeis.org

2, 14, 82, 478, 2786, 16238, 94642, 551614, 3215042, 18738638, 109216786, 636562078, 3710155682, 21624372014, 126036076402, 734592086398, 4281516441986, 24954506565518, 145445522951122, 847718631141214, 4940866263896162, 28797478952235758, 167844007449518386
Offset: 1

Views

Author

Gregory V. Richardson, Nov 09 2002

Keywords

Comments

The equation "(k^2 + 4)/2 is a square" is a version of the generalized Pell Equation x^2 - D*y^2 = C where x^2 - 2*y^2 = -4.
Sequence of all positive integers k such that continued fraction [k,k,k,k,k,k,...] belongs to Q(sqrt(2)). - Thomas Baruchel, Sep 15 2003
Equivalently, 2*n^2 + 8 is a square.
Numbers n such that (ceiling(sqrt(n*n/2)))^2 = 2 + n^2/2. - Ctibor O. Zizka, Nov 09 2009
The continued fraction [a(n);a(n),a(n),...] = (1 + sqrt(2))^(2*n-1). - Thomas Ordowski, Jun 07 2013
a((p+1)/2) == 2 (mod p) where p is an odd prime. - Altug Alkan, Mar 17 2016

References

  • A. H. Beiler, "The Pellian." Ch. 22 in Recreations in the Theory of Numbers: The Queen of Mathematics Entertains. Dover, New York, New York, pp. 248-268, 1966.
  • L. E. Dickson, History of the Theory of Numbers, Vol. II, Diophantine Analysis. AMS Chelsea Publishing, Providence, Rhode Island, 1999, pp. 341-400.
  • Peter G. L. Dirichlet, Lectures on Number Theory (History of Mathematics Source Series, V. 16); American Mathematical Society, Providence, Rhode Island, 1999, pp. 139-147.

Crossrefs

(A077445(n))^2 - 2*a(n) = 8.
First differences of A001541.
Pairwise sums of A001542.
Bisection of A002203 and A080039.
Cf. A001653.

Programs

  • Magma
    [n: n in [0..10^8] | IsSquare((n^2 + 4) div 2)]; // Vincenzo Librandi, Jun 20 2015
  • Mathematica
    LinearRecurrence[{6,-1},{2,14},30] (* Harvey P. Dale, Jul 25 2018 *)
  • PARI
    for(n=1,20,q=(1+sqrt(2))^(2*n-1);print1(contfrac(q)[1],", ")) \\ Derek Orr, Jun 18 2015
    
  • PARI
    Vec(2*x*(1+x)/(1-6*x+x^2) + O(x^100)) \\ Altug Alkan, Mar 17 2016
    

Formula

a(n) = (((3 + 2*sqrt(2))^n - (3 - 2*sqrt(2))^n) + ((3 + 2*sqrt(2))^(n-1) - (3 - 2*sqrt(2))^(n-1))) / (2*sqrt(2)).
a(n) = 2*A002315(n-1).
Recurrence: a(n) = 6*a(n-1) - a(n-2), starting 2, 14.
Offset 0, with a=3+2*sqrt(2), b=3-2*sqrt(2): a(n) = a^((2n+1)/2) - b^((2n+1)/2). a(n) = 2*(A001109(n+1) + A001109(n)) = (A003499(n+1) - A003499(n))/2 = 2*sqrt(A001108(2n+1)) = sqrt(A003499(2n+1)-2). - Mario Catalani (mario.catalani(AT)unito.it), Mar 31 2003
Limit_{n->oo} a(n)/a(n-1) = 5.82842712474619009760... = 3 + 2*sqrt(2). See A156035.
From R. J. Mathar, Nov 16 2007: (Start)
G.f.: 2*x*(1+x)/(1-6*x+x^2).
a(n) = 2*(7*A001109(n) - A001109(n+1)). (End)
a(n) = (1+sqrt(2))^(2*n-1) - (1+sqrt(2))^(1-2*n). - Gerson Washiski Barbosa, Sep 19 2010
a(n) = floor((1 + sqrt(2))^(2*n-1)). - Thomas Ordowski, Jun 07 2013
a(n) = sqrt(2*A075870(n)^2-4). - Derek Orr, Jun 18 2015
a(n) = 2*sqrt((2*A001653(n)^2)-1). - César Aguilera, Jul 13 2023
E.g.f.: 2*(1 + exp(3*x)*(sqrt(2)*sinh(2*sqrt(2)*x) - cosh(2*sqrt(2)*x))). - Stefano Spezia, Aug 27 2024

A286182 Number of connected induced (non-null) subgraphs of the prism graph with 2n nodes.

Original entry on oeis.org

3, 13, 51, 167, 503, 1441, 4007, 10923, 29355, 78037, 205659, 538127, 1399583, 3621289, 9327695, 23931603, 61186131, 155949085, 396369795, 1004904695, 2541896519, 6416348209, 16165610999, 40657256571, 102090514683, 255968753125, 640899345579, 1602640560479
Offset: 1

Views

Author

Giovanni Resta, May 04 2017

Keywords

Comments

Cases n=1 and n=2 correspond to degenerate prism graphs, but they fit the same (conjectured) linear recurrence as the other terms.

Crossrefs

Cf. A020873 (wheel), A059020 (ladder), A059525 (grid), A286139 (king), A286183 (antiprism), A286184 (helm), A286185 (Möbius ladder), A286186 (friendship), A286187 (web), A286188 (gear), A286189 (rook), A285765 (queen).

Programs

  • Mathematica
    a[n_] := Block[{g = Graph@ Flatten@ Table[{i <-> Mod[i,n] + 1, n+i <-> Mod[i,n] + n+1, i <-> i+n}, {i, n}]}, -1 + ParallelSum[ Boole@ ConnectedGraphQ@ Subgraph[g, s], {s, Subsets@Range[2 n]}]]; Array[a, 8]

Formula

a(n) = 6*a(n-1) - 11*a(n-2) + 4*a(n-3) + 5*a(n-4) - 2*a(n-5) - a(n-6), for n > 6 (conjectured).
a(n) = A002203(n) + 3*n*A000129(n) - 3*n + 1 (conjectured). - Eric W. Weisstein, May 08 2017
G.f.: x*(3 - 5*x + 6*x^2 - 8*x^3 - 5*x^4 - 3*x^5) / ((1 - x)^2*(1 - 2*x - x^2)^2) (conjectured). - Colin Barker, May 31 2017

Extensions

Terms a(18) and beyond from Andrew Howroyd, Aug 15 2017
Previous Showing 31-40 of 167 results. Next